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Abstract: This paper reports on the location of sources contributing to a point flux measurement
in the southern taiga, Russia. The measurement tower is surrounded by a coniferous forest with a
mean aerodynamically active height of 27 m (h). Aerodynamical parameters of the forest, such as
displacement height d and aerodynamic roughness z0, derived from wind speed profile measurements
for 2017–2019, were used to estimate the seasonal and daily behavior of the flux footprint. Two
analytical footprint models driven by d and z0 were used to estimate the footprint for canopy sources.
The Lagrangian simulation (LS) approach driven by flow statistics from measurements and modeling
was used to estimate the footprint for ground-located sources. The Flux Footprint Prediction (FFP) tool
for assessing canopy flux footprint applied as the option in the EddyPro v.7 software was inspected
against analytical and LS methods. For model comparisons, two parameters from estimated footprint
functions were used: the upwind distance (fetch) of the peak contribution in the measured flux (Xmax)
and the fetch that contributed to 80% of the total flux (CF80). The study shows that Xmax varies slightly
with season but relies on wind direction and time of day. All methods yield different Xmax values
but fall in the same range (60–130 m, around 2–5 h); thus, they can estimate the maximum influence
distance with similar confidence. The CF80 values provided by the FFP tool are significantly lower
than the CF80 values from other methods. For instance, the FFP tool estimates a CF80 of about 200 m
(7 h), whereas other methods estimate a range of 600–1100 m (25–40 h). The study emphasizes that
estimating the ground source footprint requires either the LS method or more complex approaches
based on Computational Fluid Dynamics (CFD) techniques. These findings have essential implications
in interpreting eddy-flux measurements over the quasi-homogeneous forest.

Keywords: southern taiga; eddy covariance; long-term measurements; flux footprint; displacement;
aerodynamic roughness; FFP tool; SCADIS model

1. Introduction

Forests play a crucial role in the ecosystem by interacting with the atmosphere and
impacting both local and global climates (e.g., [1]). Understanding this interaction is critical
to finding ways to address climate change in the future. This understanding relies on
long-term data about the matter exchange between the atmosphere and the forest. The
eddy covariance (EC) measurement system is a standard tool that provides the necessary
information [2].

The flux measurements of different compounds over forests are going instantly around
the world (e.g., [3–7]). Almost all results of such measurements are associated with the
average forest properties surrounding the tower. During the early days of eddy-covariance,
experiments in boundary-layer meteorology were conducted in near-ideal conditions with
uniform ground cover to ensure accurate data interpretation (c.f. [8]). However, as ideal
conditions are uncommon, researchers have expanded their measurements to more complex
areas. To enhance measurement accuracy, researchers have employed various techniques,
including assessing turbulent characteristics using different criteria and implementing
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multiple corrections. One key aspect of interest, particularly in non-ideal conditions, is
the upwind area associated with the measured signal. To address this issue, it is highly
recommended to use an add-on tool like a footprint to separate the contributions from
different types of vegetation and underlying soils in the signal.

Quantitatively, the relation between a source strength Q and the value of a signal F
registered at the location r is described by “source weight function” or “footprint” f [9]:

F(r) =
∫
<

Q(r + r’) · f (r, r’) · dr’ (1)

where r′ is the separation between measurement and forcing, and < is the integration
domain. During the last decades, considerable progress has been made in developing
mathematical tools that allow for estimating the actual “source area” affecting the sensor
response. These include analytical methods [10–12], the use of Lagrangian stochastic (LS)
models [13–17], and the employment of models based on numerical solutions of the Navier–
Stokes equations [18,19]. Each class includes models with different levels of complexity
and numerical demands. The advantages and disadvantages of existing models are given
in detail in the following reviews on this subject [20–23].

Although the footprint concept has shown practical applications and has helped to
explain some unexpected properties of measured fluxes behind the island since its incep-
tion [23], it has been misused for a significant period. It was primarily applied to show
the spatial aspect of measurement rather than interpreting the measured signals. The
research of Amiro [24] was a significant breakthrough in understanding the applicability
of footprints. It was established that footprint climatology provides vital information
about the area sampled while measuring long-term evapotranspiration (ET). Leclerc and
Foken [23] provide a comprehensive review of the development of the footprint tool and
offer recommendations on how this tool can help interpret observations. A recent study by
Chu et al. [25] emphasizes the importance of considering the spatial-temporal dynamics
of flux footprints, particularly within heterogeneous landscapes, when using flux data
in model-data benchmarking. They advised “the modelling and synthesis communities
to be ‘footprint-aware’ when using large-scale flux datasets (e.g., FLUXNET2015, Amer-
iFlux BASE data products), especially in research such as point-scale simulations and
spatially-explicit land surface models, remote-sensing-based models, and machine-learning
upscaling studies”. To optimize the global carbon cycle quantification, it is also crucial
to consider spatial matching between tower footprints and remote-sensing data when
analyzing satellite-derived observations of terrestrial vegetation [26,27].

