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Abstract: Event flow characteristics were evaluated based on temperature and level of stream
water in 22 forested catchments (area: 13.2–281.4 ha) to investigate sustainable flood management
measures. Temperature and stream water levels were during 346 rainfall events in the summer season
(July–September) from 2020 to 2022. Rising stream water levels responded to falling stream water
temperature between ≤100 and >100 ha forested catchments in two types of time of concentration.
Stream water temperature decreased by 3.0 ◦C when the stream water level increased by up to 0.9 m
during rainfall events. Falling stream water temperature at two types of time of concentration was
negatively correlated with total precipitation and rising stream water level. Based on the relatively
high value of regression and cumulative frequency distribution, the estimated rising stream water
level was appropriate in small catchments (≤100 ha) when the stream water temperature decreased,
and the stream water level increased during rainfall events. Rising stream water levels and falling
stream water temperatures are responses to catchment-scale effects, which are influenced by the
nature and rapidity of the hydrological responses. Therefore, the results of the present study indicate
that spatial and temporal differences in thermal responses of stream water temperature to water
levels were controlled by catchment-scale effects under rapidly changing rainfall.

Keywords: stream water temperature changes; event water level; forested areas; catchment-scale;
event-driven indicator

1. Introduction

The average global temperature is currently rising owing to climate change events [1,2].
IPCC [3] reported that the global average surface air temperature increased by 0.85 ◦C
between 1880 and 2012, whereas the rate of increase has been much higher since 1971
(0.2 ◦C/decade). Rising temperatures have increased the frequency and intensity of extreme
weather events [4,5]. Wu et al. [6] explained that extreme weather events, which usually
have a frequency of less than 5%, will become more recurrent due to climate change.
Consequently, such events are likely to affect water demand planning and lead to changes
in precipitation and runoff patterns because of imbalances in the supply and demand of
water resources and their management [7–9].

In the Republic of Korea, 63% of the land is covered by forests, and streams (i.e., tertiary
streams) account for 88.9% of the total length of streams nationally [10,11]. Therefore, the
streams play a significant role in water supply and management [12]. However, the
streams located in the upper parts of catchments have relatively low flow rates, with
ephemeral streams, when compared with rivers and lakes located in the lower part of
the catchment [13,14]. Therefore, the streams can occur quickly in response to the start of
rainfall events [15]. Moreover, variation in discharge in drainages smaller than 100 ha is
greater than that in drainages larger than 100 ha, based on the representative elementary
area concept [16,17]. For instance, previous studies [16,18] have noted that hydrological
processes within 100 ha areas are governed by hillslope processes related to soil depth,
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topography, rainfall intensity, and vegetation. Such site factors establish greater variation
in the unit area discharge. In contrast, hydrological responses in catchments larger than 100
ha are affected more by routing processes and the structure and extent of floodplains [17].
Finally, disturbances (e.g., landslides, debris flows, and floods) may control the patch
distribution of organisms in and around stream systems [19,20]. Montgomery [21] also
demonstrated that geomorphic processes set the templates for biological processes of
disturbance, river continuum, and patch dynamics using the process–domain concept.

In general, stream water temperature (WT), as a supplementary tracer, is used to
identify and evaluate the water sources contributing to runoff processes at forested catch-
ments [22,23]. WT fluctuates over time within a given catchment and is also a key driver
of drinking water quality and aquatic ecosystem health [24–27]. The natural and anthro-
pogenic mechanisms driving several facets of WT regimes are also well understood and
explain how thermal regimes may vary over time and space [28,29]. Although WT is
generally applied to water quality and aquatic ecosystems [29,30], approaches using both
WT and stream water level (WL) responses are also effective for identifying event-driven
indicators for unexpected rainfall events and flash floods. For instance, Subehi et al. [31]
indicated that WL, which depends on the season and slope gradient, jointly affects the
relative proportions of flow paths during rainfall events, thereby influencing changes in
specific discharge and water temperature. This is because WT and WL are sensitive to cli-
matological and hydrological variables that induce changes in climate or water flow, which
may have important implications for WT and WL thermal regimes [32,33]. Moreover, we
need to consider spatial and temporal variations in hydrologic and geomorphic processes
in forested catchments because WL and WT are sensitive to vertical distributions between
upstream and downstream storm directions [34–36].

Although WT and WL can respond to rainfall events and flash floods, the direct
application of WT with WL as the event-driven indicator has not been fully examined
in the forested catchment. Effective application using WT with WL can possibly applied
for sustainable flood management, which focuses on the role played by ecohydrology
in flood risk management. From the ecohydrological perspective, a stream floodplain is
an extremely important and capacious ecosystem that, being periodically flooded peaks,
may minimize the danger of flooding (e.g., [37–39]). Moreover, when the application
is investigated, the hydrological, ecological, and ecotechnological factors can be used
to develop sustainable approaches to minimizing flood risk in a given catchment and
managing floodplain systems (e.g., [40,41]). According to Rivaes et al. [42], interannual
variability is represented by changes in the frequency of floods and variations in annual
rainfall, whereas intraannual variability (seasonality) is represented by periods of water
surplus interspersed with hydric scarcity. In particular, the frequency and severity of
heavy rainfall events in forested catchments have escalated owing to increasing land use
and rapid global climate change, with such events frequently resulting in flash flood
disasters [43]. Heavy rainfall events often alter environmental conditions, which can
influence the composition and structure of biotic communities in terrestrial and aquatic
ecosystems [44,45]. In addition, flash floods cause considerable direct and indirect economic
losses by damaging socioeconomic systems and infrastructure [46]. In particular, the
summer season (mid-June to mid-September), which accounts for 90% of the total rainfall,
is concentrated during the East Asian monsoon (late June to mid-September) and typhoons
(late July to mid-September) in the Republic of Korea [47–49]. Therefore, assessment of
how extreme weather events impact environmental conditions and the consequences for
biotic interactions and ecosystem functions and services is critical (e.g., [50]). Such assessed
trends have been observed globally, and the damage to the environment is increasing as a
result [51,52].

