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Abstract: Currently, the detection of tea pests and diseases remains a challenging task due to the
complex background and the diverse spot patterns of tea leaves. Traditional methods of tea pest
detection mainly rely on the experience of tea farmers and experts in specific fields, which is complex
and inefficient and can easily lead to misclassification and omission of diseases. Currently, a single de-
tection model is often used for tea pest and disease identification; however, its learning and perception
capabilities are insufficient to complete target detection of pests and diseases in complex tea garden
environments. To address the problem that existing target detection algorithms are difficult to identify
in the complex environment of tea plantations, an integrated learning-based pest detection method is
proposed to detect one disease (Leaf blight) and one pest (Apolygus lucorµm), and to perform adaptive
learning and extraction of tea pests and diseases. In this paper, the YOLOv5 weakly supervised model
is selected, and it is found through experiments that the GAM attention mechanism’s introduction on
the basis of YOLOv5’s network can better identify the Apolygus lucorµm; the introduction of CBAM
attention mechanism significantly enhances the effect of identifying Leaf blight. After integrating the
two modified YOLOv5 models, the prediction results were processed using the weighted box fusion
(WBF) algorithm. The integrated model made full use of the complementary advantages among the
models, improved the feature extraction ability of the model and enhanced the detection capability of
the model. The experimental findings demonstrate that the tea pest detection algorithm effectively
enhances the detection ability of tea pests and diseases with an average accuracy of 79.3%. Compared
with the individual models, the average accuracy improvement was 8.7% and 9.6%, respectively. The
integrated algorithm, which may serve as a guide for tea disease diagnosis in field environments,
has improved feature extraction capabilities, can extract more disease feature information, and better
balances the model’s recognition accuracy and model complexity.

Keywords: tea disease; feature extraction; integrated learning; machine learning

1. Introduction

Tea production plays an important role in the development of the national economy.
Tea is an important economic crop in China and has become one of the main economic pil-
lars of tea-producing regions, becoming an important component of the national economy.
In the process of its planting to maturity, its yield drops sharply due to various pests and
diseases, resulting in huge economic losses. It is very important for tea farmers to be able to
detect tea leaf pests and diseases in a timely manner. In the past, the identification of crop
diseases was based on the careful observation of leaves by experts in the field [1]. However,
this method relies too much on personal experience, which is obviously too inefficient if
large areas of pests and diseases are produced, and also results in miscalculations and
omissions due to lack of human resources. Therefore, it is particularly important to solve
the problem of crop pest and disease detection. In recent years, as computer technology
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has advanced, an increasing number of researchers have tried to apply deep learning in the
field of crop pest and disease identification [2].

The majority of pest detection algorithms currently in use are deep learning-based,
and these algorithms are primarily split into two categories: the first is the two-stage
target detection technique based on regional targets represented by R-CNN [3], Fast R-
CNN [4] and Faster R-CNN [5], using a two-stage detection algorithm with relatively
high accuracy but relatively slow speed; the other is the two-stage detection algorithm
represented by SSD [6], RSDD [7], CenterNet [8] and YOLO [9] series as the representative
of regression-based [10] single-stage target detection algorithms. In recent years, Wang
Yuqing [11] proposed the research of UAV-based tea pest control system, which used
Faster R_CNN algorithm for feature extraction of tea disease images. However, the
dataset collected using this method was not carefully divided for different incidence
periods. Xue Zhenyang [12] et al. proposed a YOLOv5-based tea disease detection method.
A convolutional block attention module (CBAM) and self-attention and convolution
(ACmix) are merged into YOLOv5, and a global context network is added to the model
to reduce resource consumption (GCNet). Nevertheless, this approach has difficulty
with the actual diagnosis of diseases with complicated backgrounds and is only suitable
for leaf photos with plain backgrounds. Bao Wenxia [13] et al., in this study, proposed
an improved RetinaNet target detection and recognition network, AX-RetinaNet, for
natural scene image automatic detection and recognition of tea diseases in natural scene
images. Yang Ning [14] et al. proposed tea disease detection based on fast infrared thermal
image processing technique, which achieved fast detection of tea diseases by regularity of
tea disease area and its grayscale distribution in infrared images, but the accuracy of the
enhancement was not high.

