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Abstract: Tea diseases have a significant impact on the yield and quality of tea during the growth
of tea trees. The shape and scale of tea diseases are variable, and the tea disease targets are usually
small, with the intelligent detection processes of tea diseases also easily disturbed by the complex
background of the growing region. In addition, some tea diseases are concentrated in the entire
area of the leaves, needing to be inferred from global information. Common target detection models
are difficult to solve these problems. Therefore, we proposed an improved tea disease detection
model called TSBA-YOLO. We use the dataset of tea diseases collected at the Maoshan Tea Factory in
China. The self-attention mechanism was used to enhance the ability of the model to obtain global
information on tea diseases. The BiFPN feature fusion network and adaptively spatial feature fusion
(ASFF) technology were used to improve the multiscale feature fusion of tea diseases and enhance the
ability of the model to resist complex background interference. We integrated the Shuffle Attention
mechanism to solve the problem of difficult identifications of small-target tea diseases. In addition,
we used data-enhancement methods and transfer learning to expand the dataset and relocate the
parameters learned from other plant disease datasets to enhance tea diseases detection. Finally, SIoU
was used to further improve the accuracy of the regression. The experimental results show that the
proposed model is good at solving a series of problems encountered in the intelligent recognition
of tea diseases. The detection accuracy is ahead of the mainstream target detection models, and the
detection speed reaches the real-time level.

Keywords: tea diseases; tea trees; deep learning; object detection; attention mechanisms; transfer learning

1. Introduction

China has the largest tea tree plantation area in the world and is also the largest
tea-producing country in the world. According to the statistics of the International Tea
Commission, the global tea output in 2020 was 6.269 million tons, of which China’s tea
output was as high as 2.986 million tons, accounting for 47.6% of the world’s total tea output.
In the process of tea planting and growth, tea diseases (including diseases and insect pests)
are important factors affecting yield and quality, and serious tea diseases can result in huge
economic losses. For example, Anxi County is the largest Oolong tea-producing area in
China, with a total tea garden area of 600,000 mu, and suffers economic losses of up to
CNY 60 million each year due to tea diseases. The common tea diseases mainly include tea
leaf blight, Apolygus lucorum, and tea algae spot. The above-mentioned tea diseases are
also the common diseases that cause the greatest harm to the tea tree and can repeatedly
infect the tea tree more than once a year. Most of them occur in warm and humid seasons.
After the tea plant is infected with the disease, it is often accompanied by the early fall of
tea leaves and the withering of the shoots, which leads to a decline in the whole tea plant
and even the overall disease of the tea garden, presenting a declining phenomenon, which
brings great losses to the majority of tea farmers. When the tea plant becomes infected with
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the disease, it is necessary to remove the diseased branches or spray pesticides at the early
stage of the disease. The conventional wisdom in identifying tea diseases relies heavily on
human expertise and inspection (e.g., on-site observation and diagnosis). However, there
are various tea diseases with a wide occurrence area, and the manual detection method has
strong subjectivity, poor consistency, and a high error rate.

With the rapid development of machine learning, image processing and machine
learning are widely applied to recognizing crop diseases. Billah et al. [1] used an adap-
tive neurofuzzy inference system and color wavelet features for tea disease recognition.
Karmokar et al. [2] utilized artificial neural networks (ANNs) to improve the recognition ac-
curacy of tea leaf diseases. A random forest classifier was improved by Chaudhary et al. [3]
to classify peanut diseases by combining an attribute evaluation method and the in-
stance filter. Mohan et al. [4] designed an image-processing system for rice leaf diseases
using the Haar and AdaBoost classifiers [5] for recognition, with a recognition accu-
racy of 83.33%. In addition, they also used K-nearest neighbor [6] and support vec-
tor machines (SVMs) to classify rice leaf diseases and obtained 91% and 93% accuracy,
respectively. Pranjali B. Padol et al. [7] used SVM classifiers to detect grape leaf diseases.
After k-means clustering [8], they used SVMs for feature extraction and classification and
obtained 85% accuracy. Sun et al. [9] combined SVMs with linear iterative clustering to
extract tea disease maps from a complex background, which contributed to the further
identification of tea diseases. Adeel et al. [10] segmented and identified grape leaf diseases.
During feature extraction, local contrast haze reduction and enhancement techniques were
used to improve the image quality. During feature fusion, the neighborhood component
analysis method was used to remove redundant features. Based on the experiments, the
segmentation and classification accuracy of grape leaf diseases was 90% and 92%, respec-
tively. However, traditional machine learning methods require a large number of images
for disease feature extraction, and feature extraction depends on manual design rather than
automatic learning.