The Ru-Fyo tower in Southern Taiga, Tver region, Russia is part of the worldwide
Fluxnet system. The tower was established in 1998 [28] in a homogeneous forest on flat
ground, following basic recommendations for an ideal site. Homogeneity in this context
means that the measured signal can be easily assigned to the surrounding forest types.
However, some important factors have not been considered until now, such as the actual
area detected by the sensor and how it changes seasonally and due to prevailing wind
direction. It is also worth considering whether non-dominant tree species could contribute
to the measured signal. Careful consideration of these issues can provide new insights
into the interaction between the atmosphere and the forest at this site. This may require
a revision of flux observation regarding primary sources of measured fluxes. Thus, the
main goal of this study is to use modeling and experimental data analysis to determine the
seasonal and directional changes in the flux footprint for the Ru-Fyo tower. Additionally, we
aim to evaluate the limitations that footprint models may face in cost-effectively computing
these changes.

The paper is structured as follows: In Section 2, we provide a brief introduction to
the experimental site and discuss the methods for estimating footprints that are suitable
for completing our tasks. We also cover the information needed to drive each method and
the issue of how this data can be obtained from existing measurements. In Section 3, we
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analyze the aerodynamic parameters derived from measurements and discuss the results
of the footprint modeling based on these parameters. We also consider the limitations of
the footprint models used in our study. Finally, in Section 4, we summarize the findings of
our study and outline future research perspectives.

2. Materials and Methods
2.1. Research Area, Site Measurement Design, and Data Selection

The research was conducted in the Central Forest State Natural Biosphere Reserve
(CLGZ: http://www.clgz.ru (accessed on 1 July 2023)) at Fyodorovskoye, Tver region,
Central European Russia, about 300 km WNW of Moscow (see Figure 1A). The experimental
site is situated in a paludified shallow-peat spruce forest, which is a widespread forest type
in the northern, central, and southern taiga, which represents the Sphagnum–Vaccinium
myrtillus community on peaty podzolic gley soil with a peat depth of 30–50 cm. This
forest type is located in the middle and lower parts of soft slopes and shallow depressions
with very weak surface runoff and high ground-water levels [28]. According to forest
inventory, the stand is 190 years old and comprises 85.5% Picea abies (L.) Karst and 14.5%
Betula pubescens L. The ground flora is dominated by Vaccinium myrtillus L. (covering 34.5%),
Vaccinium vitris-idea L. (2.9%), and a moss layer of Sphagnum girgensohnii Russ. (56.8%),
Sphagnum angustifolium Russ. (13.0%), and Peurozium schreberrii (8.6%).
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stand in southern taiga, Tver region, Russia. Spatial distribution of (D) heights of trees, H, (E) LAI, 
and (F) main forest types—coniferous (1) and broadleaves (2)—around the tower indicated by black 
triangle symbol. 

Figure 1. (A) Geographical location, (B) satellite image, and (C) photo of the study area in forest
stand in southern taiga, Tver region, Russia. Spatial distribution of (D) heights of trees, H, (E) LAI,
and (F) main forest types—coniferous (1) and broadleaves (2)—around the tower indicated by black
triangle symbol.

The measurement tower (56◦27’43.70” N, 32◦55’18.50” E, 265 m a.s.l.) (see Figure 1C)
is situated in a shallow depression. The territory around the tower is rather heterogeneous.
The surrounding area is diverse, with a dominant spruce stand that appears relatively
uniform (as seen in Figure 1B) but is limited in size and has varying tree heights. In 2020,
tree heights measured within the 60 m × 60 m space around the tower ranged from 3.4 m
to 25.30 m, with an average height of 16.9 m and a standard deviation of 6.4 m. Birch and

http://www.clgz.ru
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aspen forests, as well as windfalls of different ages, can be found within 200–1000 m from
the tower. To better understand the forest, Figure 1D–F show the height distribution of
forest trees, leaf area index (LAI), and species type around the stand interpolated from
Landsat images, respectively. The uneven distribution of obstacles affects the airflow and
transportation of compounds, ultimately impacting the footprint.

Continuous eddy covariance measurements of carbon dioxide, water vapor, heat, and
momentum fluxes were measured at a height of 42 m since June 2014. The measurement
system consisted of 3D ultrasonic anemometer WindMaster Pro (Gill Instruments, Lyming-
ton, UK) and CO2/H2O gas analyzer LI-7200A (LI-COR Inc., Lincoln, NE, USA). Since April
2015, carbon dioxide, water vapor concentrations, and air temperature were measured
along a vertical profile at eight heights (0.5, 1, 2, 7, 14.5, 19.5, 29.5, and 42.0 m) using the
AP200 integrated CO2 and H2O atmospheric profile system (Campbell Scientific, Logan,
UT, USA). Also, at the same heights, wind velocity and wind direction were measured
along a vertical profile using DS-2 sonic anemometers (Decagon Devices, Inc., Pullman,
WA, USA).

Ecosystem fluxes were calculated for 30 min intervals using the Eddy Pro software
v.7 (LI-COR Inc., USA) [29]. All corrections and statistical tests were implemented under
this processing. Quality flags were assigned to the calculated CO2 fluxes using the 0–2 flag
policy according to [30].

This study used observations from 2017 to 2019 for analysis. From this data set, only
data that met the criteria of being in quality class 0 for CO2 flux were chosen.

