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Abstract: In this study, we introduce an innovative methodology for the detection of helmet usage
violations among motorcyclists, integrating the YOLOv8 object detection algorithm with deep convo-
lutional generative adversarial networks (DCGANs). The objective of this research is to enhance the
precision of existing helmet violation detection techniques, which are typically reliant on manual
inspection and susceptible to inaccuracies. The proposed methodology involves model training on an
extensive dataset comprising both authentic and synthetic images, and demonstrates high accuracy
in identifying helmet violations, including scenarios with multiple riders. Data augmentation, in
conjunction with synthetic images produced by DCGANs, is utilized to expand the training data
volume, particularly focusing on imbalanced classes, thereby facilitating superior model generaliza-
tion to real-world circumstances. The stand-alone YOLOv8 model exhibited an F1 score of 0.91 for
all classes at a confidence level of 0.617, whereas the DCGANs + YOLOv8 model demonstrated an
F1 score of 0.96 for all classes at a reduced confidence level of 0.334. These findings highlight the
potential of DCGANs in enhancing the accuracy of helmet rule violation detection, thus fostering
safer motorcycling practices.

Keywords: deep learning; DCGANs; YOLOv8; helmet detection; imbalanced classes

1. Introduction

Motorcycles have long been favored for their flexibility and economic advantages as a
mode of transportation. For example, motorcycles tend to occupy smaller spaces, which
helps riders avoid traffic congestion and offers advantages in limited parking spaces. This
makes motorcycles more appealing for mixed and less organized traffic environments in
densely populated urban areas, where motorcyclists can take evasive actions more freely [1].
In addition, motorcycles have a lower fuel consumption when compared to passenger
vehicles, which leads to their widespread use in many developing countries, particularly
for commercial applications and delivery services [2]. However, motorcycle ridership is
generally associated with a higher crash fatality risk that may be attributed to several
factors [3,4]. First, motorcyclists tend to be less risk aware, which leads to committing more
traffic violations and engaging in risky maneuvers (e.g., lane filtering, sudden overtaking)
more frequently [5,6]. Second, motorcycle ridership might be associated with inexperienced
driving and lack of training [7]. Finally, motorcycle riders are more susceptible to injuries
due to the lack of protection [2,8]. To improve motorcycle safety, it is essential to address the
factors contributing to the high number of fatalities and enforce stricter traffic laws to deter
motorcyclists from engaging in hazardous ridership practices. Laws mandating helmet use
have been implemented in various countries as helmets have been an effective measure to
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reduce injury severity in motorcycle crashes [9]. Helmet regulations have proven to be a
crucial step in improving motorcycle safety and reducing the number of fatalities resulting
from crashes [10]. Consequently, there is a growing interest in the use of automated helmet
detection algorithms that may be used in less organized road environments. Challenges
associated with these algorithms are the diversity in the dataset when there are multiple
riders and low-quality video data.

Most of these detection models have been developed using advanced machine learning
algorithms that require large datasets. However, in locations where noncompliance is
considerable, such as in busy environments with a lack of enforcement, the number of
motorcyclists with helmets may be limited. This leads to an unbalanced dataset where the
number of motorcyclists with helmets is much greater than the number of non-compliant
motorcyclists. Numerous frameworks have been proposed to deal with these datasets.
For instance, generative adversarial networks (GANs) can enhance the quality of training
datasets by addressing class imbalance. This technique considers a discriminator and
a generator, where the generator is responsible for creating artificial observations and
the discriminator should verify if the observations belong to the original distribution or
to the distribution sampled by the generator. These neural networks are trained until
the generator samples observations so well that the discriminator is not able to correctly
classify them as either fake or real. Therefore, GANs can be used to generate more data
and increase the number of observations in an unbalanced dataset. Results from our
experiments show that the framework adopted can be used to detect motorcyclist helmet
usage with high accuracy, which demonstrates the potential of implementing this system
for automated enforcement.

The objective of this study is to develop a framework for helmet detection of motorcycle
riders that can help overcome issues related to class imbalance experienced in previous
research. This framework can then be used to enforce helmet-use laws and improve road safety
overall. The method proposed in this study includes several steps, namely, (1) data cleaning,
(2) augmenting the cleaned data, (3) generating synthetic images using deep convolutional
generative adversarial networks (DCGANs) to handle unbalanced classes, and (4) applying
YOLOv8 to detect helmet violations. The main contributions of this paper are as follows:
(1) Developing a real-time helmet violation detection system that utilizes YOLOv8, data
augmentation methods, and DCGANs for image generation that is able to perform accurate
detections despite varying weather and light conditions. Data augmentation and generation
techniques were used in this work to address the occlusion and perspective concerns, including
test time augmentation (TTA) throughout its inference step to further increase prediction
accuracy and confidence. (2) Analyzing the performance of the developed system using
three object detection models from the YOLO series—YOLOv5, YOLOv7, YOLOv8 (with and
without DCGANs)—to determine the most efficient model for identifying helmet violations.
This study helps in increasing the precision for detecting helmet violations.