Spurred by the recent developments in deep learning (DL), many DL-based methods
(e.g., CNNs) have been applied to image recognition [11–16]. Deep CNNs have more layers
and complex structures, meaning they have powerful learning abilities and can automati-
cally extract image features without human expertise and empirical knowledge, resulting
in higher recognition accuracy than traditional approaches. Currently, deep CNNs have
become the mainstream method in crop disease recognition. Sun et al. [17] used AlexNet to
classify tea diseases. They also segmented and enhanced the images of small sample dis-
ease datasets and fine-tuned the model parameters during network training. This method
obtained better classification results compared with traditional machine learning methods.
Zhang et al. [18] used the improved GoogLeNet and Cifar10 to classify and identify maize
disease leaves, and both models achieved 98.8% accuracy. Zhong et al. [19] used DenseNet-
121 to identify apple leaf diseases and obtained 93.51% accuracy. Agarwal. et al. [20] clas-
sified and recognized cucumber leaf diseases. The neural network model was composed
of three convolution layers, and a modified activation function was utilized, resulting in
a classification accuracy of 93.75%. Hu et al. [21] considered a random combination of
U-Net network and full connection conditions to segment and recognize tea diseases, which
reduced the interference of the complex background. In conclusion, deep neural networks
outperform traditional machine learning methods for disease detection if sufficient datasets
are available for training. However, crop disease images are hard to collect, and most
of them are of poor quality. In addition, current research on plant disease identification
mainly focuses on fruits and food crops, and scant studies exist on utilizing deep learning
in detecting tea diseases.

Although CNNs have shown their advantages in detecting tea diseases and other
plant diseases, they can suffer from a limited perception field. Due to the mechanism
of convolutional computation, the image features extracted by CNNs are constrained to
local areas. The limitation of convolution operation makes CNNs lack a global view of
the whole-image remote dependencies; these are of great importance for CNNs to focus
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on (regions of interest) and ignore noise throughout the feature map [22]. In order to
address this issue, we propose TSBA-YOLO, a DL tea disease detection model, by making
a series of improvements based on YOLOv5 [23], one of the best CNN-based object detec-
tors in recent years. First, the Transformer’s self-attention [24] mechanism is integrated into
the convolution layers of the feature extraction network in YOLOv5 as a complementary
system. The self-attention mechanism provides our model with a global perception field,
which can obtain more contextual information. In addition, we used BIFPN [25] to improve
the multiscale feature fusion of tea diseases and enhance the robustness of the tea disease
features. Secondly, the Shuffle Attention [26] mechanism is integrated into YOLO’s neck.
The use of the Shuffle Attention mechanism enables TSBA-YOLO to pay more attention
to tea diseases. The integrated adaptive spatial feature fusion (ASFF) [27] detection head
allows the model to automatically filter useless information to suppress the interference of
complex backgrounds for tea disease detection. Since the original loss function (i.e., CIoU)
of YOLOv5 does not consider the matching of the directions between the prediction box
and the target box, this leads to slow convergence. We used SIoU [28] instead of CIoU, the
original loss function of YOLOv5, to speed up the convergence of the network and further
improve the regression accuracy. Considering the similarity between the characteristics of
tea diseases and other plant diseases, a transfer learning strategy was adopted. The model
was pretrained by using a public dataset of plant diseases datasets, and then the pretrained
model was transferred to the enhanced tea diseases dataset, which further accelerated
the convergence speed of TSBA-YOLO and improved the accuracy and robustness of tea
disease detection in the case of small samples.

Our research is dedicated to solving the problem that the general target detection mod-
els are difficult to effectively identify tea disease targets. In order to solve a series of prob-
lems encountered in the process of the intelligent recognition of tea diseases, an improved
model, TSBA-YOLO, was designed. The proposed model has improved the fusion of tea
disease features at different scales, paid more attention to the tea disease areas, has a better
detection effect on small target tea diseases, and can better infer tea diseases using global
information. In the detection process, the effect of resisting the interference of a complex
background is also higher. We have used a series of technologies to improve the accuracy
of the intelligent detection of tea diseases, and the detection speed has reached a real-time
level. The large-scale deployment of the proposed model can timely and accurately detect
tea plant diseases to replace traditional inefficient manual inspection so as to take targeted
measures to control and improve the production efficiency and quality of tea.

2. Dataset

In this study, we first made an on-the-spot investigation in the Maoshan Tea Factory
in Jurong, Jiangsu Province, China, and found that in most tea factories in China, the main
tea diseases are tea leaf blight (tea tree’s own disease) and Apolygus lucorum (insect pest).
This paper selects these two most common tea diseases as the research object. We used
a DJI Mavic Air 2 drone (with a 1/2-inch CMOS sensor with 48 MP photos) to shoot over
50 cm of the tea disease area, as well as a handheld iPhone 13 (main camera shooting
resolution of 12 MP), and the images obtained were uniformly converted into JPG format.
The captured images contained typical features of tea leaf blight (tea tree’s own disease)
and Apolygus lucorum (insect pest). The typical characteristics of these tea diseases are
shown in Figures 1 and 2.

As shown in Figure 1, this tea disease is caused by Apolygus lucorum, which is
a common cell eater. Apolygus lucorum inserts its tentacles into the intercellular space and
inside the plant’s cells and then rips the plant cells apart through the tentacles with violent
activity. Simultaneously, it secretes saliva outward. The leaves of an infested tea tree will
be riddled with numerous holes, cavities, and irregular folds. In extreme cases, the holes
become interconnected, and the quality of the tea leaves is severely compromised.