Therefore, there is a significant demand for researchers and governments to construct
reliable and accurate flood prediction models and plan and implement sustainable flood risk
management measures with an emphasis on prevention and preparedness (e.g., [53]). The
objectives of the present were to: (1) examine water level and temperature responses in the
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time of concentration between rising water level and falling water temperature; (2) identify
rising water level and falling water temperature characteristics driven by rainfall events;
and (3) determine event-driven indicators using a combination of temperature and water
level of stream water in forested catchments.

2. Materials and Methods
2.1. Study Sites

This study was conducted in two catchment categories, including catchment areas less
than and or equal to 100 ha (FC≤100) and catchment areas over 100 ha (FC>100), in South
Korea (Figure 1). The study area was managed by the National Institute of Forest Science.
The distinguishing of two catchment categories was based on structural differences and
the continuous versus discontinuous nature of processes [17]. This was because process
characteristics differ in the two catchment categories, which needs to be considered when
establishing management guidelines for hydrologic, geomorphic, and biological processes
in forested catchments [17,54,55].

Forests 2023, 14, x FOR PEER REVIEW 3 of 16 
 

 

risk management measures with an emphasis on prevention and preparedness (e.g., [53]). 
The objectives of the present were to: (1) examine water level and temperature responses 
in the time of concentration between rising water level and falling water temperature; (2) 
identify rising water level and falling water temperature characteristics driven by rainfall 
events; and (3) determine event-driven indicators using a combination of temperature and 
water level of stream water in forested catchments. 

2. Materials and Methods 
2.1. Study Sites 

This study was conducted in two catchment categories, including catchment areas 
less than and or equal to 100 ha (FC≤100) and catchment areas over 100 ha (FC>100), in South 
Korea (Figure 1). The study area was managed by the National Institute of Forest Science. 
The distinguishing of two catchment categories was based on structural differences and 
the continuous versus discontinuous nature of processes [17]. This was because process 
characteristics differ in the two catchment categories, which needs to be considered when 
establishing management guidelines for hydrologic, geomorphic, and biological pro-
cesses in forested catchments [17,54,55]. 

 
Figure 1. Location of observation sites in ≤100 ha (FC≤100) and >100 ha (FC>100) forested catchments. 
FC≤100 and FC>100 are included from C1 to C10 and C11 to C22, respectively. 

The FC≤100 areas (C1–C10) were from 13.2 to 59.0 ha, with the altitude ranging from 
260 to 1368 m. According to the weather stations of the Korea Meteorological Administra-
tion (KMA), the annual precipitation in the regions for 20 years (2003–2022) was 1301.2 ± 

Figure 1. Location of observation sites in ≤100 ha (FC≤100) and >100 ha (FC>100) forested catchments.
FC≤100 and FC>100 are included from C1 to C10 and C11 to C22, respectively.

The FC≤100 areas (C1–C10) were from 13.2 to 59.0 ha, with the altitude ranging from
260 to 1368 m. According to the weather stations of the Korea Meteorological Admin-
istration (KMA), the annual precipitation in the regions for 20 years (2003–2022) was
1301.2 ± 370.1 mm (mean ± standard deviation (SD), range: 596.5–2235.2 mm), of which
60%–67% occurred from July to September. The annual temperature was 12.2 ± 1.2 ◦C
(mean ± SD, range: 9.2–14.4 ◦C). The mean of dominant slope gradients on the FC≤100
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ranged from 20.4 to 34.9◦. The underlying geology consists of metamorphic (C1, C4, C6, C8,
and C9), sedimentary (C2, C5, and C7), and igneous (C3 and C10) rocks. Most catchments
were dominated by deciduous broad-leaved forests, except for C2 and C7, which were
covered by mixed forests, and C8, which was covered by coniferous plantations (Table S1).

The FC>100 areas (C11–C22) ranged from 101.8 to 281.4 ha, with altitudes ranging
from 210 m to 1340 m. According to the weather stations of the KMA, the mean annual
precipitation ± SD in the regions for 20 years was 1320.5 ± 345.4 mm (589.2–3000.5 mm), of
which 59%–66% occurred from July to September. The mean annual temperature ± SD was
11.2 ± 1.2 ◦C (9.1–14.4 ◦C). The mean of dominant slope gradients on the FC≤100 ranged
from 23.4 to 32.8◦. The underlying geology consisted of metamorphic (C11, C12, C14–C16,
and C18), igneous (C13, C17, C19, C20, and C22), and sedimentary (C21) rocks. Most
catchments were dominated by mixed forests, except for C11, C14, and C16, which were
covered by broadleaved forests (Table S1).

2.2. Field Measurement and Data Analysis

To investigate stream water temperature and level, a water level gauge was installed
at each site in a 90◦ or 120◦ V-shaped or square notch. The data were measured using capac-
itance water stage data loggers (OTT-Orpheus Mini Water Level Logger, OTT Messtechnik,
Kempten, Germany) at 10-min intervals. Precipitation was monitored at 10-min intervals
using a HOBO tipping-bucket rain gauge (RG3, Onset Computer Corporation, Bourne, MA,
USA) in an open area in the study catchment.