2.2. Flux Footprint Estimation

Calculating the footprint in complex terrain can be challenging and often requires
advanced tools such as Large Eddy Simulation (LES) or Reynolds-Averaged Navier–Stokes
(RANS) equations-based models. These models can provide a three-dimensional distri-
bution of airflow parameters over time [23]. To estimate the footprint for horizontally
inhomogeneous conditions, backward LS models (with a pre-defined sensor location) [17]
or models that are able to consecutively activate sources within the model domain [31] can
also be used. However, the primary concern is the computing expense, particularly for
LES-based simulations.

For the sake of simplicity, this study assumes that the upwind area has uniform
properties, as measured by a single point that reflects the overall impact of all flow variations.
Additionally, the study focuses on the crosswind-integrated flux footprint, which assumes
that the sources are infinite in a crosswind direction. This particular case of footprint function
introduced in Equation (1) has two dimensions (i.e., distance along the wind direction (x)
and measuring height (zm)). Throughout this text, the term “footprint” will be used for
brevity to refer to the entire above definition. As a result, calculating the footprint for sources
located within the forest canopy can be done analytically, requiring only basic knowledge of
aerodynamic parameters of canopy flow, such as displacement height d and aerodynamic
roughness z0. Two analytical models developed by Schuepp et al. (SP) [10] and Kormann
and Meixner (KM) [12] are used for this purpose. These models have varying assumptions
for the wind speed profile and eddy diffusivity within the surface boundary layer.

A little more complicated but still user-friendly way to estimate the area of influence
on the tower sensor is the Flux Footprint Prediction (FFP) tool [32] included in the basic
package of the EddyPro software v.7 [29]. This model is semi-empirical and relies on solving
stochastic backward trajectories of particles. It can calculate the footprint for a specific
measurement point, rather than just an average over a sensor volume. No coordinate
transformation is required, which means horizontal flow homogeneity is not necessary [33].
Data used in the simulation are wind velocity, wind direction, measurement height, surface
roughness, friction velocity, Obukhov length (see Equation (3) below for definition), and
zero-plane displacement. Initializing with measurement data such as friction velocity,
stability parameters, and location, the tool provides the researcher with the following
parameters: the fetch of maximal influence, fetches for cumulative fluxes of 70%, 80%, and
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90%. The model is available as an online tool [34] and, in this case, can provide a three-
dimensional footprint. If the displacement height and roughness length are not specified,
EddyPro calculates them as 0.67 times the canopy height and 0.15 times the canopy height,
respectively. The FFP footprint parameters used in this study were automatically estimated
during data processing for a canopy height of 25 m (see Section 2.1).

An alternative method for calculating the footprint involves using the LS footprint
model in forward mode. Though this approach is still complex, it is relatively inexpensive
regarding computing time. The model operates under the assumption of a uniform un-
derlying surface and uniform turbulence characteristics, similar to analytical models. The
Lagrangian stochastic trajectory model uses drift terms in Langevin equations described
by Kurbanmuradov and Sabelfeld [15] and requires vertical distribution of the turbulence
parameters in the boundary layer. Past studies have highlighted the dependence of the
footprint function on the vertical source location, including [16,35,36]. In this study, we
assumed that the canopy sources are concentrated in one point, at the level of d + z0,
to simplify and make comparisons among different footprint models. We also used LS
techniques in forward mode to estimate the ground footprint, with sources near the soil
surface at z = 0.1 m.

When using Lagrangian dispersion models, it is essential to pre-describe the turbu-
lence. Vertical profiles of turbulence statistics measured on site provide more accurate
footprint estimation, but this information was unavailable in our case. As such, we at-
tempted to derive statistics, such as vertical profiles of mean wind u, standard deviations of
wind fluctuations σu,v,w, momentum flux u′w′, and the dissipation rate of turbulent kinetic
energy ε inside and above the vegetation canopy, using the CFD approach. Previous studies
have found that the RANS SCADIS model [37–39] effectively generates similar statistics,
which help estimate the footprint by the LS model for forest sites. Our site experiences
highly variable background airflow conditions, which limits our ability to fit simulated
(using a one-dimensional model) and measured air flow properties for multiple scenarios.
We were only able to successfully achieve results for one scenario—at noon during the
summer season. To achieve accurate results for other scenarios, we require a complete
three-dimensional modeling approach that includes a detailed description of vegetation
distribution. Therefore, we opted not to employ the CFD approach and instead depended
on empirical formulas for turbulence within a canopy (see Section 2.3 below). However,
we utilize the scenario with the CFD approach to compare various footprint models (see
Section 3.2.1 below).

2.3. Estimation of Aerodynamic Properties

The wind profile in the surface layer is approximated by (cf. [40])

u(z) =
u∗
κ

(
ln
(

z− d
z0

)
−Ψm

(
z− d

L

))
(2)

where u(z) is the average wind speed at the measurement height z, above the soil surface,
d is the displacement height, z0 is the aerodynamic roughness, L and u∗ are the Obukhov
length and the friction velocity, κ is the von Karman constant (0.4), and Ψm is the integrated
universal momentum function, in which a slight dependence on z0/L is neglected. The
Obukhov length is defined as

L = −
u3
∗CpρTv

κgHv
(3)

where Cpρ is the volumetric heat capacity at constant pressure (with Cp = 1005 J kg−1 K−1),
Tv is the virtual temperature, g is the acceleration due to gravity (9.81 m s−2), and Hv is the
buoyancy (virtual heat) flux.