Figure 2 shows the leaf blight of tea. Tea leaf blight mainly damages old leaves and
tender leaves. The disease primarily affects the leaf tip or leaf edge, which is semicircular or
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irregular in shape and predominantly brown in color and causes the tea leaves to senesce
prematurely, which has a negative impact on the yield and quality of tea leaves.
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The disease areas were manually and accurately labeled. Target detection using
deep learning techniques usually divides the dataset into 8:1:1, 7:2:1, or 6:2:2 for training,
validation, and testing. However, the dataset in this paper belongs to a small sample
dataset, in which the total number of samples is small; in order to make full use of the
dataset using enough samples for training to learn the characteristics of a tea disease, we
used data augmentation to expand the finished dataset (1000 samples), which was divided
into 8:1:1. Since this paper is based on the YOLO framework for model construction, we
convert the dataset into the YOLO format.

3. Methods
3.1. Mixed Use Data Enhancement Method

The mixed use of data enhancement methods can not only expand the dataset but also
avoids overfitting and improves the robustness of the model, including online and offline
enhancement methods.
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3.1.1. Offline Data Enhancement

Offline augmentation processes the data prior to model training. It can ensure the
consistency of the sample space and avoid the interference of different sample spaces
on the detection results. Firstly, the following strategies are used for data enhancement:
(1) image rotation: in order to obtain images at different shooting angles, the images were
randomly rotated by 90 to 270 degrees; (2) color dithering: in order to obtain images under
different light conditions, the chroma, saturation, and contrast of the images were randomly
enhanced; (3) sharpen processing: enhances the edge outline of the image to obtain images
with different definitions.

In addition to enhancing the data using image transformations, we also use the random
erasing algorithm [29]. A random area in the image is masked so that the model is forced
to focus on the pixels outside the masked area. In this way, the training is prevented from
falling into a local optimum, and the generalization ability of the model is improved. The
effect of random erasing data enhancement is shown in Figure 3.
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3.1.2. Online Data Enhancement

The online enhancement method differs from the offline augmentation method in that
online augmentation uses data augmentation to transform samples during the training
process to ensure the invariance of the number of samples and the diversity of the sample
population and improves the robustness of the model by expanding the sample space.
Online enhancement strategies include (1) image position transformation: image rotation,
translation, and mirror flip; (2) color dithering: image chroma adjustment, image saturation
adjustment, and image brightness adjustment.

The number of training samples is the same as the number of images in the training set
during online enhancement. In addition to basic image enhancement operations, a mosaic
data enhancement approach is used for processing data samples in the training process;
namely, multiple pictures are randomly cut and spliced into one picture to be used as
a training sample. In the random splicing process, the same picture may have different
categories of tea diseases. A richer picture background can bring higher model training
efficiency. One example of mosaic data enhancement is shown in Figure 4.

3.2. The Proposed Tea Diseases Detection Model TSBA-YOLO
3.2.1. The Overall Framework of the Proposed TSBA-YOLO

Figure 5 shows the network structure of our improved model: TSBA-YOLO. We
have made a series of improvements to the original YOLOv5 algorithm according to the
method described above. First, the Transformer module was inserted into the backbone of
YOLOv5. The self-attention mechanism of the Transformer is able to enhance the global
receptive field of the model, obtain more contextual information, and bring complementary
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advantages to the original convolution layer, which is more conducive to capturing the
global characteristics of tea diseases.
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We replace YOLOv5’s feature fusion network PAFPN with BIPFN for more efficient
multiscale feature fusion.

The Shuffle Attention (SA) mechanism is integrated into the neck of Yolov5. SA
introduces the Channel Shuffle operation while using spatial attention and channel attention
simultaneously in blocks. The two types of attention mechanisms are efficiently combined
to improve the semantic expression ability of tea disease characteristics. SA can selectively
focus on tea disease areas like human vision can, which also improves the detection of
small target tea diseases.

Finally, the original detection head of YOLOv5 was replaced with the proposed
adaptively spatial feature fusion (ASFF) detection head. The integrated ASFF detection head
allows the model to automatically filter useless information to suppress the interference of
complex backgrounds on tea disease detection.

Sections 3.2.2–3.2.6 of this paper describe each module in detail.

3.2.2. Basic Framework, YOLOv5

In this paper, YOLOv5 was used as the basic framework for detecting tea diseases,
and a series of improvements were made based on it. YOLOv5 is the latest network of
the YOLO family, which is a one-stage object detection algorithm. It is mainly composed
of a preprocessing module, a feature extraction network, a feature fusion network, and
a postprocessing module. The overall structure of YOLOv5 is shown in Figure 6. The
SPPF (spatial pyramid pooling fast) module is an improvement on the SPP module [30]
in YOLOv4 [31]. In addition to improving the training speed, it can reduce the repeated
gradient information and afford better learning abilities. YOLOv5 uses PAFPN [32] as the
feature fusion network, i.e., the Concat module in the framework diagram. In the multiscale
feature fusion module, three scales of detection layers are set. In addition, the small model
weight of YOLOv5 allows for rapid deployment as well as strong advantages in real-time
detection on resource-constrained IoT devices. When considering these factors, we chose
YOLOv5 as the basic framework for tea disease detection and made a series of innovative
improvements to propose the tea disease detection model TSBA-YOLO.