Data for the rising stream water level (LR) in response to falling stream water tempera-
ture (TF) during the observed rainfall events in the summer season (July–September) from
2020 to 2022 were used to indicate event-driven water levels. Here, the LR was calculated
from the minimum to the maximum water level (e.g., [31,56]). The TF was calculated from
the maximum to minimum water temperature. To examine the effects of the time of concen-
tration between TF and LR, two types were tested: TF = LR and TF > LR. TF = LR indicates
the same time of concentration between decreases in stream water temperature (WT) and
increases in stream water level (WL), and TF > LR indicates the fast time of concentration
from the decreases in WT before increasing WL. We used 25 and 50 observations for FC≤100
and FC>100 for TF = LR. We used 113 and 158 observations for FC≤100 and FC>100 for
TF > LR. We then estimated the LR by TF using regression equations in two catchment
categories according to the two types for time of concentration.

The root mean square error (RMSE) and Nash-Sutcliffe Efficiency (NSE) were selected
to evaluate the performances of the estimated LR in the present study. This was because
the RMSE and NSE alone are not adequate indicators [57]. They are some of the indicators
recommended for estimation of efficiency in hydrology (e.g., [58–60]).

The RMSE is a commonly used metric for comparing values estimated using the
values actually observed [61,62] and was calculated with the following equation:

RMSE =

√√√√ 1
N

N

∑
i=1

(
LRi − L̂Ri

)2 (1)

where LRi is the observed LR at time i (m), L̂Ri is the estimated LR at time i (m), and N is
the total number of rainfall events observed. The RMSE can show the estimated errors,
with a relatively small value denoting superior estimation [61].

NSE is a trusted tool for evaluating the reliability of developed models [63]. In addition,
NSE is a normalized statistic that determines the relative magnitude of the residual variance
compared to the measured data variance [64] and is computed using the following equation:

NSE = 1 − ∑N
i=1
(

LRi − L̂Ri
)2

∑N
i=1
(

LRi − LRi
)2 (2)
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LRi is the mean of observed LR (m). NSE ranges from −∞ to 1. As usual, investi-
gators seek an NSE value close to 1. A negative NSE indicates unacceptable estimated
performance [65].

The RMSE and NSE values were considered accurate when using the estimated LR
as a flood estimation model. Subsequently, the residual was calculated by subtracting the
observed LR from the estimated LR during a given event in FC≤100 and FC>100 according
to the two types of time of concentration. All statistical analyses were performed using
R version 4.1.2 (R Foundation for Statistical Computing, Vienna, Austria) and IBM SPSS
Statistics 19 (IBM Corp., Armonk, NY, USA).

3. Results and Discussion
3.1. Distribution of Precipitation, Temperature, and Level Responses in Stream Water

The 346 rainfall events were observed over the entire monitoring period, with 75 occur-
ring in the same time of concentration between decreases in stream water temperature (WT)
and increases in stream water level (WL) (TF = LR) (Figure 2a) and 271 occurring in the fast
time of concentration from the decreases in WT before increasing WL (TF > LR) (Figure 2b).
Here, the occurrence of the TF > LR was similar in both catchment categories (Figure 2b),
whereas the TF = LR occurred more in the ≤100 ha (FC≤100) and >100 ha (FC>100) forested
catchments (Figure 2a). The falling stream water temperature (TF) ranged from −3.1 to
−0.1 ◦C, and the rising stream water level (LR) ranged from 0.001 to 0.9 m. This showed
that the WT decreased by 3.0 ◦C when WL increased by up to 0.9 m during rainfall events.
Similarly, Irons et al. [66] showed WT decreases of −1 ◦C at a 0.10 m WL for an Alaskan
river following precipitation, which was explained by enhanced groundwater upwelling.
Hannah et al. [67] indicated a depressed WT to 0.40 m WL associated with winter storm
flow for a mountain stream. According to Moore [68], WL is affected by the initial stream
source (e.g., groundwater seeps or glaciers), as well as the subsequent effects of energy and
water exchanges across the stream water surface.

Forests 2023, 14, x FOR PEER REVIEW 5 of 16 
 

 

푁푆퐸 =  1 −
∑ 퐿 − 퐿

∑ 퐿 − 퐿
 (2)

퐿  is the mean of observed LR (m). NSE ranges from −∞ to 1. As usual, investigators 
seek an NSE value close to 1. A negative NSE indicates unacceptable estimated perfor-
mance [65].  

The RMSE and NSE values were considered accurate when using the estimated LR as 
a flood estimation model. Subsequently, the residual was calculated by subtracting the 
observed LR from the estimated LR during a given event in FC≤100 and FC>100 according to 
the two types of time of concentration. All statistical analyses were performed using R 
version 4.1.2 (R Foundation for Statistical Computing, Vienna, Austria) and IBM SPSS Sta-
tistics 19 (IBM Corp., Armonk, NY, USA).  