When stability is considered, it is not easy to figure out how to estimate d and z0
from Equation (2). The literature offers recursive methods that enable the calculation of
both parameters using a single measuring point (e.g., [41]). Graf et al. [42] examined those
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methods and concluded that it is essential to compare the results of several methods rather
than rely on a single one. They recommended using an ensemble average or median of
the results to achieve more reliable estimates, potentially after eliminating methods that
produce outliers. In addition, a shear or roughness layer may form at the canopy top,
which can disrupt the logarithmic wind speed solution [43]. Recently, Cintolesi et al. [44]
discovered that in a forest with equivalent geometric features and measurement methods
as the Ru-Fyo site, the roughness layer extended to the highest point of measurement. As a
result, a complex analytical solution was necessary to estimate d and z0.

Analyzing three-year period data, we discovered that half-hour measurements with
|L| < 20 were less than 10% at noon, less than 5% at night, and less than 7% overall from
all measurements. Additionally, cases with |L| < 10 accounted for less than 3% of all
analyzed data. As the percentage of changes in wind profile due to stability was minimal,
we decided to exclude the impact of atmospheric stability on the forest’s aerodynamic
parameters in this study for simplicity. This simplification is acceptable since the footprint
estimation relies on monthly or seasonal averaged aerodynamic parameters. The averaging
procedure also helped us to avoid considering the effect of the roughness sublayer on
those parameters.

To estimate aerodynamic parameters of vegetation d and z0, we apply wind speed
measurement u29.5 and u42 from levels z29.5 = 29.5 m and z42 = 42.0 m, respectively, and
dynamical velocity u∗ from 42 m. Assuming the log-law profiles above the forest and the
fact that these two levels are above the forest top (see Section 2.1), d is estimated as

d =
z42 − z29.5 exp[κ(u42 − u29.5)/u∗]

1− exp[κ(u42 − u29.5)/u∗]
, (4)

and z0 as

z0 = (z42 − d) exp
(
−κ

u42

u∗

)
. (5)

With these two parameters and the known value of u∗, it is possible to estimate the
footprint using analytical methods.

The LS method requests additional information about turbulence distribution. For
description flow characteristics above trees, we apply the logarithmic profile for wind
speed and assume a uniform distribution of momentum flux, as well as standard deviations
of wind speed in the horizontal σu and vertical σw direction. Inside the canopy, we apply
the parameterization used by Rannik et al. [16]. Initially, we start by defining the mean
upwind height of vegetation, h, as

h =
z0 + 0.38d

0.38
, (6)

which is based on the assumption that for dense forest (LAI > 2), the relation z0 = γ(h− d) is
valid, with a constant γ estimated by different authors from 0.36 to 0.4 [45–47]. We took an
average value of 0.38. As we see below (Section 3.1), the forest height defined by Equation (6) is
not constant and varies across different months and seasons. Furthermore, it is also affected by
wind directions. It is important to note that in the context of Equation (6), h does not represent
the actual height of the forest but rather the inflection point of the vertical distribution of wind
speed at the forest–atmosphere interface, where the logarithmic wind profile above the canopy
and the exponential wind profile within the canopy connect. A concept first suggested by
Raupach et al. [43], and later Thomas and Foken [48], referred to this height as aerodynamic
canopy height and confirmed it to be in good agreement with a visual estimate for the canopy
height. Further validation of this concept has been performed in [49].

After that, the expression for the estimation of wind speed above h follows from
Equation (2) while neglecting the stability effect and the roughness sublayer effect:

u(z) =
u∗
κ

ln
(

z− d
z0

)
. (7)
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The exponential profile for wind speed was assumed inside the canopy as

u(z) = uh exp
[
α
( z

h
− 1
)]

, (8)

where uh is the wind speed at the tree-top height, z = h, and α is the attenuation factor
varied for different types of vegetation from 2 to 4 [50,51]. The authors of [16] used α = 2 in
their simulation. Here, α in each case is estimated in such a way as to provide agreement
with the wind speed calculated by Equation (8), with the wind speed observed at the height
of 7 m, u7. Thus, it is

α = ln
(

u7

uh

)/(
7
h
− 1
)

. (9)

Following [16], σu and σw are defined from the friction velocity through correspondent
coefficients au = 2.5 and aw = 1.3 above the forest canopy as

σu,w = au,w · u∗. (10)

The momentum flux is defined as

u′w′ = −u2
∗. (11)

Inside the canopy, those parameters are described by the following expressions:

σu,w = ασ +

(
σu,w

u∗
(h)− ασ

)
· z

h
, (12)

and

u′w′ =
−u2
∗
(
exp

(
3 · z

h
)
− 1
)

exp(3)− 1
, (13)

with ασ = 0.25. Following the results of the model comparison described below (see
Section 3.2), we modified the expression for σw inside a canopy from linear attenuation, as
in [16], to power one as

σw = ασ +

(
σw

u∗
(h)− ασ

)
·
( z

h

)
→ σw = ασ +

(
σw

u∗
(h)− ασ

)
·
( z

h

)2
. (14)

The analytical and empirical expressions (7)–(14) were used in the LS model based
on Kurbanmuradov and Sabelfeld’s [15] description of drift terms in Langavian equations
(see Appendix A). In the following text, this model will be referred to as the LS analytical
model. The LS model, which is driven by flow statistics obtained from the RANS SCADIS
model, will be referred to as LS SCADIS. The reader is invited to refer to [37] for details on
how the SCADIS model outputs drive the LS simulation.