3.2.3. Transformer’s Self-Attention Mechanism

The distribution of various diseases in the image is different: some diseases (such
as tea leaf blight) have a small disease area (e.g., on the leaf), and detection relies more
on the local information of high-level features. The tea diseases caused by Apolygus
lucorum are densely distributed throughout the leaf and need to be inferred from global
information. Therefore, global semantic information is very important for the network to
improve localization ability. The original backbone of YOLOv5 is mainly based on CNNs.
Due to the limitations of convolution operations, CNNs mainly focus on limited perception
fields by establishing the relationship between adjacent pixels. There are limitations in
capturing long-range interaction information, which lacks long-range semantic relevance,
while long-range dependencies are of great importance to networks when focusing on
regions of interest and ignoring noise throughout the feature map. In addition, other works
have mathematically demonstrated that the effective perception fields of the extracted
features are much smaller than the theoretical ones [33], which means that the convolution
operation is not realistic in establishing remote dependencies between local image features.
In order to overcome the inherent locality of CNNs, some self-attention mechanisms based
on locality have been proposed, among which the Transformer is the most outstanding
one. In general, Transformer is mainly used for natural language processing and the
parallel mining of multiple long-range correlations between temporal information. It has
recently been applied in the computer vision domain and achieved impressive results in
many visual tasks [34–36], such as segmentation [37], tracking [38], image generation [39],
enhancement [40], etc. The improvements brought by the visual Transformer networks
demonstrate the need for building remote dependencies [41].
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Therefore, in order to make up for the deficiency of the original feature extraction
network of YOLOv5, we embed the Transformer encoder with the self-attention mechanism
into the CSP module of YOLOv5’s feature extraction network. Transformer’s self-attention
mechanism can resolve the problem of long-distance dependence, enhancing the global
perception field to capture rich global information and obtain more context information.
The structure of the Transformer encoder is shown in Figure 7. The encoder consists of
two sublayers. The first sublayer is Multi-Head Attention, which is composed of multiple
self-attention modules. The second sublayer is the MLP layer, which is a fully connected
layer. Each sublayer uses a residual connection. Adding the normalization layers before
and after the two sublayers can make the network converge better and avoid overfitting.

The self-attention mechanism is the core of the Transformer encoder, which can assign
different weights according to the importance of particular image regions so that the net-
work can focus on the key information and make the extracted features match the detected
targets. In the self-attention mechanism, the embedded patches vector is mapped to three
vectors: query (Q), key (K), and value (V) calculated by the dot product Q, K.The similarity
between K and Q is calculated by the dot product. After scaling and softmax normalization
to a certain proportion, the similarity value obtained is multiplied by the value vector to
obtain the semantic weight. All the semantic weights are weighted and summed to obtain
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the self-attention feature. Finally, the feature map with abundant information is obtained
through MLP processing. The self-attention mechanism is calculated as

Z = Attention(Q, K, V) = Soft max

(
QKT
√

dk

)
V (1)

Z is the self-attention feature; dk is the scaling factor; Q is the query vector; K is the
key vector; V is a value vector.
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3.2.4. Multiscale Feature Fusion with BIFPN

In the collected dataset, there are some differences in shape and size regarding the
tea diseases in the same category, which requires feature fusion at different scales. We
improved the original multiscale feature fusion network of YOLOv5 by using BiFPN instead
of the original PAFPN. BIFPN is a multiscale feature fusion module used in EfficientDet.
As shown in Figure 8, BIFPN adds residual connections to the original PAFPN of YOLOV5,
with crossconnections to remove the nodes that contribute less to feature fusion in PAFPN,
and then adds a jump connection between the input and output nodes at the same scale.
Unlike PAFPN, which treats features of different scales equally, BIFPN introduces weights,
which can balance the feature information of different scales.

The model (TSBA-YOLO) proposed in this paper follows the idea of BIFPN, which can
fuse the multiscale features of tea diseases in an efficient way, enhance the feature represen-
tation ability of tea diseases, and reduce the number of parameters of the TSBA-YOLO.

3.2.5. Shuffle Attention Mechanism

We integrated the Shuffle Attention (SA) mechanism module into the original neck
of the YOLOv5.SA mechanism, which can selectively focus on the characteristics of tea
diseases, which will also improve the detection of small target tea diseases.

Currently, attention mechanisms can be divided into two categories: channel atten-
tion and spatial attention mechanisms. Spatial attention and channel attention capture
the dependence relationship between the pixel-level relationship in space and the chan-
nels, respectively. Using these two types of attention mechanisms at the same time can
achieve better results but at the cost of more computation. The Shuffle Attention (SA)
mechanism introduces the Channel Shuffle operation and uses the spatial and channel
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attention mechanisms simultaneously in blocks so that the two attention mechanisms can
be efficiently combined.
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Global Average Pooling is used by Shuffle Attention to embed global information to
generate the s ∈ RC/2G×1×1 channel feature, and this can be carried out by passing the
spatial direction H ×W through contraction Xk1 . The calculation formula is as follows:

s = Fgp(Xk1) =
1

H ×W

H

∑
i=1

W

∑
j=1

XK1(i, j) (2)

In addition, SA creates a compact feature through a simple gating mechanism module
and sigmoid activation function, providing guidance for adaptive selection and precision.
The output of the channel attention is formulated as follows:

X′k1
= σ(Fc(s)) · Xk1 = σ(W1s + b1)Xk1 (3)

In Formula (3), W1 ∈ RC/2G×1×1 and b1 ∈ RC/2G×1×1 are for zooming and moving s.
Unlike channel attention, spatial attention focuses on “Where”, and complements

channel attention. Firstly, group norm (GN) operates on xk2 . Then, SA adopts Fc(·) to
enhance the representation of Xk2 . The final output of spatial attention is obtained from the
following formula:

X′k2
= σ(W2 · GN(Xk2) + b2) · Xk2 (4)

In Formula (4), W2 ∈ RC/2G×1×1, b2 ∈ RC/2G×1×1. The Two branches are connected
so that the number of channels is the same as the number of channels coming in.