This paper is organized as follows: Section 2 contains a summary of the relevant
literature. The data used in this paper are presented in Section 3. Section 4 shows the
methodology used, and Section 5 presents the results. Finally, Section 6 concludes the study,
presents its implications, and highlights opportunities for future work.

2. Materials and Methods
2.1. Helmet Use and Motorcyclist Safety

Motorcyclists are generally over-represented in crash fatalities worldwide [11,12].
Among other factors, this is due to their vulnerability and to their proneness to engage in
risky behavior [2,8,13]. For example, motorcyclists are generally faced with visibility issues
that make it more difficult to observe them [14]. The usage of cell phones has also proven
to be related to reckless behavior [15], which leads to increasing crash occurrence. Also, the
motorcycling experience might produce a thrill for risk seeking riders [16], and this behavior
leads to excessive speeding [17]. To account for these factors that greatly increase the
severity of motorcyclist crashes, countermeasures must be put in place. Numerous studies
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have shown the significant role of helmet use in reducing motorcyclist fatal injuries [18,19].
For example, Ref. [3] conducted a study in the US analyzing approximately 4000 motorcycle
crashes, of which 77% resulted in fatalities. In addition, out of those fatal incidents, 37%
of the victims did not wear helmets. The study further revealed that nearly $2.2 billion
in losses occurred each year due to riders not wearing helmets. Other studies in different
environments also underpinned the importance of helmets to prevent serious injuries in
motorcycle crashes. Using data from Taiwan, Ref. [20] found that using a helmet reduces
the death probability by 40%. Additionally, Ref. [21] used ordered logit models to show
that the motorcycle crash severity levels are significantly associated with helmet usage. To
address the risks associated with motorcycle crashes, various countries worldwide have
enacted legislation requirements to mandate helmet use [4].

2.2. Detection Algorithms

Despite the importance of enforcing helmet usage in reducing the severity of motorcy-
cle collisions, this process may be perceived as costly. This is especially true for jurisdictions
with limited police resources. To overcome these challenges, automated helmet detection
frameworks have been considered. Object detection involves identifying and locating
objects (e.g., motorcyclists without helmets) within videos or images using image process-
ing techniques or deep neural networks. Image processing for object detection consists
of several steps, such as pre-processing, feature extraction, thresholding, edge detection,
and contour analysis. Various methods have been proposed, including the Haar cascade
classifier [22], histogram of oriented gradients (HOG) [23], and scale-invariant feature
transform (SIFT) [24] to detect objects in images. Furthermore, deep learning methods,
which are able to learn complex patterns, have emerged as the leading approach due to
their adaptability and ability to handle real-world scenarios [25]. These techniques employ
convolutional neural networks (CNNs) for feature extraction and include models such
as Region-based CNN (R-CNN) [26], Fast and Faster R-CNN [27], Single Shot Multi-Box
Detector (SSD), and You Only Look Once (YOLO) [28–30]. Among these many techniques
for object detection, YOLO has been a popular choice for real-time object detection due to
its speed and efficiency. This algorithm was utilized in various studies for detecting objects,
such as helmets [31,32], license plates [33], and road users in conflict interactions [34]. Many
improvements have been recently made, with numerous model architecture modifications
increasing accuracy and reducing processing time [35–38]. These models, which continue
to be improved over time, are very useful for image detection due to their easy implemen-
tation, pre-trained existing weights, and open-source availability. However, the accuracy of
YOLO models is associated with the quality of the training dataset, which may be limited.
Additional deep learning techniques can be implemented to overcome this drawback.

Several different studies have proposed helmet detection algorithms. For example,
Ref. [39] used a YOLOv5 detector in two steps to detect helmets in China, which first detects
a motorcyclist and then helmet usage. Also, [40] proposed a deep learning framework to
verify motorcyclist helmet usage in Myanmar. The algorithm provided an accuracy that was
approximately 5% lower than a human observer. Furthermore, Ref. [41] employed feature
extraction techniques and a multi-layer perceptron classifier to verify if motorcyclists were
using helmets. Ref. [42] used a similar approach for motorcyclists in Thailand, and the
method found a low rate of false positives. In addition, Ref. [43] used support vector
machines to identify helmet wearing in busy environments. Most of the existing research
focused on helmet detection algorithms rely on standard detection frameworks (e.g., YOLO)
or classifiers (e.g., support vector machines) using real data only [44–46]. However, these
methods become less effective when employed in very dense locations that have multiple
violations occurring in one scene with poor visibility.