3. Results and Discussion
3.1. Measurements

Figure 2 shows monthly average values of dynamical velocity u∗ over the forest and
monthly average values of aerodynamic parameters d and z0. The behavior of u∗ (Figure 2A)
through three considered years is quite similar, with relatively small differences in absolute
values associated with different weather conditions in different seasons. The behavior of
dynamical velocity values has a clear day course, with the highest values in the afternoon
and the lowest ones at night. In general, the dynamical, or friction, velocity depends on
the atmospheric stability and background wind speed, and, as such, u∗ describes general
airflow properties above the forest surrounding the tower. Concerning footprint, increasing
u∗ usually results in gaining more information by a sensor from a shorter upwind distance.
A decrease in u∗ results in the opposite.
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Figure 2. Seasonal plot of monthly average (thin lines) values of (A) dynamical velocity u∗,
(B) displacement height d, and (C) roughness length z0 for nighttime 0.00–4.00 a.m. (blue lines),
noontime 0.00–4.00 pm (red lines), and a whole day (black lines) at the measuring tower for different
years. Solid thick lines with circles are seasonal average values.

The forest around the tower is not homogeneous (see Figure 1). Apart from the
dynamical effect expressed by u∗, the footprint will be affected by canopy aerodynamic
properties described by displacement height and roughness. In Figure 2B, it is clear that
displacement values are generally highest in the afternoon and lowest at night, which
is expected. However, d values significantly deviate from this trend in some years and
months. Figure 2C shows that roughness values follow the opposite trend to d values, as
expected, with corresponding deviations.

To estimate the seasonal variation in footprint, we calculate the average values of dynamic
velocity and aerodynamic parameters over three years. Averaged u∗, d, and z0 data plotted in
Figure 2A–C, respectively, show that parameters, calculated using whole-day observations,
have small variability throughout the year, with mean values of u∗ = 0.45 ms−1, d = 22 m,
and z0 = 1.7 m. Such a result was expected, because the forest is mainly populated by mature
coniferous trees. The data suggest that the mean aerodynamically active height of the forest is
approximately 27 m (calculated using Equation (6)), which is slightly taller than the maximum
height of trees near the tower (see Section 2.1). There was a noticeable difference in parameter
values between daytime and nighttime observations, indicating daily changes in stability.
The amplitude of parameter values was highest in spring and summer, whereas in winter, it
tended to be lowest.

3.2. Footprints
3.2.1. Intermodel Comparison Test

By comparing the outcomes of different models initialized by the same turbulence
conditions, we can gain valuable insights into the assumptions made by these models
and their influence on the estimation of footprints. This type of comparison can also be
used to validate the models [38,52]. Conducting an intermodel comparison is particularly
beneficial when field data on source contributions are scarce, making it challenging to justify
the methods used directly. The issue of verifying footprint models has been extensively
discussed in [23,53]

It is widely reported in the scientific literature that for the same atmospheric and
surface conditions, there are noticeable differences in the behavior of analytical footprint
models [32,52,54,55]. These differences are caused by underlying assumptions regarding
the description of surface-layer turbulence. Unfortunately, the only way to evaluate analyti-
cal models is by directly comparing their footprint predictions with observations. Recently,
Kumari et al. [56] conducted artificial tracer (CO2) experiments in unstable conditions
over an open field to evaluate three analytical footprint models (SP, KM, and Hsieh et al.
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(HS) [57]) and also the FFP model under variable source-receptor settings. The results
indicate that the KM model is in good agreement with the EC measurements under ideal
conditions compared to other analytical models and the FFP model. The KM model cap-
tured both the footprintmaximum and its location. Though results were derived for open
field conditions, we can assume that the KM model will demonstrate a better performance
than other models also for the forest surface, and it can be considered as a benchmark for
comparison of the models used here.

To make intermodal comparison possible, we must ensure that the flow statistics
within the forest canopy agree with those measured above the forest. As mentioned above,
CFD models can provide such data when information about forest structure is known.
This information is necessary to set up drag forces inside the forest canopy using the CFD
approach. However, we could not access detailed information about the leaf area density
(LAD) distribution. As a result, we could only obtain reasonable simulation results for
the summer afternoon condition using a fitted LAD distribution, as shown in Figure 3.
Figure 3 demonstrates that the wind profiles obtained via observation, CFD simulation, and
log-law relationship are consistent with each other. Additionally, it displays the averaged
wind profiles during summer nights, which were impossible to generate using the SCADIS
model with the LAD profile applied in the noon simulation or with any other assumptions.
This is due to the wind profile above the forest at the measurement point being influenced
by the upwind tree composition. This complex function varies based on wind direction
and atmospheric stability. Furthermore, the one-dimensional model does not consider the
vertical air movements resulting from this tree composition.
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Figure 3. (A) Summer wind speed profiles derived using analytical expressions (lines) and based on
three-years observations (filled symbols) for noon (red) and nighttime (blue). The black line is the
wind speed profile simulated by SCADIS applying the LAD profiles given in dots. Unfilled symbols
are for the 2017 year, for which only wind speed measurements at the height of 19.5 were available.
Whiskers are for standard deviation. (B) Flow statistics used in the LS method for footprint estimation
based on SCADIS simulations (black lines) and analytical expression (red lines) for noon time.