The architecture of SA is shown in Figure 9. The tensor is first divided into G groups,
each of which is processed internally using the SA Unit. The internal part of SA is the
spatial attention mechanism, as shown in the blue part of Figure 9. The channel attention
mechanism used inside SA is shown as the green part of Figure 9. The SA Unit fuses the
information within the group via concatenation. Finally, the channel shuffle operation is
used to rearrange the groups, and the information flows between the different groups.
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Figure 9. Overall structure of shuffle attention.

We plugged shuffle attention into YOLOv5’s original CNN architecture. Shuffle
attention effectively combines the spatial and channel attention mechanisms and can be
partitioned and paralleled, which can improve the semantic expression ability of tea disease
characteristics. Shuffle attention can help the proposed TSBA-YOLO model extract attention
regions and focus on the characteristics of tea diseases.

3.2.6. Adaptively Spatial Feature Fusion Detection Head

The detection of tea diseases is often disturbed by the complex background of the
planting area, and the scale of tea diseases is not fixed, which can make their detection diffi-
cult. Therefore, this paper introduces the adaptive spatial feature fusion (ASFF) detection
head, which allows the model to automatically filter useless information to suppress the
interference of complex backgrounds on tea disease detection and enables the more efficient
fusion of disease information at different scales. We replaced the original detection head of
YOLOv5 with the ASFF detection head. ASFF will adjust the fusion ratio between different
feature layers by adaptive methods and filter spatially conflicting information to suppress
the interference of invalid information for detection, thus improving the invariance of
the feature ratio, reducing overhead inference and solving the problem of conflicting im-
age spatial information in traditional multiscale feature fusion, effectively improving the
multiscale feature fusion of tea disease targets. The structure of ASFF is shown in Figure 10.
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Level1, Level2, and Level3 denote the output from the neck in the YOLOv5 network.
Taking ASFF-3 as an example, the input of ASFF-3 (after fusion) is the weighted summation
of Level1, Level2, and Level3. The result is weight multiplication and addition, as shown
in Equation (5):

yl
ij = αl

ij ∗ x1→l
ij + βl

ij ∗ x2→l
ij + rl

ij ∗ x3→l
ij (5)

In yl
ij, the vector (i, j) represents the output feature mapping yl between the channels,

al
ij, βl

ij, rl
ij are the learnable weights representing three different levels up to the l-level

feature map; x1→l
ij , x2→l

ij , x3→l
ij represent the output of a feature map for location. Since

the addition method is used, it is necessary to ensure that the number of channels from
Level1 to Level3 is consistent with the feature size. The size is adjusted by down-sampling
or up-sampling for different levels, and then the Level1, Level2, and Level3 feature maps
are subjected to a 1 × 1 convolution to obtain the weight parameter α, β, r. The weight
parameters are then spliced and normalized by the softmax function to map the original
input to the range of [0, 1], and the sum is 1. The formula for a1

ij is as follows:

a1
ij + β1

ij + r1
ij = 1 (6)

a1
ij =

eλ1
aij

eλ1
aij + eλ1

βij + eλ1
γij

(7)

3.3. Improved Loss Function

We analyzed the shortcomings of the original loss function of YOLOv5 and adopted
an optimized loss function. For the unimproved YOLOv5, CIoU Loss was used as the loss
function of the bounding box, and Logits loss function and binary cross entropy were used
to calculate the loss of the target score and class probability, respectively. The calculation
method of YOLOv5′s CIoU is shown in Formulas (8) and (9):

CIoU = IoU − ρ2(b, bgt)

c2 − av (8)

LCIoU = 1− CIoU (9)

IoU(intersection over union) represents the intersection ratio of the real bounding
box and the bounding box; c represents the shortest diagonal length of the minimum
bounding box of the prediction box and the ground truth box, and ρ2(b, bgt) represents the
Euclidean distance between the center points of the ground truth box and the prediction
box. a is a positive balance parameter, v represents the consistency of the aspect ratio of the
prediction box and the ground truth box, and the calculation method of a and v is shown in
Formulas (10) and (11):

v =
4

π2 (arctan
wgt

hgt − arctan
w
h
)

2

(10)

a =
v

(1− IoU) + v
(11)

In Equation (10), hgt and wgt represent the height and width of the ground truth box;
h and w represent the height and width of the prediction box.