3. Results and Discussion 
3.1. Distribution of Precipitation, Temperature, and Level Responses in Stream Water 

The 346 rainfall events were observed over the entire monitoring period, with 75 oc-
curring in the same time of concentration between decreases in stream water temperature 
(WT) and increases in stream water level (WL) (TF = LR) (Figure 2a) and 271 occurring in 
the fast time of concentration from the decreases in WT before increasing WL (TF > LR) 
(Figure 2b). Here, the occurrence of the TF > LR was similar in both catchment categories 
(Figure 2b), whereas the TF = LR occurred more in the ≤100 ha (FC≤100) and >100 ha (FC>100) 
forested catchments (Figure 2a). The falling stream water temperature (TF) ranged from 
−3.1 to −0.1 °C, and the rising stream water level (LR) ranged from 0.001 to 0.9 m. This 
showed that the WT decreased by 3.0 °C when WL increased by up to 0.9 m during rainfall 
events. Similarly, Irons et al. [66] showed WT decreases of −1 °C at a 0.10 m WL for an 
Alaskan river following precipitation, which was explained by enhanced groundwater 
upwelling. Hannah et al. [67] indicated a depressed WT to 0.40 m WL associated with win-
ter storm flow for a mountain stream. According to Moore [68], WL is affected by the initial 
stream source (e.g., groundwater seeps or glaciers), as well as the subsequent effects of 
energy and water exchanges across the stream water surface. 

 
Figure 2. Percentage of different size catchment distributions (i.e., ≤100 ha (FC≤100) and >100 ha 
(FC>100)) forested catchments in the two types of time of concentration, (a) TF = LR and (b) TF > LR. 
FC≤100 and FC>100 are included from C1 to C10 and C11 to C22, respectively. 

In the two types of time of concentration, the total precipitation (PT), WL, and WT were 
compared and analyzed based on the two catchment categories (Table 1 and Figure 3). 
Figure 3a shows that the TF of TF = LR was −0.4 ± 0.5 °C (mean ± SD) in the FC≤100 and −0.6 
± 0.6 °C in the FC>100. The LR was 0.1 ± 0.2 m in the FC≤100 and 0.2 ± 0.2 m in the FC>100 with 
spatial differences between the two catchment categories (Mann–Whitney U test, p < 0.05). 

Figure 2. Percentage of different size catchment distributions (i.e., ≤100 ha (FC≤100) and >100 ha
(FC>100)) forested catchments in the two types of time of concentration, (a) TF = LR and (b) TF > LR.
FC≤100 and FC>100 are included from C1 to C10 and C11 to C22, respectively.

In the two types of time of concentration, the total precipitation (PT), WL, and WT
were compared and analyzed based on the two catchment categories (Table 1 and Figure 3).
Figure 3a shows that the TF of TF = LR was −0.4 ± 0.5 ◦C (mean ± SD) in the FC≤100 and
−0.6 ± 0.6 ◦C in the FC>100. The LR was 0.1 ± 0.2 m in the FC≤100 and 0.2 ± 0.2 m in the
FC>100 with spatial differences between the two catchment categories (Mann–Whitney U
test, p < 0.05). The mean time of concentration (TA) was 2.4 and 5.8 h in FC≤100 and FC>100,
respectively, with PT of 14.0 and 33.7 mm. Figure 3b shows that the TF of the TF > LR was
−0.3 ± 0.5 ◦C in the FC≤100 and −0.4 ± 0.5 ◦C in the FC>100. The LR was 0.1 ± 0.1 m in
the two catchment categories. The time of concentration (TA) in the TF was 3.5 and 5.2 h
in both FC≤100 and FC>100, respectively, with a PT of 19.1 and 19.2 mm, respectively. In
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addition, the mean TA in the LR of the TF > LR was 5.0 and 6.5 h in the FC≤100 and FC>100,
respectively, with a PT of 25.1 and 23.2 mm, respectively. The spatial differences between
the two catchment categories in TA were significant (Mann–Whitney U test, p < 0.05).
This could be associated with the steeper slope during repetitive heavy rain and drought
processes, which originated from potential direct and/or indirect runoff [68,69]. Because of
a small catchment (≤100 ha), which contains ephemeral or temporal channels emerging
from zero-order basins [17,70,71], the ephemeral streams flow only as a result of surface
runoff generated using precipitation of high intensity and short duration [72]. According to
Camarasa-Belmonte and Segura-Beltra [73], the ephemeral runoff, which depends almost
exclusively on rainfall, is clearly related to the drainage basin characteristics.

Table 1. Summary of precipitation, temperature, and level in stream water.

TF = LR TF > LR

FC≤100 FC>100 FC≤100 FC>100

TA (h)
TF 2.4 ± 2.8

(0.2–12.7)
5.8 ± 4.8
(0.2–20.2)

3.5 ± 3.8
(0.2–16.2)

5.2 ± 5.3
(0.2–23.3)

LR
5.0 ± 4.5
(0.3–19.7)

6.5 ± 5.6
(0.3–24.3)

PT (mm)
TF 14.0 ± 19.4

(0.5–83.5)
33.7 ± 29.6
(0.5–110.5)

19.1 ± 27.8
(0.4–213.5)

19.2 ± 23.7
(0.5–146.5)

LR
25.1 ± 33.3
(1.0–241.0)

23.2 ± 25.7
(0.5–154.5)

WT (◦C)

Tmax
17.5 ± 1.9
(14.6–21.7)

16.6 ± 2.3
(11.2–21.7)

16.8 ± 2.3
(8.8–22.4)

17.4 ± 2.5
(10.0–22.5)

Tmin
17.1 ± 1.7
(14.3–21.5)

16.0 ± 2.2
(10.3–21.0)

16.4 ± 2.2
(8.7–22.3)

17.0 ± 2.5
(9.9–21.9)