Figure 3 shows that the wind profile used in the LS analytical model derived by
Equations (8) and (9) provides a good fit with observation. Thus, an intermodel comparison
has been made for summer noon.

Studies [38,58] have demonstrated that using observed turbulence statistics to accu-
rately predict footprints using LS methods is essential. Without such statistics, the accuracy
of LS models can be affected by the choice of empirical relations used for high-order mo-
ment data within the forest canopy. A comparison of the footprint predictions made by the
LS analytical model, which is based on original turbulence parameterizations of [19], and
the LS SCADIS model, which is based on SCADIS model outputs, shows that the canopy
footprints are almost identical in both cases. However, the ground footprints are different.
The ground footprint derived by the LS analytical model has the region of maximum signal
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contribution much closer to the tower than the LS SCADIS model estimated (not shown).
This result is due to the turbulence description in both models being similar above the level
d + z0 but different below this level.

In a previous study conducted by Sogachev et al. [38], the Lagrangian stochastic
trajectory model by Kurbanmuradov and Sabelfeld [18] was utilized to predict footprints
for both canopy and ground sources. The results were similar to those obtained using the
direct method of footprint estimation based on RANS output models, as described in [33].
This gives us confidence that the ground footprint estimated by LS SCADIS is more realistic.
Therefore, some modifications to the input information for the LS Analytical model are
necessary. As previously mentioned, we have modified the original expression for inside
the canopy (see Equation (14)). The turbulence parameters used in both models are shown
in Figure 3B. Although there is a difference between the two models, several sensitivity
studies (c.f. [58,59]) have shown that in conditions of low turbulence within the canopy, the
wind speed profile for horizontal transport and the profile for vertical transportation are
the essential parameters for footprint prediction.

The modification (Equation (14)) improves the situation. It enables us to obtain similar
footprint shapes and cumulative fluxes between the two LS models used (as shown in
Figure 4). The figure shows that the performance of the KM model in canopy footprint
prediction is comparable to that of the LS analytical model. It is also clear that the SP model
provides a significantly different footprint function for canopy-located sources.
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Figure 4. (A) Flux footprints and (B) cumulative fluxes (CF) for canopy- and ground-located sources
for average flow conditions during afternoon of summer season. Footprints estimated by analytical
methods and by LS model driven by flow statistics based on SCADIS model simulation (LS SCADIS)
and provided from analytical expressions (LS analytic) (see Figure 3 and text for details). Smoothed
lines for LS simulations are derived from simulated data using the Epanechnikov kernel function
(see Appendix B). The dotted line in (B) is for the threshold of CF80 (see text for details).

The LS method does not provide a clear upwind position for the maximum footprint
value due to estimation procedures. Different simulations will result in fluctuated func-
tions with varying local maximums and minimums but with similar shapes. Increasing
the number of particles released can result in a smoother function, but it also increases
computational costs. To compare the results of the LS model with analytical models and
simplify further analysis, we use Epanechnikov kernel functions to smooth the LS footprints.
Appendix B provides more details. Figure 3A displays the smoothed footprint functions,
and Figure 3B shows smoothed cumulative flux functions that are almost indistinguishable
from unsmoothed ones.

3.2.2. Seasonal Dynamics of Footprints

The simulated footprints have a different shape depending on the flow conditions
used for their estimation. Mathematically, the surface area of influence on the entire flux
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goes to infinity, and thus, one must always define the % level for the source [60]. Often, 50,
75, or 90% source regions contributing to a point flux measurement are considered. For
further analysis, we extracted two fetches from footprints estimated by different methods:
(1) the fetch with the maximal influence of sources on the measuring signal (Xmax) and
(2) the fetch whose contribution to the measured signal or cumulative flux is 80% (CF80).
The threshold of 80% is chosen for practical reasons to reduce the distance when particles
are considered leaving the domain in LS and, as such, to speed up the calculation. Figure 5
shows the seasonal distribution of these two parameters, Xmax and CF80, for different
upwind sectors.
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Based on the data in Figure 5, it can be seen that there is a clear correlation between
Xmax and CF80 for both the analytical models and the FFP. The distribution of Xmax and CF80
is similar, and one parameter can be estimated from the other using a specific multiplicator.
When using analytical models to estimate CF80 from Xmax, a factor of approximately 9
should be used, whereas FFP requires a factor of about 2.5. This is expected, as all flow
characteristics, when scaled on u∗, are the same. However, when it comes to LS simulations,
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the factors are direction-dependent and range from 10 to 15. This is because above the
canopy height, the flow characteristics scaled on u∗ are equivalent to those in analytical
models and follow the log-law relationship. In contrast, inside the canopy, they are unique
in each direction.