Lee, SH [15] et al. proposed a region-based convolutional neural network for three
tea leaf diseases and four pests to detect the location of leaf lesions and determine the
cause of the lesions. Li, H [16] et al. proposed a framework for tea pest symptoms and
recognition based on Mask R-CNN, wavelet transform, and F-RNet, which began with
segmenting disease and insect spots from tea leaves using Mask R-CNN model, then
enhancing the features of disease and insect spot images using two-dimensional discrete
wavelet transform to obtain 98 frequency images, and finally, simultaneously inputting the
four frequency images into a four-channel residual network (F-RNet) to identify the tea
pest. Srivastava, AR et al. [17] used texture-based image processing for diseases prediction.
After training the dataset using classifiers, images of tea leaves were used as input, the
classifier system found the best match and the classifier system identified the disease. The
goal of this study is to better tea production in India by identifying and predicting tea
illnesses using a variety of classification approaches.

Most of the above-proposed methods use a single target detection network to detect
the location of tea leaf pest production, and the effect of pest classification for tea tree
is not outstanding enough to identify Apolygus lucorµm and Leaf blight well. Therefore,
this paper proposes a new method of tea tree leaf pest detection based on integrated
learning, integrating the new model after using both models to reduce the possibility of
misclassification or omission.

(1) For the case of Apolygus lucorµm with low target pixels and easy information loss,
in order to make the model focus on the detection of local information and improve the
accuracy of extracting image features, the Backbone network in YOLOv5 introduces the
GAM attention mechanism [18] to focus more on the recognition of Apolygus lucorµm.

(2) Secondly, due to the large area of Leaf blight and stronger background contrast,
the YOLO v5 Backbone network introduces the CBAM [19] attention mechanism improve
the focus on the directionality of Leaf blight recognition to obtain quicker convergence and
enhance the detection algorithm’s inference and training.

(3) Finally, the two trained models are fused before using the weighted frame
fusion algorithm (WBF) [20] to fuse the prediction frames of the two models. The
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results of the experiments demonstrate that the strategy can significantly enhance model
detection performance.

The rest of this paper is organized as follows. In Section 2, we not only describe the
tea pest dataset and model evaluation metric used in our experiments, but also detail the
structure of our tea pest detection model. In Section 3, we show the configuration used for
the experiments and the settings of some of the main training parameters. In addition, the
effects of CBAM attention module, GAM attention module and CBAM_fusion_GAM on Leaf
blight and Apolygus lucorµm identification are demonstrated via comparison experiments.
In Section 4, our pest and disease detection model is discussed and analyzed. Section 5
summarizes the whole work and provides a vision for the future.

2. Materials and Methods
2.1. Datasets

The learning effect of the deep learner on the target features is highly dependent
on the degree of annotation of the dataset. Therefore, the quality of the dataset has
a very strong relationship with the effectiveness of model recognition. First, we wrote
a crawler program in python to collect images of Leaf blight and Apolygus lucorµm in tea
from the Internet. Additionally, the high-quality tea pest and disease pictures were screened
manually. Secondly, the number of tea pests and diseases is too small. To improve the
robustness of the model, we added some pictures taken in our own tea gardens to the tea
pest and disease dataset. Third, we annotated the dataset by using labels to ensure that
our model could identify Leaf blight and Apolygus lucorµm. Finally, we produced a total of
450 images from the tea dataset. The names of the tags in the tea pest dataset and their
corresponding pest types and numbers are shown in Table 1. Representative images of
each type in the dataset are shown in Figures 1 and 2.

Table 1. Name of the label and its corresponding type and number of pests and diseases.

Pest and Disease Categories Apolygus lucorµm Leaf blight

Label name D00 D10

Number 289 (112 pictures of pest and
disease mix)

273 (112 pictures of pest and
disease mix)
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Figure 2. Representative images in the tea dataset, including (a,b) individual tea tree photos
(c,d) group tea tree photos.

2.2. YOLOv5

The YOLO family of algorithms is widely used in computer vision projects because
of its relatively simple structure and fast computational processing speed. The YOLOv5
used in this study is a regression-based one-stage target detection algorithm that makes
it easier to learn the generalized features of the target, resulting in a great performance
improvement in terms of speed and accuracy.