TF
−0.4 ± 0.5

(−1.9–−0.1)
−0.6 ± 0.6

(−2.4–−0.1)
−0.3 ± 0.5

(−2.3–−0.1)
−0.4 ± 0.5

(−3.1–−0.1)

WL (m)

Lmin
0.1 ± 0.1
(0.03–0.4)

0.1 ± 0.1
(0.01–0.5)

0.2 ± 0.2
(0.01–1.2)

0.1 ± 0.1
(0.01–0.6)

Lmax
0.2 ± 0.2
(0.03–0.9)

0.3 ± 0.2
(0.03–0.8)

0.3 ± 0.3
(0.01–1.3)

0.3 ± 0.2
(0.01–1.1)

LR
0.1 ± 0.2

(0.001–0.7)
0.2 ± 0.2

(0.001–0.7)
0.1 ± 0.1

(0.002–0.9)
0.1 ± 0.1

(0.001–0.7)
Note: TF = LR: same time of concentration between decreases in stream water temperature (WT) and increases in
stream water level (WL). TF > LR: fast time of concentration from the decrease in WT before increasing WL. ≤100
ha (FC≤100) and >100 ha (FC>100) forested catchments, TA: time of concentration, PT: total precipitation, Tmax:
maximum WT, Tmin: minimum WT, TF: falling stream water temperature, Lmin: minimum WL, Lmax: maximum
WL, LR: risings stream water level, ±: SD, bracket: range from minimum to maximum values.

In the two types of time of concentration, the changes in TF in the FC>100 tended to be
greater than that in the FC≤100. Here, the LR of the TF = LR was more altered in the FC>100
than in the FC≤100 (Table 1). It is difficult to perform the first high-temporal-resolution
hydrometeorological assessment of the water column and stream thermal variability as-
sociated with storm events of different magnitudes, durations, and intensities, not just
within a forested basin but also for any catchment-scale effects [56]. Moreover, higher PT
and longer TA occurred in the FC>100 than in the FC≤100 in the TF = LR (Figure 3a). This
could be associated with the functional relationships between geomorphic processes in
space and time, which are recognized as controls for the continuity of material transport in
stream ecosystems [17]. Such dynamics can have potential impacts on the overall aquatic
environment as ecological consequences [74,75]. Researchers [76,77] have demonstrated
temporal and spatial linkages between hydrologic and geomorphic processes with respect
to rainfall–landslide thresholds and channel network development.



Forests 2023, 14, 2085 7 of 16

Forests 2023, 14, x FOR PEER REVIEW 7 of 16 
 

 

ecosystems [17]. Such dynamics can have potential impacts on the overall aquatic envi-
ronment as ecological consequences [74,75]. Researchers [76,77] have demonstrated tem-
poral and spatial linkages between hydrologic and geomorphic processes with respect to 
rainfall–landslide thresholds and channel network development. 

 
Figure 3. Distribution of time of concentration (TA) (time of concentration of falling water tempera-
ture (TF), and rising water level (LR)), total precipitation (PT) (PT of TF and LR) between ≤100 ha (FC≤100) 
and >100 ha (FC>100) forested catchments in the two types of time of concentration, (a) TF = LR and 
(b) TF > LR. Mann–Whitney U test results are indicated in separate bold le ers (a,b) above the bar 
graph (p < 0.05). 

3.2. Factor Affecting Falling Temperature and Rising Levels in Stream Water 
Principal component analysis (PCA) was used to analyze the influence parameters 

considering TF and LR responses monitored in the two catchment categories (i.e., ≤100 ha 
(FC≤100) and >100 ha (FC>100) forested catchments) during the two types of time of concen-
tration (i.e., same time of concentration between decreases in stream water temperature 
(WT) and increases in stream water level (WL) (TF = LR) and fast time of concentration from 
the decreases in WT before increasing WL (TF > LR)) using the entire dataset (Table 2 and 
Figure 4). For the two concentrations, the variance rate was over 90% for Factors 1–3. Table 
2 shows the values and proportions of the explained variance and cumulative variance 
explained by PCA. The PCA identified key parameters of TF and LR responses and re-
vealed that major latent factors are influenced by catchment-scale effects. During the two 
types of time of concentration. In addition, the relative temporal fluctuation of peak flows 
in small catchments (≤100 ha) was greater than in large catchments (FC>100) because storm 
flow responds rapidly to intense rainfall in small catchments because of their relatively 
small storage capacity and shorter flow paths [13,17,78]. 

In TF = LR, the total precipitation (PT), including time of concentration (TA) and rising 
stream water level (LR), showed high factor loadings for Factor 1, both in FC≤100 and FC>100. 
This is because flow responses to storms appear to be driven by rapidly routed precipita-
tion (i.e., direct precipitation/channel interception, rapid surface flow over impermeable 
bedrock/thin alpine soils, and subsurface flow through highly weathered screens) [56]. 
However, Factor 2 showed that falling stream water temperature (TF) and LR had high 
negative factor loadings in both catchment categories (Figure 4a). It is most likely that the 
stream temperature response to PT results from advected energy inputs, primarily from 
the surface and near-subsurface hillslope pathways [56]. In addition, climatic drivers, 
stream morphology, groundwater influence, and riparian canopy conditions reportedly 
affect stream thermal regimes [28,29,79]. In TF > LR, high factor loadings for Factors 1–3 
differed according to the catchment category; however, TF was Factor 3 in both catchment 

Figure 3. Distribution of time of concentration (TA) (time of concentration of falling water temperature
(TF), and rising water level (LR)), total precipitation (PT) (PT of TF and LR) between ≤100 ha (FC≤100)
and >100 ha (FC>100) forested catchments in the two types of time of concentration, (a) TF = LR and
(b) TF > LR. Mann–Whitney U test results are indicated in separate bold letters (a,b) above the bar
graph (p < 0.05).