Figure 6 shows the footprint estimated by the LS method for canopy and ground
sources. A simple empirical expression can be used to calculate the total day footprint, com-
bining the ground and canopy footprints with the prescribed source strengths of different
signs. However, negative values for the footprint can occur in certain situations, making
the evaluation of Xmax and CF80 confusing or even impossible. For more information, the
reader can refer to [31,35]. To simplify things, we assume that the canopy photosynthesis is
the primary signal contribution in the afternoon, which makes the canopy footprint a noon
footprint of the tower. Similarly, we can assume that the ground footprint describes the
night footprint of the tower sensor, considering steam and needle respiration to be minor.
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Based on Figure 6A,B, it appears that the location area with the highest signal contri-
bution during the day is approximately three to four times closer to the tower than the peak
area of ground sources. This ratio can vary depending on the direction of the prevailing
wind. It is important to keep this in mind when interpreting the signal. Some outliers in the
measured signal may be explained by applying footprint analysis. The differences in CF80
for different sources are insignificant and vary by approximately one-and-a-half to two
times depending on the direction. This is because the air parcel with information coming
from the canopy source is transported not only in well-mixed and windy conditions in the
upper part of the forest but also through the entire canopy, as is the case with the air parcel
released on the ground surface.

Figure 7 summarizes the footprint behavior at the tower in different seasons. The
daily canopy footprint peaks estimated by the SP and FFP methods are similar and occur
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approximately 100 m upwind from the tower. However, the KM and LS methods estimate
the peak location to be closer to the tower, with an average distance of 70–80 m. The SP
and KM models estimate Xmax to be further from the tower at night and closer to the tower
during the day, although no straightforward stability effect was taken into account. The
observed wind speed profiles and dynamical velocity scale exhibit the turbulence behavior
of the day. The FFP method estimates Xmax differently, which may be due to the method’s
sensitivity to stability parameters involved in the footprint estimation. This sensitivity is
more direct, because the FFP method uses a prescribed d and z0.
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Figure 7. Seasonal plot of the distance of maximal influence (Xmax) (A,B) and the distance of
cumulative flux of 80% (CF80) (C,D) at measuring tower derived by different models for canopy
(A,C)- and ground (B,D)-located sources for different time moments. Note that plots for ground-
located sources (B,D) have different scales for Xmax and CF80. Abbreviations W, S, Su, and F stand
for winter, spring, summer, and fall, respectively.

The LS method does not show a clear correlation between Xmax and time of day. In
spring, Xmax is higher at noon and night than during average daytime conditions, whereas
the opposite is true in autumn. Xmax behaves similarly to that derived by the SP and KM
models during the summer months. This is because, as previously mentioned, the LS
method relies on flow statistics within the canopy, cf. wind speed at a height of 7 m, and
even for canopy sources, flow parameters are not the same as in the analytical models. The
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behavior of these parameters can be different in different seasons and during other times of
the day.

All models show minimal differences in Xmax during winter for noon, night, and
whole-day conditions. For ground sources, the daily and noon average Xmax estimated by
the LS method have similar values, with slightly higher Xmax at night. The difference in
Xmax for ground sources during winter is minimal for canopy sources. Xmax for ground
sources reaches its minimum values during the winter season.

As observed with Xmax, the CF80 seasonal patterns are similar for both the analytical
and the FFP models. The SP and KM models do not show significant seasonal variation
in their estimated CF80 values. CF80 is located further from the tower at night and closer
during the day. The FFP method estimates CF80 to be four times shorter than other methods,
with minimal daily and no explicit seasonal dependency. Surprisingly, the LS method
shows CF80 patterns similar to analytical methods with direct time-of-day dependence.
CF80 estimated by the LS method for ground sources also displays seasonal and daily
dependency, with maximum values in summer and at night.

In general, the LS method produces Xmax estimates for the canopy source that are
similar to those generated by the KM method and CF80 values that are close to those
produced by the SP method. Therefore, for the tower under investigation, the LS method
can be replaced by the KM and SP methods, which are less time-consuming. However,
the LS method is no substitute for estimating ground footprint. The results of analytical
methods can be used to preliminarily determine Xmax values for ground sources. As a
result, the Xmax for a ground source is approximately two-and-a-half to three times further
upwind than the canopy source estimated by analytical methods. Similarly, the same can
be applied for CF80 using a factor of 1.1 for SP- and 1.3 for KM-estimated values.

In our previous discussion, we utilized LS simulation sources within the canopy at a
single level for comparison purposes. However, the distribution of these sources depends
not only on the vertical density of leaves but also on factors such as solar radiation within
the canopy and the aerodynamic resistance of the leaves. Accounting for these factors
could result in a different daily and seasonal pattern of Xmax and CF80 derived by the LS
method [35]. Additionally, we have simplified the analysis by not considering the turning
of wind within the canopy, which causes the transport of air parcels to have a different
direction at different levels. Therefore, carefully considering these factors may lead to a
directional distribution of Xmax and CF80 that differs significantly from what is presented
in Figure 6B,D and Figure 7B,D. When analyzing the data, it is essential to consider these
factors by utilizing simple analytical or LS models for homogeneous conditions.