The CIoU scheme is shown in Figure 11. CIoU Loss considers the coverage area, aspect
ratio, and center distance, comprehensively, which can measure its relative position well,
and solve the problem of optimizing the horizontal and vertical directions of the prediction
box, but this method does not consider the direction matching between the target box and
the prediction box, which leads to a slow convergence speed. Thus, this paper uses the
SIoU loss. As shown in Figure 12, SIoU introduces the vector angle between the target box
and the prediction box for optimization.
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The calculation method of SIoU is shown in Formulas (12) and (13):

SIoU = 1− IoU +
∆ + Ω

2
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IoU =
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∣∣

|B ∪ BGT |
(13)

B, BGT represent a prediction box and a ground truth box, Ω indicates the shape cost,
∆ indicates that the angle cost is considered; the distance cost is redefined. The formula of
Ω and ∆ is defined as

Ω = ∑
t=w,h

(1− e−wt)
θ (14)

∆ = ∑
t=x,y

(1− e−rρt) (15)

In Formula (14), ww =
|w−wgt|

max(w,wgt)
, wh =

|h−hgt|
max(h,hgt)
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Ω. In Formula (15), ρx = (
bgt

cx−bcx
cw

)
2
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bgt
cy−bcy

ch
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2
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γ = 1 + 2 sin2(arcsin
max(bgt

cy , bcy)−min(bgt
cy , bcy)√

(bgt
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2
+ (bgt

cy − bcy)
2
− π

4
) (16)
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In Formula (16), bgt
cx and bgt

cy are the co-ordinates of the center points of the ground
truth box. bcx and bcy are the co-ordinates of the center points of prediction box.

By introducing the vector angle between the required regressions, SIoU redefines the
distance loss, effectively reducing the degree of freedom of regression, speeding up the
convergence of the network, and further improving the accuracy of regression. Therefore,
SIoU loss is used as the loss function of bounding box regression in this paper.

3.4. Transfer Learning

The training of DNNs requires a large number of samples to guarantee training
performance. Because the number of data samples in this paper is limited, it is difficult
to obtain good detection results by training it directly from scratch. Transfer learning is
a technique that can apply the acquired knowledge of the known domain to the target
domain, which can transfer the trained network model from a large dataset to a new dataset
and realize the reuse of the network model parameters and weights on the new dataset.

Due to the lack of large-scale image samples of tea diseases and the similarity between
the characteristics of tea diseases and other plant diseases, in this paper, a transfer learning
method was introduced to improve the performance of the model. Plant Village [42] is
a very large dataset of plant leaf diseases, consisting of 54,306 plant leaf images, including
14 species of plants, which are divided into 38 categories according to species and diseases.
We used the Plant Village dataset and other plant disease datasets collected from the
internet for pretraining. The transfer learning process is shown in Figure 13. First, we used
the public dataset to pretrain our improved model, TSBA-YOLO, to get the pre-training
weight and then transferred the pretraining weight to our dataset for retraining so as to
improve the accuracy and generalization ability of the model.

Forests 2023, 14, x FOR PEER REVIEW 16 of 27 
 

 

The training of DNNs requires a large number of samples to guarantee training per-

formance. Because the number of data samples in this paper is limited, it is difficult to 

obtain good detection results by training it directly from scratch. Transfer learning is a 

technique that can apply the acquired knowledge of the known domain to the target do-

main, which can transfer the trained network model from a large dataset to a new dataset 

and realize the reuse of the network model parameters and weights on the new dataset. 

Due to the lack of large-scale image samples of tea diseases and the similarity be-

tween the characteristics of tea diseases and other plant diseases, in this paper, a transfer 

learning method was introduced to improve the performance of the model. Plant Village 

[42] is a very large dataset of plant leaf diseases, consisting of 54,306 plant leaf images, 

including 14 species of plants, which are divided into 38 categories according to species 

and diseases. We used the Plant Village dataset and other plant disease datasets collected 

from the internet for pretraining. The transfer learning process is shown in Figure 13. First, 

we used the public dataset to pretrain our improved model, TSBA-YOLO, to get the pre-

training weight and then transferred the pretraining weight to our dataset for retraining 

so as to improve the accuracy and generalization ability of the model. 

 

Figure 13. Transfer learning process. TSBA-YOLO is the tea disease detection model proposed in 

this paper. 

3.5. Experimental Environment 

The training platform used in this paper is a computer equipped with the Windows 

10 (64-bit) operating system, an R7 5800H CPU, and an RTX 3060 GPU. Python language 

was used for programming, and the GPU acceleration framework was CUDA. The train-

ing environment and the test environment were the same. Details of the environment used 

in the experiment are shown in Table 1. 

Table 1. Experimental experiment. 

Environment Details 

Operating system Windows 10(64-bit) 

Programming language Python (Version 3.8) 

CPU R7 5800H 

GPU RTX 3060 

Pytorch version Pytorch 1.8.2 

GPU acceleration framework CUDA:11.1 

3.6. Model Evaluation Index 
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paper.

3.5. Experimental Environment

The training platform used in this paper is a computer equipped with the Windows
10 (64-bit) operating system, an R7 5800H CPU, and an RTX 3060 GPU. Python language
was used for programming, and the GPU acceleration framework was CUDA. The training
environment and the test environment were the same. Details of the environment used in
the experiment are shown in Table 1.

3.6. Model Evaluation Index

In this paper, precision (P) was used to measure the number of correctly predicted
samples of tea diseases in the task of detection, (TP) accounted for the total number of
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samples predicted by the model as tea diseases (TP + FP), and the formula for P is shown
in Formula (17).

P =
TP

TP + FP
(17)

FP indicates the number of samples that are actually free from tea diseases but are
misjudged as having tea diseases by the model.