Generative adversarial neural networks [47], have gained popularity in recent years
due to their ability to generate fake images that are convincing replicas of real images.
Other approaches include diffusion networks which add random noise to the models in
order to obtain the process to construct samples, and variational autoencoders, which apply
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regularization to ensure that adequate data can be generated. To overcome the limitations
associated with poor visibility and class imbalance, this paper proposes a framework that
considers synthetic data. Therefore, generative adversarial networks have the potential of
improving the model accuracy by enhancing the training process overall. This research fills
this gap by combining the YOLOv8 model with DCGANs to improve helmet detection and
identify motorcycle riders that do not comply with traffic regulations.

3. Dataset

The dataset used in this study, collected as part of the 2023 AICity (https://www.
aicitychallenge.org/) (accessed on 20 March 2023), comprises of 100 videos from India, each
with a resolution of 1920 × 1080 at a length of 20 seconds with 10 frames per second. Bounding
box labels were included in the dataset for each of the classes. The dataset poses a number
of difficulties due to the numerous visual complications brought on by the weather, glare,
and time of day, as observed in Figure 1. Additionally, the photos’ objects provide additional
challenges including pixelation and occlusion, which are very common issues experienced
by practitioners when analyzing images from CCTV cameras. Eight classes of interest are
included in the dataset and their respective frequencies are listed in Table 1. Another major
challenge associated with this dataset is that the majority of scenes suffer from moderate to
extreme mislabeling. This mislabeling was predominately omission, where a large number
of objects in a frame were ignored. In many cases, timestamps were labelled as motorcycles,
among other erroneous labels, which would have severely affected any model’s quality. This
establishes the first objective of developing a methodology that considers the potential for
incorrect ground truth and establishes a remedial measure. In addition to the challenges
associated with the lack of accurate labels, the raw dataset consisted of images that were
low resolution, coupled with additional challenges such as fog and low lighting. Moreover,
the configuration of the cameras resulted in a need to track motorcycles at a distance where
the image size is extremely small. To address this issue, substantial augmentation and
variation in environmental conditions should be observed in the training dataset. Lastly, as
is evident from Table 1, the dataset suffers from unbalanced classes which requires novel
minority oversampling techniques to be used to allow for these under-represented classes to
be identified accurately.
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Table 1. Training data instances per class.

Class Description Instances

Motorcycle A motorcycle being driven 31,135
D1Helmet A motorcycle driver wearing a helmet 23,260

D1NoHelmet A motorcycle driver not wearing a helmet 6856
P1Helmet The first passenger wearing a helmet 94

P1NoHelmet The first passenger not wearing a helmet 4280
P2Helmet The second passenger wearing a helmet 0

P2NoHelmet The second passenger not wearing a helmet 40

4. Methodology

In order to develop a solution that correctly detects all seven classes and overcomes
the issues listed in the previous section, we propose a system that contains a pre-processing
module, a data augmentation module, a data generation module, and a detector training
module as illustrated in Figure 2. Firstly, the frames (20,000 images) are fed into the
pre-processing module, classifying correct and missed detections. Secondly, the correct
detections (16,000 images) are cropped and grouped into their respective classes. The
correct images are used in the data generation module to generate augmented images and
the cropped images are then utilized as input into the data generation module to generate
new images of the same class. Inside the detector training module, the correctly annotated,
augmented, and generated images are used to train the detector. Finally, inference on the
test data is performed using the trained detector and test time augmentation (TTA).

Algorithms 2024, 17, x FOR PEER REVIEW 6 of 17 
 

 

Figure 2. Overview of the proposed system consisting of the pre-processing, data augmentation, 

data generation, and detector training modules. 

4.1. Pre-Processing Module 

Given the amount of mislabeling in the ground truth dataset, each frame was manu-

ally examined to ensure that all frames were properly labelled and that there were no 

omissions or mislabeling. This resulted in less data being available for training (16k im-

ages), but greatly improved the performance of the model. The main challenges associated 

with the available data are as follows: 

• Addressing missing and mislabeled ground truth data. 

• Ensuring that there is a sufficient variety in environmental conditions to allow for 

adequate detections. 

• Addressing issues surrounding class imbalance. 

As such, the missed/incorrect images (∼4k images) were set aside for the trained de-

tector later and the correct detections were cropped with their respective class and used 

for the data generation module. We obtained the bounding box coordinates for every ob-

ject from the ground truth text file, and then extracted the corresponding images by crop-

ping them. To ensure consistency, we normalized the crops by resizing them to match an 

image size of 64 × 64. 