4. Conclusions

In this study, our focus was not to connect estimated footprints with measured en-
vironmental fluxes. Instead, we aimed to identify the most significant factors that affect
footprints. We began by evaluating a footprint estimation method that, though not new, is
not commonly used in environmental flux research. This method is based on d and z0 and
can be utilized for any measuring tower with multilevel observations. Using this technique,
one can eliminate any subjective guesswork regarding the mean aerodynamic height of the
forest surrounding a particular tower.

As was expected, the footprint function for the measuring tower located in the south-
ern taiga has weak seasonal dynamics due to the predominance of coniferous trees in the
area. Nevertheless, during the summer, all methods of footprint estimation, except for
FFP, revealed that the maximal contribution into the signal shifted upwind of the tower
by approximately 10%–15% compared to winter. It is essential to note that small areas of
broad-leaved forest at remote fetches can alter the footprints in specific directions, but this
requires further investigation. Small patches of low or less dense vegetation can also affect
the shape of the footprint function for sectors where airflow passes over them. Therefore,
directional differences for Xmax and CF80 exist even when looking at seasonal average data.
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The footprint is significantly impacted by atmospheric stability, which is the critical
factor. Although we did not explicitly include this factor in our analysis, it is apparent that
the aerodynamic properties, which follow the general course of the turbulent regime and
the thermal state of the surface boundary layer, can lead to diverse footprints throughout
the day.

Overall, our research sheds light on the typical behavior of the source area for the
measuring tower in question. This knowledge can aid in accurately interpreting the
recorded vertical fluxes.

We plan to apply the method outlined in this study to analyze a challenging site. A
new measuring mast was recently installed in a forest clearcut in the same area of the
southern taiga region. We believe that additional observations will further validate our
method and enable us to accurately interpret the source of environmental fluxes in these
intricate surroundings.
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Appendix A. Forward LS Footprint Model

The Lagrangian stochastic (LS) models describe the diffusion of a scalar by means of a
stochastic differential equation, a generalized Langevin equation,

dX(t) = V(t)dt (A1)

dV(t) = a(t, X(t), V(t))dt +
√

C0 · ε(t, X(t)) dW(t), (A2)

where X(t) and V(t) denote trajectory coordinates and velocity as a function of time t, C0 is
the Kolmogorov constant, ε is the mean dissipation rate of turbulent kinetic energy (TKE),
and W(t) describes the three-dimensional Wiener process [22].

This equation determines the evolution of a Lagrangian trajectory in space and time
by combining the evolution of the trajectory as a sum of deterministic drift a and random
terms. The drift terms a(t, X(t), V(t)) are to be specified for each LS model constructed
for a specific flow regime [61]. In this study, the Lagrangian stochastic trajectory model of
Kurbanmuradov and Sabelfeld [15], which satisfies the well-mixed condition, was used.

The conventional approach to using a Lagrangian model for footprint calculation is to
release particles at the surface point source and track their trajectories downwind of this
source toward the measurement location forward in time (e.g., [13,16]). Particle trajectories
and particle vertical velocities are sampled at the measurement height. In the case of
horizontally homogeneous and stationary turbulence, the mean flux at the measurement
location (x, y, z) due to a sustained source Q located at height zs can be described as

Fs =
1
N

N

∑
i=1

nj

∑
j=1

wij∣∣wij
∣∣ Q
(
x− Xij, y−Yij, zs

)
, (A3)
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where N is the number of released particles, and ni is the number of intersections of particle
trajectory i with the measurement height z; wij, Xij, and Yij denote the vertical velocity and
the coordinates of particle i at the intersection moment, respectively. The above equation
applies identically also to elevated sources located at an arbitrary height. The flux footprint
can be determined as follows:

F =
1
Q

∂2Fs

∂x ∂y
. (A4)

Similarly, the mean concentration at the measurement location (x, y, z) and the con-
centration footprint can be determined (for detail, see [22,23]). For the estimation of the
footprint function, N = 105 trajectories were simulated.

Appendix B. Kernel Function

The information about kernel function is given here for the reader’s quick inquiry and
is based on Wikipedia sources.

In statistics, kernel density estimation is the application of kernel smoothing for
probability density estimation, i.e., a non-parametric method to estimate the probability
density function f of a random variable distributed on fixed locations (x1, x2 . . . xn), based
on kernels as weights. We are interested in estimating the shape of this unknown ƒ at any
given point x. Its kernel density estimator is

f̂∆(x) =
1

n · ∆
n

∑
i=1

K
(

xi − x
∆

)
, (A5)

where K is the kernel—a non-negative function—and ∆ > 0 is a smoothing parameter called
the bandwidth. Epanechnikov kernel functions were used:

K(u) =
3
4

(
1− u2

)
for |u| =

∣∣∣∣ xi − x
∆

∣∣∣∣ ≤ 1, (A6)

with a bandwidth of 10 m for footprints of canopy-located sources and of 50 m for footprints
of ground-located sources.
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