3.2. Factor Affecting Falling Temperature and Rising Levels in Stream Water

Principal component analysis (PCA) was used to analyze the influence parameters
considering TF and LR responses monitored in the two catchment categories (i.e., ≤100 ha
(FC≤100) and >100 ha (FC>100) forested catchments) during the two types of time of concen-
tration (i.e., same time of concentration between decreases in stream water temperature
(WT) and increases in stream water level (WL) (TF = LR) and fast time of concentration
from the decreases in WT before increasing WL (TF > LR)) using the entire dataset (Table 2
and Figure 4). For the two concentrations, the variance rate was over 90% for Factors 1–3.
Table 2 shows the values and proportions of the explained variance and cumulative vari-
ance explained by PCA. The PCA identified key parameters of TF and LR responses and
revealed that major latent factors are influenced by catchment-scale effects. During the two
types of time of concentration. In addition, the relative temporal fluctuation of peak flows
in small catchments (≤100 ha) was greater than in large catchments (FC>100) because storm
flow responds rapidly to intense rainfall in small catchments because of their relatively
small storage capacity and shorter flow paths [13,17,78].

Table 2. Principal component loadings of six parameters associated with falling temperature and
rising level in stream water with total precipitation.

TF = LR TF > LR

Parameter Factor 1 Factor 2 Factor 3 Parameter Factor 1 Factor 2 Factor 3

FC≤100
(C1–C10)

TA 0.802 0.312 0.439 TTF 0.264 0.870 0.337
TLR 0.276 0.931 0.091

PT 0.939 0.232 0.173 PTF 0.827 0.324 0.380
PLR 0.911 0.308 0.225

TF −0.305 −0.876 −0.373 TF −0.317 −0.242 −0.910
LR 0.335 0.498 0.792 LR 0.930 0.195 0.166

FC>100
(C11–C22)

TA 0.302 0.333 0.890 TTF 0.904 0.268 0.298
TLR 0.914 0.274 0.253

PT 0.907 0.215 0.294 PTF 0.406 0.619 0.595
PLR 0.356 0.732 0.502

TF −0.249 −0.876 −0.357 TF −0.320 −0.327 −0.859
LR 0.679 0.623 0.211 LR 0.233 0.907 0.226

Note: TF: falling stream water temperature; LR: rising stream water level; TF = LR: same time of concentration
between decreases in stream water temperature (WT) and increases in stream water level (WL). TF > LR: fast
time of concentration from the decrease in WT before increasing WL. TA: time of concentration. TLR: time of
concentration of LR, TTF: time of concentration of TF, PT: total precipitation; PLR: total precipitation of LR, PTF:
total precipitation of TF.
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Figure 4. Principal component analysis for six parameters associated with falling stream water
temperature (TF) and rising stream water level (LR) between ≤100 ha (FC≤100) and >100 ha (FC>100)
forested catchments during the two types for the time of concentration, (a) TF = LR and (b) TF > LR.
TA: time of concentration. TLR: time of concentration of LR, TTF: time of concentration of TF, PT: total
precipitation; PLR: total precipitation of LR, PTF: total precipitation of TF.

In TF = LR, the total precipitation (PT), including time of concentration (TA) and
rising stream water level (LR), showed high factor loadings for Factor 1, both in FC≤100
and FC>100. This is because flow responses to storms appear to be driven by rapidly
routed precipitation (i.e., direct precipitation/channel interception, rapid surface flow over
impermeable bedrock/thin alpine soils, and subsurface flow through highly weathered
screens) [56]. However, Factor 2 showed that falling stream water temperature (TF) and LR
had high negative factor loadings in both catchment categories (Figure 4a). It is most likely
that the stream temperature response to PT results from advected energy inputs, primarily
from the surface and near-subsurface hillslope pathways [56]. In addition, climatic drivers,
stream morphology, groundwater influence, and riparian canopy conditions reportedly
affect stream thermal regimes [28,29,79]. In TF > LR, high factor loadings for Factors 1–3
differed according to the catchment category; however, TF was Factor 3 in both catchment
categories (Figure 4b). It seemed that factors affecting the TF and LR responses were difficult
to identify exactly in the TF > LR.

3.3. Relationship between Falling Temperature and Rising Level in Stream Water

To evaluate the correlations among the monitoring data between ≤100 ha (FC≤100) and
>100 ha (FC>100) forested catchments in the same time of concentration between decreases
in stream water temperature (WT) and increases in stream water level (WL) (TF = LR) and
the fast time of concentration from the decreases in WT before increasing WL (TF > LR),
correlation analyses were performed for a time of concentration (TA), total precipitation
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(PT), falling stream water temperature (TF), and rising stream water level (LR) characteristics
(Table 3).

Table 3. Correlation matrix for total precipitation, falling temperature, and rising level in stream water.