The network structure of YOLOv5 model consists of four parts: input side, Backbone
network, Neck network, and prediction module. First of all, in the input side, the data input
is processed via adaptive image scaling, Mosaic data enhancement, and adaptive anchor
frame calculation to increase the accuracy and recognition of detection; the Backbone
network includes CSP structure, Focus, etc. The slicing operation of the Focus structure
is used to slice the image, and the new image is obtained after the convolution operation.
After convolution operation, a binary down sampled feature map without information
loss is obtained; the Neck network uses the feature pyramid structure of FPN + PAN
(Feature Pyramid Network + Pyramid Attention Network), which mainly increases the
multi-scale semantic expression and enhances the localization ability on different scales.
The Prediction part involves using the loss function to calculate the position, classification
and confidence loss, respectively, and to perform Non-Maximum Suppression (NMS) on
the final detection frame of the target. The category prediction frame with the maximum
value of local classification is retained and the prediction frame with low score is discarded.
The YOLOv5 graph is shown in Figure 3.



Forests 2023, 14, 1012 5 of 14

Forests 2023, 14, x FOR PEER REVIEW 5 of 15 
 

 

 
Figure 3. YOLOv5 structure picture. 

2.3. GAM Attention Mechanism 
Since the Apolygus lucorµm target has strong contrast of background information in 

the image, the GAM attention mechanism is added to the network model to better identify 
the Apolygus lucorµm to improve the target detection accuracy by extracting feature in-
formation from the image, reducing information loss and improving global feature inter-
actions to improve the performance of the deep neural network and enhance the focus on 
the detection target. The global attention mechanism contains spatial location attention 
and feature channel attention, both of which can extract important feature information 
from individual feature points to link global feature points to reduce information loss and 
amplify global dimensional interactions. Channel attention focuses on the meaningful 
channels of the feature map, suppresses irrelevant channels, and finally uses convolution 
to achieve a weighted channel feature map. Spatial attention uses the spatial relationship 
between features to generate a spatial attention mapping to focus on the feature map local 
information. The global attention mechanism module is shown in Figure 4. 

 
Figure 4. The overview of GAM. 

The specific approach: Firstly, the channel-attention submodule is passed through to 
preserve the 3D information using a 3D alignment. Then, a two-layer MLP (multilayer 
perceptron) is used to amplify the cross-dimensional channel-space dependencies. (MLP 
is an encoder–decoder structure with reduction ratio r, the same as BAM.) The channel 
attention submodule is shown in Figure 5. 
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2.3. GAM Attention Mechanism

Since the Apolygus lucorµm target has strong contrast of background information in
the image, the GAM attention mechanism is added to the network model to better identify
the Apolygus lucorµm to improve the target detection accuracy by extracting feature
information from the image, reducing information loss and improving global feature
interactions to improve the performance of the deep neural network and enhance the focus
on the detection target. The global attention mechanism contains spatial location attention
and feature channel attention, both of which can extract important feature information
from individual feature points to link global feature points to reduce information loss and
amplify global dimensional interactions. Channel attention focuses on the meaningful
channels of the feature map, suppresses irrelevant channels, and finally uses convolution
to achieve a weighted channel feature map. Spatial attention uses the spatial relationship
between features to generate a spatial attention mapping to focus on the feature map local
information. The global attention mechanism module is shown in Figure 4.
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Figure 4. The overview of GAM.

The specific approach: Firstly, the channel-attention submodule is passed through to
preserve the 3D information using a 3D alignment. Then, a two-layer MLP (multilayer
perceptron) is used to amplify the cross-dimensional channel-space dependencies. (MLP
is an encoder–decoder structure with reduction ratio r, the same as BAM.) The channel
attention submodule is shown in Figure 5.
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Figure 5. Channel attention submodule.

Two convolutional layers are employed for spatial information fusion in the spatial
attention submodule in order to concentrate on spatial information. Additionally, the infor-
mation is diminished as a result of the maximum pooling procedure, producing a negative
contribution. In this module, the pooling process has been eliminated to further protect the
feature mapping. As a result, the spatial attention module occasionally considerably raises the
number of parameters. Group convolution with channel mixing wash is employed to stop the
parameters from rising significantly. Figure 6 depicts the spatial attention submodule.
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2.4. CBAM Attention Mechanism

Due to the problem of low pixel count of Leaf blight targets in the image, which is prone
to missing information, the CBAM attention mechanism is added to the network model
to improve the target detection accuracy. The CBAM attention mechanism contains two
independent sub-modules, the channel attention module and the spatial attention module,
which perform attention operations (attention) on channel and space, respectively. This
not only improves the time complexity and spatial complexity, but also integrates into the
existing network architecture as a plug-and-play module. Given an intermediate feature
map, the input weights are inferred sequentially along both spatial and channel dimensions,
and then multiplied with the original feature map to make adaptive adjustments to the
features. The structure of the CBAM attention mechanism is shown in Figure 7.
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Figure 7. The overview of CBAM.