4.2. Data Augmentation Module 

Various data augmentation strategies were used to develop a more adaptable model 

with increased detection accuracy. A common issue associated with the use of computer 

vision in traffic safety applications is the need for a long recording period due to sample-

size concerns and data quality. Data augmentation can be used to address this issue, with 

methods such as: blur, mosaic, flipping, rotation, and flipping. One method of performing 

augmentation is to rotate the original picture at various angles, while flipping produces a 

mirror image that may be either horizontally or vertically oriented. The blur method uses 

a filter to lessen the sharpness of the picture. A random section is then chosen from the 

mosaic picture and utilized as the final enhanced image. In contrast, the mosaic process 

resizes four separate photos and merges them. The advantage of this method is that it 

Figure 2. Overview of the proposed system consisting of the pre-processing, data augmentation, data
generation, and detector training modules.

4.1. Pre-Processing Module

Given the amount of mislabeling in the ground truth dataset, each frame was manually
examined to ensure that all frames were properly labelled and that there were no omissions
or mislabeling. This resulted in less data being available for training (16k images), but
greatly improved the performance of the model. The main challenges associated with the
available data are as follows:

• Addressing missing and mislabeled ground truth data.
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• Ensuring that there is a sufficient variety in environmental conditions to allow for
adequate detections.

• Addressing issues surrounding class imbalance.

As such, the missed/incorrect images (∼4k images) were set aside for the trained
detector later and the correct detections were cropped with their respective class and used
for the data generation module. We obtained the bounding box coordinates for every object
from the ground truth text file, and then extracted the corresponding images by cropping
them. To ensure consistency, we normalized the crops by resizing them to match an image
size of 64 × 64.

4.2. Data Augmentation Module

Various data augmentation strategies were used to develop a more adaptable model
with increased detection accuracy. A common issue associated with the use of computer
vision in traffic safety applications is the need for a long recording period due to sample-
size concerns and data quality. Data augmentation can be used to address this issue, with
methods such as: blur, mosaic, flipping, rotation, and flipping. One method of performing
augmentation is to rotate the original picture at various angles, while flipping produces a
mirror image that may be either horizontally or vertically oriented. The blur method uses
a filter to lessen the sharpness of the picture. A random section is then chosen from the
mosaic picture and utilized as the final enhanced image. In contrast, the mosaic process
resizes four separate photos and merges them. The advantage of this method is that it
improves the visual complexity of the photos, giving the model a more demanding and
realistic environment to recognize. These methods allow the model to process a wider
variety of pictures, which improves the accuracy of identifying the classes of interest in
the dataset. The videos used contain a wide range of variations, such as different camera
angles, lighting conditions, and rider styles. By applying data augmentation techniques
such as random cropping, horizontal flipping, and color jittering, we created a larger and
more diverse dataset as shown in Figure 3, which can help the model to learn more robust
and discriminative features.
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4.3. Data Generation Module

After relabeling the training dataset and validating the results, it became evident
that certain classes were severely under-represented and that there was a need to use
a generative network to accommodate the low instance classes. GANs have a unique
approach compared to other popular neural network architectures, as they aim to solve
two distinct problems simultaneously. These problems are discrimination, which involves
effectively distinguishing between real and fake images, and generating “realistic” fake data,
which involves creating samples that are perceived as real. Although these objectives are
essentially opposites, GANS combine them into a single model. Alternatively, if we were to
separate these tasks into different models, we would have a generator (G) and discriminator
(D) model. The generator model takes a random noise vector of N dimensions as input and
uses a learned target distribution to transform it. Its output also are N-dimensional. On the
other hand, the discriminator model models a probability distribution function, similar to a
classifier, and outputs a probability between 0 and 1 that the input image is real or fake. In
this way, the two main objectives of the generation task can be defined:

1. The objective of training G is to increase D’s classification error to the maximum extent
possible. This will ensure that the generated images appear authentic and realistic.

2. The objective of training D is to reduce the final classification error as much as possible.
This will enable D to correctly differentiate between real and fake data.

To accomplish this, during the backpropagation process, the weights of G are adjusted
using gradient ascent in order to maximize the error, whereas D employs gradient descent
to minimize it. It is important to note that during training, the two networks do not directly
use the actual distribution of images. Instead, they use each other’s outputs to evaluate
their performance (1). We use the absolute error to estimate the error of D, and then use the
same function for G, but with the aim of maximizing it (2).