TF = LR

TA PT TF TA PT TF

FC≤100
(n = 25)

PT 0.85 FC>100
(n = 50)

PT 0.59
TF −0.69 −0.55 TF −0.67 −0.56
LR 0.74 0.59 −0.83 LR 0.63 0.74 −0.72

TF > LR

TTF TLR PTF PLR TF TTF TLR PTF PLR TF

FC≤100
(n = 113)

TLR 0.86

FC>100
(n = 158)

TLR 0.95
PTF 0.65 0.54 PTF 0.72 0.66
PLR 0.57 0.56 0.95 PLR 0.65 0.66 0.93
TF −0.58 −0.42 −0.66 −0.57 TF −0.63 −0.61 −0.78 −0.74
LR 0.47 0.46 0.84 0.91 −0.51 LR 0.53 0.53 0.73 0.79 −0.63

Note: TF = LR: same time of concentration between decreases in stream water temperature (WT) and increases in
stream water level (WL). TF > LR: fast time of concentration from the decrease in WT before increasing WL. ≤100
ha (FC≤100) and >100 ha (FC>100) forested catchments, TA: time of concentration, PT: total precipitation, Tmax:
maximum WT, Tmin: minimum WT, TF: falling stream water temperature, Lmin: minimum WL, Lmax: maximum
WL, LR: rising stream water level, ±: SD, bracket: range from minimum to maximum values. Significant
correlations are shown in bold type.

To assess the correlation between the characteristics in the two catchment categories,
the significance level was set at 0.01 or less, which implied a high correlation. The results
are summarized in Table 3. Here, the LR of TF = LR was positively correlated with TA and
PT in both catchments (correlation coefficient: 0.59–0.74, p < 0.01). The LR of the TF > LR
also showed a significant correlation with TA and PT parameters (correlation coefficient:
0.46–0.91, p < 0.01). However, the TF of the two types for the time of concentration was
negatively correlated with TA, PT, and LR, with correlation coefficients ranging from −0.78
to −0.42 in both catchment categories (p < 0.01) (Table 3). Previous studies have indicated
that PT has the greatest influence on stream water with seasonal changes [68,80,81]. The
researchers [23,56] also discussed that PT may cause changes in WL owing to direct inputs
(i.e., channel interception) and by inducing WL from various hydrological stores and
pathways. Lee et al. [82] showed that annual variations in streamflow timing and volume
depend on the seasonal cycles of PT in the upper part of the basin. Thus, PT can affect
changes in the temperature and level of stream water as a function of climate variability
within a catchment (e.g., [83,84]), even if TF and LR have different correlation patterns.

In the two types of time of concentration, TF decreased with increasing LR in both
catchment categories. The LR and TF patterns were similar in both catchment categories
in the TF = LR (Figure 5a). In the TF > LR, the LR with TF patterns of the FC>100 was larger
than that of the FC≤100 (Figure 5b). This was due to spatial and temporal differences in
thermal response to storm events, which were controlled by PT and WL [23,31,56]. Brown
and Hannah [56] discussed that the catchment characteristics influencing event-driven
thermal variability can be speculated upon at present because temperature data are not
routinely collected in studies of runoff generation processes. In addition, according to
Oware and Peterson [85], storm events strongly influence WT in the direction of the pre-
storm thermal gradient between the stream and substrate temperatures. Furthermore,
storm flow responds rapidly to intense rainfall in the FC≤100 because of their relatively
low storage capacity and shorter flow paths [17]. Storm flow generation in the FC≤100 is
also affected by the responses of hillslopes and zero-order basins to changing antecedent
moisture conditions [86,87]. In other words, the relationship between TF and LR can be
combined with the response to the stream surface energy balance and catchment-scale
effects. The TF is, therefore, less sensitive to uncertainties in precipitation, whereas these
uncertainties potentially have a large impact on the simulated LR (e.g., [88–90]). Our
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methodological approach using relationships between temperature and water level could
facilitate the formulation of sustainable flood management strategies with variations in
commonly used spatial and temporal scales (e.g., [56,91]).

Table 4. Summary of regression analyses to estimate rising stream water levels.

Equation R2 n F p

TF = LR
FC≤100 LR = −0.278(TF) − 0.021 0.69 25 51.60 <0.001
FC>100 LR = −0.259(TF) + 0.024 0.52 50 52.24 <0.001

TF > LR
FC≤100 LR = −0.162(TF) + 0.051 0.26 113 38.98 <0.001
FC>100 LR = −0.199(TF) + 0.035 0.39 158 100.09 <0.001

Note: TF: falling stream water temperature; LR: rising stream water level; TF = LR: same time of concentration
between decreases in stream water temperature (WT) and increases in stream water level (WL). TF > LR: fast
time of concentration from the decrease in WT before increasing WL. ≤100 ha (FC≤100) and >100 ha (FC>100)
forested catchments.
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Figure 5. Relationship between falling stream water temperature (TF) and rising stream water level
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3.4. Approaches to Estimating Rising Levels Using Falling Temperature in Stream Water

Table 4 shows the regression analysis results for the two catchment categories at the
same time of concentration between decreases in stream water temperature (WT) and
increases in stream water level (WL) (TF = LR). Significant results were obtained, with
coefficients of determination (R2) ranging from 0.52 to 0.69 at a 99% significance level. On
the other hand, the two equations in the fast time of concentration from the decreases in
WT before increasing WL (TF > LR) did not have a relatively fit to estimate rising stream
water level (LR) using falling stream water temperature (TF).