Firstly, the input features are fed into a two-layer neural network (multilayer percep-
tron (MLP)) after global maximum pooling (maxpool) and global average pooling (average
pool). The two features output from the MLP are then summed and activated by a sigmoid
function to generate the input features needed for the spatial attention mechanism module.
The channel attention module is shown in Figure 8.
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The feature maps produced by the channel attention method are first subjected to
global maximum pooling and global average pooling, and then the two results are channel
spliced. The two features are multiplied following the sigmoid activation function to pro-
duce the final generated features after the convolution operation to decrease the dimension
into 1 channel. Figure 9 displays the module for spatial attention.
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2.5. Integrated Learning

Although the aim of deep learning is to train a model with good performance and
strong robustness, this is not always the case, as various individual learners frequently
exhibit their own “preferences” for learning features. Several weakly supervised models are
combined using “preferences” in ensemble learning [21] to create a stronger, more effective
supervised model. Tables 2–4 illustrate the principle, where signifies the ith model.

Table 2. Integration plays a “positive role”.

Model Test Case 1 Test Case 2 Test Case 3

m1 3 3 7

m2 3 7 3

m3 7 3 3

Integration 3 3 3

Table 3. Integration does not work.

Model Test Case 1 Test Case 2 Test Case 3

m1 3 3 7

m2 3 3 7

m3 3 3 7

Integration 3 3 7
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Table 4. Integration plays a “negative role”.

Model Test Case 1 Test Case 2 Test Case 3

m1 3 7 7

m2 7 3 7

m3 7 7 3

Integration 7 7 7

In order to properly combine them, integrated learning often begins by creating
a number of separate learners [22]. The more homogeneous the integrated individual
learners are, the larger the effect of integration will be; hence, the integration in Table 2
has a “positive effect”; additionally, the greater the diversities and accuracy of individual
learners, the better the integration will be.

Given that real-world tea pest and disease detection required a high level of algo-
rithmic accuracy, we went with a single-stage model with better real-time performance.
Using experimental observations, we discovered that YOLOv5 + GAM occasionally fails to
detect Leaf blight but is better at recognizing Apolygus lucorµms. While YOLOv5 + CBAM is
less cautious than YOLOv5 + GAM and can only detect a narrow range of Leaf blight, it is
sensitive to the Apolygus lucorµm. Consequently, the problem of missed detection of tea
pests and diseases can be effectively resolved in this study by combining these two weakly
supervised models with various levels of expertise.

2.6. Fusion Model CBAM_Fusion_GAM

Non-Maximum Suppression (NMS), a common technique for filtering prediction
frames, relies on the selection of a single threshold IoU [23]. Nevertheless, using alternative
thresholds may have an impact on the model’s final outcomes. When two objects are placed
side by side, one of them is taken away. Because NMS throws out unnecessary boxes, it
cannot efficiently create average local forecasts from several models. Figure 10 shows that,
in contrast to NMS, the WBF method constructs the fused frames using the confidence
(score) of all prediction frames.
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Two prediction frames are given as an example to show how the weighted frame that
results from the fusion of the two prediction frames is calculated. Assume that each of
the two prediction boxes represent the coordinates of the box’s upper left and lower right
corners, respectively, and represent the box’s confidence level. These coordinates were
derived using and fusion, as illustrated in Figure 11.
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Experimental tests have shown that each model has the advantage of extracting
different features from different models. Therefore, the fusion of two different models
based on YOLOv5 and the use of the advantages of each model can considerably enhance
the model’s robustness and detection performance.

The WBF algorithm formula is shown in the following Equations.

Cx1 =
Ax1× As + Bx1× Bs

As + Bs
(1)

Cy1 =
Ay1× As + By1× Bs

As + Bs
(2)

Cx2 =
Ax2× As + Bx2× Bs

As + Bs
(3)

Cy2 =
Ay2× As + By2× Bs

As + Bs
(4)

Cs =
As + Bs

2
(5)

The upper-left coordinates of the fused box are determined to use Equations (1) and (2),
the lower-right coordinates are calculated using Equations (3) and (4), and the confidence
level of the box is calculated using Equation (5).