E(G, D) =
1
2
(Ex⊂pt [1 − D(x)] + Ex⊂pg [D(x)]) (1)

E = maxG(minDE(G, D)) (2)

In this case, pt represents the true distribution of images, while pg is the distribution
created from G. Deep convolutional generative adversarial networks (DCGANs) incorpo-
rate key principles of convolutional neural networks (CNNs) and have become a popular
architecture due to their quick convergence and ease of adaptation to more complex varia-
tions (such as incorporating labels as conditions or using residual blocks). They address
several significant challenges, including:

• D is structured to perform a supervised image classification task (for example, identi-
fying if an image contains a driver helmet or not).

• The filters learned by the GAN can be utilized to generate specific objects in the
resulting image.

• G has vectorized properties that can learn highly intricate semantic representations
of objects.

Figure 4 (left) presents the structure of a DCGAN generator. The starting input of the
Generator is a (1, 100) noise vector. This vector then passes through four convolutional
layers with up-sampling and a stride of 2 to generate an RGB image result of size (64, 64, 3).
To achieve this, the input vector is projected onto a 1024-dimensional output to match the
input of the initial convolutional layer. Figure 4 (right) presents the structure of a DCGAN
discriminator. In contrast to the generator, the discriminator takes an input image of size
(64, 64, 3), which is the same size as the output generated by the generator. The input image
then passes through four standard down-sampling convolutional layers, with a stride of
2. In the final output layer, the image is flattened into a vector, which is usually fed to a
sigmoid function that outputs the discriminator’s prediction for that image—a single value
representing the probability of the image having the class of interest within the range of [0, 1].
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Figure 4. DCGAN generator and discriminator model architecture.

Table 2 presents the hyperparameters used to train the DCGAN model. To speed up
the DCGAN’s convergence, we use spectral normalization, a novel method of initializing
weights, that has been developed for GANs using (3) and (4) to enhance the stability of
model training.

σ = ∥Wv∥ = uTWv (3)

WSN(W) =
W

σ(W)
(4)

Table 2. Hyperparameters for the trained DCGAN model.

Hyperparameter Value

batch_size 128
weight_init_std 0.02

weight_init_mean 0.0
leaky_relu_slope 0.2
downsize_factor 2

dropout_rate 0.5
scale_factor 4 (downsize_factor)
optimizer Adam

lr_initial_d tfe.Variable (0.0002)
lr_initial_g tfe.Variable (0.0002)

lr_decay_steps 1000
noise_dim 128

The vectors u and v, which have the same size, are randomly generated and used in a
power iteration process for a specific weight during each learning step. This approach is
more computationally efficient compared to simply penalizing the gradients. During the
backpropagation step, we update the weights using WSN(W) instead of W. The convolu-
tional and dense layers are initialized with the truncated normal distribution. Additionally,
we removed the bias term from the convolutional layers, which helps to further stabilize
the model. During training, label smoothing was used as a regularization technique to
avoid the discriminator from becoming either too overconfident or underconfident in its
predictions. If the discriminator becomes too certain that a particular image contains a
driver with a helmet, the generator may exploit this fact and continuously generate only
such images, thereby ceasing to improve its performance. To counteract this, we can set
the class labels for the negative classes to be within the range of [0, 0.3] and [0.7, 1] for
the positive ones. This strategy prevents the overall probabilities from approaching the
two thresholds too closely. Additionally, we introduced some noise to the labels (5%), so
the actual and predicted distributions become more dispersed and begin to intersect with
each other.

Consequently, creating a customized distribution of generated images during the
learning phase becomes simpler. The Adam optimizer, with a standard learning rate of
0.0002 and a beta of 0.5, was the most effective optimization algorithm for this task. This
learning rate is applied to both models. To assess the probability that the actual data is more
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realistic than the generated data, we use the relativistic average least squares (RaLSGAN)
defined by (5) and (6).

LRSGAN
D = −E(xr , x f )

[log
(

sigmoid
(

C(xr)− C
(

x f

)))
] (5)

LRSGAN
G = −E(xr , x f )

[log
(

sigmoid
(

C
(

x f

)
− C(xr)

))
] (6)

The objective is to evaluate the likeness between the real (r) and synthetic ( f ) data
distributions. RSGAN is considered to have reached the optimal point when D(x) equals
0.5, indicating that C(xr) and C

(
x f

)
are equivalent. In addition to issues such as non-

convergence and vanishing/exploding gradients, GANs may also encounter a significant
problem known as mode collapse. This occurs when the generator begins generating a
restricted range of samples. To address this issue, we applied a few techniques such as:
label smoothing, instance noise, and weight initialization. Another technique that we
employed during training is Experience Replay, which helped in retaining some of the
recently produced images in memory. After every (replay_step) iteration, we train D on
those previous images to remind the network of past generations, reducing the likelihood
of overfitting to a specific instance of data batches during training.