Table 1. Experimental experiment.

Environment Details

Operating system Windows 10 (64-bit)
Programming language Python (Version 3.8)

CPU R7 5800H

GPU RTX 3060
Pytorch version Pytorch 1.8.2

GPU acceleration framework CUDA:11.1

Recall (R) represents the number of tea disease samples correctly predicted by the tea
disease detection model, (TP) accounts for the number of all tea disease samples (TP+ FN),
and the formula is shown in Formula (18).

R =
TP

TP + FN
(18)

FN indicates the number of samples that actually have tea diseases but are misjudged
by the model as having no tea diseases.

Average Precision (AP) was used to represent the identification accuracy of each tea
disease, and the calculation formula of AP is as shown in Formula (19).

AP =
∫ 1

0
P(R)dR (19)

Mean Average Precision (mAP) was used to represent the average identification accuracy
of all categories of tea diseases, and the calculation formula is shown in Formula (20).

mAP =
1
c
×

c

∑
k=1

(AP)k (20)

k is the total number of categories of tea diseases, and c is the serial number of
each category.

In object detection, it is generally considered that the intersection ratio between the
actual bounding box and the predicted bounding box is ≥0.5, so we choose mAP under
the condition of IoU = 0.5:mAP@0.5, and the average mAP: mAP@0.5:0.95 over different
IoU thresholds (from 0.5 to 0.95) to evaluate our tea disease detection model, which is more
demanding on accuracy.

FPS (frames per second) was used to evaluate the speed of detecting the tea diseases,
that is, the number of pictures that can be processed per second.

4. Results and Discussion
4.1. Training

In the process of training TSBA-YOLO, the stochastic gradient descent method (SGD)
was used; the learning rate was adjusted according to the linear scaling principle, the initial
learning rate(lr) = 0.001, and the pretraining weights obtained from transfer learning were
trained for 300 rounds (Epoch).

Figure 14 shows the convergence process of each evaluation index in the training
process of the tea disease detection model TSBA-YOLO. It can be seen that the convergence
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speed of TSBA-YOLO is relatively fast, and it converges to a relatively ideal effect by
the 15th Epoch. The mAP@0.5 of the 232nd Epoch reached the best value of 85.35, after
which the accuracy did not improve. Therefore, we selected the weight obtained from the
232nd Epoch training as our optimal weight, which had the highest accuracy.
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We evaluated the optimal weight of the model, drew the PR curve, and calculated the
AUC-PR according to the evaluation results. The PR curve is shown in Figure 15. The value
of AUC-PR is 0.8535.
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4.2. Ablation Experiment

In this paper, ablation experiments were carried out to prove the effectiveness of
each module, and the evaluation indicators mentioned above were used to evaluate the
improvement effect of the improved model, as compared with the mainstream target
detection model. The results are shown in Table 2.

Table 2. Ablation experiment results.

Model mAP@0.5 (%) mAP@0.5:0.95 (%) P (%) R (%) FPS

SSD 76.21 52.02 75.01 76.34 45
Fast R-CNN 78.01 55.01 77.68 77.01 19
EfficentDet 78.99 53.98 77.98 76.79 36

Yolov5 79.32 54.34 79.01 79.03 55
Yolov5 + Transformer 81.56 56.00 82.01 81.99 53

Yolov5 + Transformer + BIFPN 82.32 56.01 84.11 83.01 54
Yolov5 + Transformer + BIFPN + SA 84.01 57.38 85.81 83.03 52

Yolov5 + Transformer + BIFPN + SA + ASFF 85.26 58.99 87.25 85.01 51
Yolov5 + Transformer + BIFPN + SA + ASFF +

SIoU(TSBA-YOLO, ours)
85.35 59.17 87.83 85.27 51

Through the ablation experiments, we found that TSBA-YOLO, which integrates the
Transformer self-attention module, the BIFPN feature fusion network, and the Shuffle
Attention module, by using the adaptive spatial feature fusion detect head, improved the
accuracy of tea disease detection. Each of the modules used for the improvements increased
the detection accuracy. The integrated Transformer module first improved the average
accuracy (mAP@0.5) by 2.24, and the integrated BIFPN accuracy improved it by 0.76 on
top of that. Thereafter, the integrated SA and ASFF modules improved the accuracy to
84.01 and 85.26. Using the improved loss function SIoU training also slightly improved the
accuracy. The final average accuracy of TSBA-YOLO (mAP@0.5) reached 85.35, which is
6.03 higher than that of YOLOv5.mAP@0.5:0.95; P and R were both higher than the native
YOLOv5. All metrics were higher than the mainstream target detection models.

In terms of real-time detection, the detection speed of TSBA-YOLO is almost the same
as that of the original YOLOv5. The improved TSBA-YOLO inherits the advantages of
YOLOv5 in terms of detection speed, which is due to the fact that the module integrated and
introduced in this paper is lightweight and does not need to consume too many computing
resources, and the FPS reaches 51, that is, it can process 51 frames per second, which
meets the needs of real-time detection and is much higher than other mainstream target
detection models.