The integrated architecture model diagram is shown in Figure 12.
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2.7. Model Evaluation

To accurately assess the effectiveness of the improved detection models, the evaluation
metric used precision (P), recall (R), mean Average Precision (mAP), and mAP@.5:.95 to
compare the performance of each model. mAP@.5:.95 indicates the average mAP over the
overlap degree (IoU) threshold (from 0.5 to 0.95 in steps of 0.05), which mainly reflects the
boundary regression capability. The IoU calculation formula is shown in Equation (6).

IoU =
A ∩ B
A ∪ B

(6)

where A represents the prediction frame and B represents the true frame.
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The formulas representing accuracy (P) and recall (R) are shown in Equations (7) and (8).

P =
TP

TP + FP
(7)

R =
TP

TP + FN
(8)

TP is the number of pests and diseases detected accurately at the same time, FP is the
number of pests and diseases not detected but detected incorrectly, FN is the number of
pests and diseases but detected incorrectly, AP is the average accuracy and represents the
average of all accuracies obtained for all possible values of recall. mean Average Precision
(mAP) is the average of AP values going down all categories. The average accuracy (AP)
and mean Average Precision (mAP) are calculated as shown in Equations (9) and (10).

AP =
TP + TN

TP + TN + FP
(9)

mAP =
1
m

m

∑
i=1

AP(i) (10)

TN is the number of no pests and diseases detected accurately at the same time, and
m denotes the dataset’s overall classification count for categories.

2.8. Training

The experimental environment configuration can be found in Table 5.The specific
parameters of training are shown in Table 6, and the specific division of the dataset is
shown in Table 7. In this study, comparison experiments will be set up to compare the
improved model with the original model and some mainstream target algorithms for
training and validation on the same dataset, as well as the same experimental equipment.

Table 5. Model test environment.

Test Environment Details

Programming language Python 3.9
Operating system Windows 11

Deep learning framework Pytorch 1.12.1

GPU NVIDIA
GeForce RTX3060

Table 6. Training parameters for tea pest detection models.

Training Parameters Details

Epochs 250
Batch-size 8

img-size (pixels) 640 ∗ 640
Optimization algorithm SGD

Initial learning rate 0.01

Table 7. Details of tea pest and disease dataset.

Dataset Train Val Test

Number 360 45 45
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3. Results
3.1. Experimental Result

The models based on different degrees of optimization were trained and tested, and
the results obtained are shown in Table. As can be seen from Table 8, while the final
integrated model was compared to the original model, the accuracy (P) and mean Average
Precision (mAP) in Leaf blight improved by 6.7% and 0.4%, respectively, compared to YOLO
v5 + CBAM; the accuracy (P) and mean Average Precision (mAP) in Apolygus lucorµm
improved by 5.5% and 2.2%, respectively, compared to YOLO V5 + GAM. As shown by the
results in Table 8, the integrated model has significant advantages in disease identification
of both Leaf blight and Apolygus lucorµm. The improved model is more conducive to the
target extraction of tea pests and diseases, improves the recognition accuracy, and can
accomplish the identification of tea pests and diseases at different scales more effectively.

Table 8. Experimental results.

Model
P (%) mAP (%)

AVG P (%)
D10 D00 D10 D00

YOLOv5 68.6 68.3 74.1 69.3 68.4
YOLOv5 + CBAM 73.3 67.9 74.4 63.3 70.6
YOLOv5 + GAM 66.2 73.1 72.2 66.3 69.7

YOLOv4 66.3 64.6 69.3 65.3 65.4
YOLO v5 + transformer_layer 70.3 67.8 74.9 66.6 69

YOLOv3 67.5 62.6 68.4 64.2 65
CBAM_fusion_GAM 80.0 78.6 74.8 68.5 79.3

3.2. Comparison

Since we mainly focused on the average performance of tea pests and diseases, we used
the average accuracy of various experiments (AVG P) as an evaluation criterion. Experiment
1 showed that YOLOv5 was more average at detecting Leaf blight and Apolygus lucorµm.
The average accuracy was only 68.4%. Therefore, the model structure was improved in
order to enable the model to better identify Leaf blight and Apolygus lucorµm.