Utilizing DCGANs in our study significantly contributes to performance enhancement
by addressing the challenge of class imbalance in the dataset. DCGANs are particularly
effective in generating high-quality synthetic images that are indistinguishable from real
images. This capability allowed us to augment the training dataset, especially for under-
represented classes, thereby providing a more balanced dataset. Enhanced dataset balance
improves the learning process, enabling the neural network to generalize better across
different scenarios and not overfit to the over-represented classes. Moreover, the synthetic
images generated by DCGANs add variability to the training data, which helps in improv-
ing the robustness of our model against variations in real-world inputs, such as different
lighting conditions, angles, and helmet types. This directly translates to higher accuracy
and reliability in detecting helmet violations across diverse environments.

4.4. Detector Training Module

In selecting a model for detecting motorcyclists at varying distances, weather, and
lighting conditions, several options were initially considered, including Faster R-CNN
and Mask R-CNN. YOLO was chosen for its versatility and ability to generalize to objects
of varying sizes and backgrounds, making it well-suited to the task. Unlike the other
models, YOLO is a single-shot detector that allows for multiple objects to be detected
in a single pass as opposed to multiple stages. This makes it more efficient than other
models. Moreover, YOLO models are more generalizable as objects of varying sizes and
backgrounds may be detected. Lastly, YOLOv8 offers data augmentation tools such as
mosaic that significantly aid in training the model to handle low-quality images. Thus, the
YOLOv8 model architecture was used. Compared to previous iterations of YOLO such
as YOLOv5, YOLOv8 includes several additional features that help address the issues
identified in the previous section. Notably, YOLOv8 introduces focal loss as shown in
Ref. [48], an improved version of cross-entropy loss, to address the class imbalance issue.
This works by assigning more weights to difficult-to-detect objects and less weight to easy
to detect objects. Thus, the balanced cross-entropy loss function shown in (7) is modified as
shown in (8):

CE(pt) = −αlog(pt) (7)

FL(pt) = −(1 − pt)
γlog(pt) (8)

where pt is the predicted probability of the ground truth class, γ is a class imbalance tuning
parameter, and α is a static class imbalance weighting factor. In addition to better-addressing
class imbalance, YOLOv8 is also better suited to work in busy urban environments where
objects may be occluded or differ in size. Unlike its previous iterations, YOLOv8 is an
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anchorless model which does not rely on predefined anchor boxes. Instead, it uses a
series of learned key points which represent each object in the image. This anchorless
architecture allows more flexibility in detecting objects of different sizes and aspect ratios,
as well as better handling of object occlusion. An 80:10:10 split for the train/validation/test
components was performed on the dataset, and Table 3 presents the hyperparameters used
to train the YOLO models used (YOLOv5, YOLOv7, and YOLOv8) in our experiments.

Table 3. Hyperparameters for the trained YOLO Models.

Hyperparameter Value

batch_size 8
imgsz 1088

optimizer Adam
learning_rate 0.001

dropout 0.1
iou 0.7

momentum 0.937
weight_decay 0.0005

warmup_bias_lr 0.1
fl_gamma 2.0

label_smoothing 0.1
mosaic 0.1

close_mosaic 10

4.5. Test Time Augmentation

Test time augmentation (TTA) has been widely used to improve the accuracy of
computer vision models in various domains, including object detection. By applying
transformations such as rotations, flips, and changes in brightness and contrast to test
images, TTA can effectively increase the diversity of the test data, leading to more robust
and accurate models. This is particularly important in the context of detecting helmets,
where variations in lighting conditions, camera angles, and helmet types can greatly affect
the accuracy of the model. TTA can help mitigate these issues by providing the model
more diverse test data, allowing it to better generalize to unseen data. Several studies
have demonstrated the effectiveness of TTA in improving the accuracy of helmet detection
models, suggesting that it is a valuable technique for this task. However, it should be noted
that TTA can increase the computational cost of testing, and careful consideration should
be given to the trade-off between accuracy and computational efficiency.

5. Results

The objective of this study was to develop a framework that improves the accuracy of
existing methods for detecting helmet use violations, which often rely on manual inspection
and can be prone to error. Three different object detection models were considered, namely
YOLOv5, YOLOv7, and YOLOv8. Additionally, augmented and synthetic images were
generated using DCGANs to further improve performance on under-represented classes.
Each of the techniques was then applied and their performance was evaluated to identify
the best-performing detector. TTA was applied during the inference phase to further
improve the model performance. The models were trained and tested on a dataset of 100
traffic videos collected from the AI City Challenge Dataset (data from India). This dataset
presents a wide variety of different challenges common to the transportation domain,
including varying image quality, lighting, and occlusion. The DCGAN model was trained
on a device equipped with an NVIDIA RTX3080 Ti graphics card and 12 GB GDDR6X RAM.
Its run-time was approximately twelve hours per class, for a total of 1000 epochs using
an early stopping window of 30 epochs. The YOLO detector models, trained on the same
device, had a run-time of approximately three days for a total of 300 epochs, using an early
stopping window of 20 epochs.
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5.1. Performance Metrics