4.3. Detection Performance and Comparative Analysis

By comparing the detection results, we found that the recognition performance of the
improved TSBA-YOLO model is much better than that of the original YOLOv5. Especially,
the ability of noncomplex background interference and global feature extraction improved
a lot, and the number of undetected diseases was also smaller. The effectiveness of each
module we designed was further verified by comparing the test results, and some of the
test results are shown below.

As shown in Figure 16a–e, with the complex background interference from the tea
planting area, YOLOv5 mistakenly regards the dead leaves on the ground as tea disease
(tea leaf blight), while TSBA-YOLO can resist the interference of a complex background
and successfully detects the small target leaf blight with insufficient appearances in the
upper right corner. For the same disease site, the confidence level of TSBA-YOLO is also
higher than that of YOLOv5. SSD fails to detect all tea disease targets. Fast R-CNN and
EfficentDet are both disturbed by dead leaves.
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(a–e) are the detection results of the different models.

As shown in Figure 17a–e, in the same image, there are many tea disease (Apolygus
lucorum) targets, and some tea disease targets have insufficient appearances. YOLOv5
detected three fewer targets than TSBA-YOLO and had false detection. TSBA-YOLO can
detect small tea disease targets with insufficient appearances. SSD, Fast R-CNN, and
EfficentDet all missed some tea disease targets.

Similarly, as shown in Figure 18a–e, in the detection of tea leaf blight (most are small
targets), YOLOv5 also has more missed detections than our tea disease detection model
TSBA-YOLO. SSD, Fast R-CNN, and EfficentDet all failed to detect some small targets.
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results of the different models.

Because the tea disease Apolygus lucorum densely appears on a single tea leaf and
usually occupies the whole leaf, it is necessary to infer this from global information.
Figure 19a shows the detection result of YOLOv5. YOLOv5 has two misjudgments because
the local characteristics of the two tea leaves are similar to those of Apolygus lucorum.
As shown in Figure 19b, TSBA-YOLO has no misjudgment, and the confidence level of
detection reaches 0.91, which is 9.6% higher than that of YOLOv5. This is due to the
integration of the Transformer module providing TSBA-YOLO with strong global modeling
capabilities and self-attention mechanism. As shown in Figure 19c–e, SSD fails to detect the
tea disease target, and Fast R-CNN and EfficentDet both made false detections.
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Figure 18. Comparison of different models for detecting small target tea diseases. (a–e) are the
detection results of the different models.
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5. Conclusions

The shape and scale of tea diseases are variable; tea disease targets are usually small,
and the process of their intelligent detection is easily disturbed by the complex background
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of the growing area. In addition, some tea diseases are concentrated in the entire area of the
leaves, needing to be inferred from global information. Common generic target detection
models can hardly solve these problems. In this paper, a real-time detection model of tea
diseases, TSBA-YOLO, was designed based on the common tea diseases of tea plant leaf
blight and Apolygus lucorum. Firstly, aiming at the problem of insufficient tea disease
datasets, data enhancement methods were used to expand the samples. The random erasing
algorithm was used to cover part of the information of the image randomly, forcing the tea
disease model to learn the features outside the region for recognition, which can effectively
avoid the model falling into a local optimum and improve the generalization ability of
the model. The self-attention mechanism of Transformer and convolution layer were
introduced into the feature extraction network to form complementary advantages, which
enhanced the global perception field of the model so that more contextual information
could be obtained. The PAFPN of the YOLOv5 detection framework was changed to
a BiFPN structure, thus enabling the effective fusion of multiscale targets. Secondly,
we integrated the Shuffle Attention (SA) mechanism to efficiently improve the semantic
expression ability of tea disease characteristics. Therefore, TSBA-YOLO can focus more on
the field of tea disease and will also focus more on small-target tea diseases. The integrated
adaptively spatial feature fusion (ASFF) detection head could further improve multi-cale
feature fusion and automatically filter useless information to suppress the interference of
complex backgrounds from tea disease detection. The original loss function was optimized
using SIoU. SIoU introduces a vector angle between the required regressions, redefines
the distance loss, effectively reduces the degree of freedom of the regression, speeds up
the convergence of the network, and further improves regression accuracy. Finally, the
proposed transfer learning strategy was used to train the model, which further accelerates
the convergence speed of the model and improves the accuracy and robustness of tea
disease detection in a small sample case. The average accuracy (mAP@0.5) of TSBA-YOLO
improved to 85.35, which is much higher than that of the unimproved YOLOv5 and other
mainstream object detection models. Through ablation experiments, the effectiveness of
each module of TSBA-YOLO was verified, and the accuracy was improved. The detection
speed of TSBA-YOLO reached 51FPS, which meets the needs of real-time detection. By
comparing the detection results, it was found that the ability of TSBA-YOLO to resist
complex background interference and the ability to extract global features is much better
than that of YOLOv5, and the number of undetected pests and diseases is lower.

TSBA-YOLO can be deployed at the edge of UAVs and video surveillance equipment
to detect tea diseases in real-time and can also be deployed in the servers. It can replace
the traditional manual inspection of large areas in tea factories and detect tea diseases
in a timely manner so as to spray pesticides to minimize economic losses. TSBA-YOLO
can also migrate to other plant disease detection. In the future, we will use the method
of model integration to further improve the accuracy of tea disease detection by using
multiple models to jointly infer a tea disease area and fuse the detection results, which will
further solve the problem of missed detection and false detection.
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