Experiments 2–3 served to demonstrate the inclusion of the CBAM attention mech-
anism and the GAM attention mechanism in YOLOv5. In Experiment 2, the addition of
CBAM attention mechanism could better identify Leaf blight, but the recognition accuracy
for Apolygus lucorµm decreased, and the average accuracy increased by 2.2% compared
with YOLOv5. In Experiment 3, adding the GAM attention mechanism improved the
identification of Apolygus lucorµm, but the recognition accuracy for Leaf blight decreased.
Based on Experiment 3, we can conclude that the GAM attention mechanism can better
identify the Apolygus lucorµm but is not sensitive to the identification of Leaf blight. As
shown by Experiments 4–7, which are some mainstream algorithms for the identification
of tea pests and diseases, although the mAP value in Experiment 5 is better, it is lower in
average accuracy than the values of its two algorithms mentioned above, so it is not used
as one of the fusion models.

To get a more intuitive feel for the difference between the integrated model and the
original model algorithm for pest and disease algorithm detection, the detection results are
shown in Figure 13.
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Figure 13. (a–c) is the effect of YOLOv5 + GAM detection, which can be found to be sensitive to
Apolygus lucorµm over a large area but not to identify all Leaf blight. (d–f) represent YOLOv5 + CBAM
detection, which can be found to detect most of the Leaf blight but not sensitive to Apolygus lucorµm,
and there is leakage. (g–i) show the integrated fused model, which can be seen to be able to combine
two models to detect both Apolygus lucorµm and Leaf blight.

4. Discussion

Due to various characteristics such as texture, shape, and color, diseases and insect
pests of tea tree leaves are hard to accurately detect. Since the original model of YOLOv5
could not effectively focus on Leaf blight and Apolygus lucorµm, we added the GAM attention
mechanism to YOLOv5 to enable our model to better concentrate on the Apolygus lucorµm
and extract the pest features more purposefully. In order to better focus on the global
information of Leaf blight, the CBAM attention mechanism was added to YOLOv5, and it
was found that the CBAM attention mechanism had a better recognition effect than the
GAM attention mechanism for t features highlighted in the background, so it was more
effective than the GAM attention mechanism in the recognition of Leaf blight, but weaker
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for the recognition of Apolygus lucorµm. This paper proposes a new integrated model based
on YOLOv5 + CBAM and YOLOv5 + GAM. YOLOv5 + GAM is good at the detection of
pests and diseases with large areas and large background differences, though it struggles to
detect small targets and the problem of missing detection occurs. At the same time, although
YOLOv5 + CBAM is less sensitive for detecting foliar pests over large areas, it is more
“careful” than the previous one and can identify as many diseases as possible on leaves.
Therefore, this paper proposes an efficient integration strategy model CBAM_fusion_GAM,
which integrates two separate models to achieve the complementary advantages between
the models, and finally completes the detection of apple tree leaf diseases after the parallel
processing of the two models and the removal of redundant frames using the WBF algorithm.

The experimental tests show that each model has the advantage of extracting different
features from different models. Therefore, the integration of two different models based on
YOLOv5 can considerably enhance the model’s robustness and detection performance by
using the advantages of each model.

However, the CBAM_fusion_GAM model still has shortcomings when it comes to
detecting complex backgrounds. Firstly, it is prone to false detection, and secondly, there
is also leakage for detection of very small targets. Therefore, there is still much room for
improvement for both problems.

Finally, motivated by Lin’s two deep learning bus route planning applications [24,25],
we also intend to create a deep learning model for planning individual drones for pesticide
spraying on tea plantations in our subsequent research. In addition, the method proposed
by Xue et al. [26] allows direct modeling of the detailed distribution of canopy radiation at
the plot scale. In our opinion, the method proposed by Xue et al. may be a useful aid to
our subsequent continued research on tea diseases and insect pests. Finally, our detection
model is still in the laboratory stage, and we will also consider how to deploy this detection
model in future studies.

5. Conclusions

Tea pests and diseases are variable and of different types, and most of the tea pest and
disease detection at this stage relies on the experience of experts, so this paper proposes an
integrated learning-based tea pest and disease identification model.

In order to carry out effective pest and disease identification, we have carried out the
following work. First, we chose the YOLOv5 model, which is widely used in the field of
target detection. Second, we made three improvements to the YOLOv5 model due to its
ineffectiveness for pest detection. The CBAM attention mechanism was added to enable the
model to better focus on the Leaf blight target. The GAM attention mechanism was added
to enable the model to better focus on the Apolygus lucorµm. The model detection frame
is optimized by WBF algorithm after fusing the two trained models together. Finally, we
experimentally verified the effective improvement of our model compared to the original
YOLOv5 model.

In future work, we will continue to improve the model by seeking more efficient and
less parameter-intensive methods. We will also investigate methods for deploying tea pest
detection models.
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