The results for the performed experiments were evaluated using the mAP50, mAP50-
95, precision, and recall on the validation dataset, and mAP, F1, and frames per second (fps)
on the test dataset. mAP50 (mean average precision at 50% intersection over union) is a
common metric used to evaluate the performance of object detection models. It measures
the average precision of the model at different levels of confidence when the overlap
between the predicted bounding box and the ground truth bounding box is at least 50%. In
other words, it measures the accuracy of the model in localizing objects in the image, and
it takes into account both the precision and the recall of the model. A mAP50 score of 1.0
means that the model has achieved perfect precision and recall, while a score of 0 means
that the model has failed to detect any objects. The mAP50-95 (mean average precision at
the 50–95% intersection over union range) is another common metric used to evaluate the
performance of object detection models. It measures the average precision of the model
at different levels of confidence when the overlap between the predicted bounding box
and the ground truth bounding box is between 50% and 95%. The mAP50-95 is often
considered a more stringent evaluation metric compared to the mAP50, as it requires the
model to detect objects with higher levels of precision and recall. A higher mAP50-95 score
indicates that the model is more accurate in localizing objects in the image, and it takes into
account both the precision and the recall of the model over a wider range of intersection
over union thresholds.

Precision measures the proportion of true positive predictions (i.e., the number of
correctly identified positive instances) out of all positive predictions made by the model
(i.e., the sum of true positives and false positives). A high precision score indicates that the
model is making accurate positive predictions and has a low false positive rate. Precision
can be calculated using:

Precision =
TP

(TP + FP)
(9)

Recall measures the proportion of true positive predictions (i.e., the number of correctly
identified positive instances) out of all actual positive instances in the data. Recall can be
calculated using:

Recall =
TP

(TP + FN)
(10)

The F1 score was calculated using (11), which takes into account both the precision
and recall of the algorithm in order to provide a single measure of its effectiveness. The
F1 score ranges from 0 to 1, with a score of 1 indicating perfect precision and recall, and a
score of 0 indicating that the model did not correctly identify any objects.

F1 =
TP

TP + 1
2 (FP + FN)

(11)

5.2. Detector Model Results

A summary of the experimental results is displayed in Table 4, showing the DCGANs
+ YOLOv8 + TTA model performing the best, achieving a mAP on the test data of 0.810.
YOLOv5 and YOLOv7 achieved mAPs of 0.621 and 0.643, respectively, while YOLOv8
trained on the original data only achieved a mAP of 0.680. As shown in Table 4, the precision
and recall of YOLOv8 were 0.928 and 0.891, respectively, which were superior to that of
YOLOv7 (0.911 and 0.83) and YOLOv5 (0.890 and 0.804), indicating that the newer YOLO
architectures tend to have more true positive detections and fewer false positive detections.
When comparing the inference speed of the different YOLO architectures, YOLOv8 and
YOLOv7 had approximately the same speed and were 3% faster than YOLOv5 but yielded
a 13% improvement in the F1 score when comparing YOLOv5 to YOLOv8.



Algorithms 2024, 17, 202 12 of 16

Table 4. Experimental results on the validation and test datasets.