The estimated LR (mean ± SD) in the TF = LR was 0.1 ± 0.1 m (range: 0.01–0.5 m) and
0.2 ± 0.1 m (0.05–0.6 m) in the FC≤100 and FC>100, respectively (Figure 6a). In the TF > LR,
the estimated LR (mean ± SD) was similar to 0.1 ± 0.1 m (0.1–0.4 m and 0.1–0.7 m in the
FC≤100 and FC>100) in both catchment categories (Figure 6b). As illustrated in Figure 6, the
relationship between the observed and estimated LR was suitable for determining the event-
driven indicator using a combination of temperature and level of stream water, particularly
when the LR was estimated using the TF in the two catchment categories in TF = LR
(Figure 6a). The differences may have been caused by the time of concentration between
the TF and LR with catchment scale effects. Stream and event flow generation processes
modify the biological community structure and life cycle of aquatic fauna from upstream to
downstream systems [92–95]. Therefore, the estimated LR of the two catchment categories
was greater when TF = LR than when TF > LR. In particular, during the TF = LR, the
estimated LR in the FC≤100 was greater than that in the FC>100 because water inputs strongly
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affect hillslope and channel conditions because of the close coupling of hydrologic and
geomorphic processes within confined and steep valleys of FC≤100 [87]. Water temperature
in stream channels is closely related to the soil pore structure and bedrock fractures in
hillslopes and zero-order basins [17]. In the FC≤100, subsurface discharge from hillslopes
contributes base flow and storm flow to stream channels, initiates certain erosion processes,
and is important for the development of catchment topography [77].
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Figure 6. Relationship between the observed and estimated rising stream water level between ≤100
ha (FC≤100) and >100 ha (FC>100) forested catchments during the two types of time of concentration,
(a) TF = LR and (b) TF > LR.

The residual between the observed and estimated LR during the TF = LR ranged from
−0.2 to 0.3 m and −0.3 to 0.5 m in the FC≤100 and FC>100, respectively (Figure 7a). In the
TF > LR, the residual is within a similar range, at −0.3–0.6 m and −0.2–0.5 m in the FC≤100
and FC>100, respectively (Figure 7b). When the TF = LR, the NSE values were 0.69 and 0.52
with 0.09 and 0.14 RMSE values in the two catchment categories (Figure 6a), the estimated
accuracy on the FC≤100 was higher than that of the FC>100 (Figure 7a). In contrast, the NSE
values with RMSE in the TF > LR were 0.26 with 0.12 and 0.39 with 0.11 in the FC≤100 and
FC>100 (Figure 6b), respectively, i.e., the estimated accuracy was low (Figure 7b).

Therefore, the above results indicate that the estimated LR was appropriate in small
catchments (FC≤100) during the TF = LR. Subehi et al. [31] indicated that change in WT
is influenced more by changes in specific WL. Our estimated rising stream water level
was appropriate in small catchments (≤100 ha) and could be included in the expansion
of hydrologically active areas (e.g., riparian zones, zero-order basins, and bogs) during
periods of increasing wetness, which increases the probability of mass movements and
alters flow paths between terrestrial and aquatic environments [17,31,96,97]. Therefore,
hydrologists studying rainfall-runoff processes in catchment scale effects, particularly small
catchments (≤100 ha) (e.g., [17,87,98]) could greatly contribute to the understanding of the
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processes incorporating WT measurements alongside WL and confirm the application of
WT with WL as event-driven indicators in the forested catchments.
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water levels between ≤100 ha (FC≤100) and >100 ha (FC>100) forested catchments in the two types of
time of concentration, (a) TF = LR and (b) TF > LR.

4. Summary and Conclusions

We investigated event flow characteristics based on the level and temperature of
stream water during 346 rainfall events across the summer season (July–September) from
2020 to 2022 in 22 forested catchments (area: 13.2–281.4 ha). To indicate event-driven water
levels, we used event data for rising stream water levels (LR) that responded to falling
stream water temperature (TF) between ≤100 ha (FC≤100) and >100 ha (FC>100) forested
catchments in the two types of time of concentration (i.e., TF = LR and TF > LR). Our
main findings are as follows: (1) stream water temperature decreased by 3.0 ◦C, when
stream water level increased by up to 0.9 m; (2) the falling stream water temperature in the
two types of time of concentration was negatively correlated with total precipitation and
rising stream water level (correlation coefficient: −0.78–0.42, p < 0.01) due to water column
and stream thermal variability associated with storm events; (3) the TF decreased with
increasing LR in both catchment categories at both types of time of concentration; (4) in
addition, the rising stream water level pattern of the FC>100 was greater, due to changes in
falling stream water temperature, than that of the FC≤100 in the TF > LR, due to combined
effects of stream surface energy balance and catchment scale effects in response to the start
of rainfall; and (5) based on relative high regression and cumulative frequency distribution,
the estimated rising stream water level was appropriate for a small catchment (≤100 ha)
during the same time of concentration between decreases in stream water temperature and
increase in stream water level during rainfall events. This could be associated with the
expansion of hydrologically active areas (e.g., riparian zones, zero-order basins, and bogs)
during concentrated rainfall periods, which alter the flow paths between terrestrial and
aquatic environments in forested catchments. Our results indicate that the unique aspects
of our study design allowed us to draw inferences about event flow characteristics based
on the contribution of temperature and stream water level in small catchments (≤100 ha)
during the time of concentration sequences. Furthermore, our results could facilitate the
integration of the falling curve of stream water temperature in response to rising stream
water levels, which need to consider the catchment-scale effects, particularly in the small
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catchments (≤100 ha) for aquatic ecosystem and event-driven indicators of the potential
environmental and ecological consequences.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
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