Model mAP50 mAP50-95 Precision Recall mAP F1 fps

YOLOv5 0.842 0.459 0.890 0.804 0.621 0.80 150
DCGANs + YOLOv5 0.823 0.465 0.754 0.799 0.601 0.78 150

YOLOv7 0.851 0.521 0.911 0.830 0.643 0.82 155
DCGANs + YOLOv7 0.862 0.526 0.915 0.836 0.654 0.82 155

YOLOv8 0.866 0.603 0.928 0.891 0.680 0.91 155
DCGANs + YOLOv8 0.913 0.721 0.945 0.893 0.782 0.93 143

DCGANs + YOLOv8 + TTA 0.949 0.749 0.972 0.919 0.810 0.96 92

When combined with DCGANs, the precision and recall continue to improve. TheY-
OLOv8 model achieved an F1 score of 0.91 at a confidence level of 0.617 for all classes,
while the DCGANs + YOLOv8 + TTA model resulted in an improved F1 score of 0.96 at a
lower confidence level of 0.334. The precision and recall of the DCGANs + YOLOv8 + TTA
model were also greater than that of YOLOv8 alone (0.928 and 0.891) and the DCGANs
+ YOLOv8 model (0.945 and 0.893). When combining DCGANs and TTA with YOLOv8,
the synthetic data and augmentation data helped the model generalize better over diverse
scenarios, making it more accurate at lower confidence levels. By lowering the confidence
threshold, the model can detect more nuanced or difficult-to-detect objects, thus increasing
the overall recall. DCGANs and TTA provide more robust and diverse training data where
the model can afford to lower its confidence threshold while still improving accuracy. In
contrast, traditional models like YOLOv5 and YOLOv7, though improved upon by their
iterations, still fall short compared to YOLOv8. When extended to incorporate DCGANs,
these models see improvements, particularly in recall and precision, but do not achieve
the same high standards set by the latest enhancements in YOLOv8. While the DCGANs
+ YOLOv8 + TTA model was more accurate than only using DCGANs or only running a
YOLOv8 model, the processing speed was greatly reduced (155 fps to 92 fps). However,
given the sensitive nature of this application and the high cost of false positives associated
with traffic enforcement, the approach remains viable despite the greater computational
power required.

5.3. Synthetic Augmentation Results

Synthetic data were created to improve the dataset and address class imbalance. Figure 5
presents a sample of the synthetic images generated by DCGANs with size 64 × 64, which
are very close to authentic images in terms of crispness, naturalness, and realism. A total of
2000 augmented and synthetic images per class were combined with real images to improve
the performance of the helmet recognition system. The results in Table 4 demonstrated that the
DCGANs + YOLOv8 + TTA model was more robust to variations in the input data, resulting
in more accurate results.
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These variations include changes in lighting conditions, camera angles, image quality,
and occlusion. Additionally, the DCGANs + YOLOv8 + TTA model is more effective at
detecting minority classes. Since small datasets can limit the ability of neural networks
to locate objects and can result in overfitting, greater improvements can be expected
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in these minority classes as a result of synthetic minority sampling. As expected, the
model’s performance on the classes P1Helmet, P1NoHelmet, and P2NoHelmet improved
as shown in Figure 6. Figure 6 compares the F1-confidence and precision-recall curves
for the YOLOv8 vs. DCGANs + YOLOv8 + TTA models. Therefore, by saturating the
original dataset with augmented and synthetic images generated by DCGANs, the model’s
detection and recognition performance can be greatly enhanced, as presented in Figure 7,
which shows inference on a sampled test data.
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6. Conclusions

The objective of this work is to propose a novel methodology to detect motorcycle
riders and identify helmet violations. As helmet usage is highly associated with lower
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crash risk, the methodology proposed in this research aims to improve safety overall by
enforcing traffic laws. This study uses a CNN-based solution for helmet detection and
expands the CNN training set using synthetic data, which were generated using DCGANs.
This procedure was conducted to improve both identification and classification outcomes.
The latest YOLO algorithm to date (i.e., YOLOv8) and test time augmentation were also
used to improve the model performance. Findings reveal that combining original and
synthetic images improves the ability to detect helmets. More specifically, by generating
synthetic images for the most common classes, the model achieved a higher F1-score with
2000 additional images of a 64 × 64 image size. Additionally, incorporating noise during
training reduced errors and improved the training phase. The proposed technique was
demonstrated to greatly improve the effectiveness of the model in detecting if motorcyclists
were wearing helmets. Also, test time augmentation greatly contributed to helmet violation
detection. While mosaic data augmentation works in the training stage, adding an extra
layer of augmentation at the test stage substantially improved the performance in conditions
of poor lighting and bad weather conditions. This could thereby make detection systems
more adaptable and effective in a wider range of scenarios.

As the field of computer vision continues to evolve and new YOLO architectures
improve upon previous versions, there remains a substantial equity concern. The majority
of the datasets used in YOLO come from very organized traffic environments, with higher
image qualities and more readily available data. This makes adopting the existing frame-
works more challenging in less organized environments, where image quality may be lower,
the road environment may be more complex, and additional data may not be available. In
these cases, the DCGAN approach allows generating data classes which are missing. This
helps addressing this equity concern by considering diverse needs and obstacles faced by
various communities worldwide.

Several opportunities for future work can be derived from this study. For example,
the proposed framework might be improved by incorporating a tracking algorithm, which
can track helmet detections over several images to improve the model accuracy. This can
further be achieved by using ensembling. Also, future research can explore the impact
of synthetic image size and quality by training synthetic images of different sizes and
comparing with other real data benchmarks. This enables obtaining a wider collection
of traffic scenarios and thus allows for developing models for various environments.
Furthermore, exploring the use of other GAN models, such as BigGAN, StyleGAN, and
MGAN can provide potential improvements in model performance. Finally, there is great
potential to incorporate diffusion models, allowing for further styles to be applied to the
generated images.
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