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Abstract: Climate change will intensify the danger of wildfires, significantly impacting human
life. Deep Learning (DL) has been extensively applied in wildfire prediction research. In the realm
of wildfire prediction, previous deep learning methods have overlooked the inherent differences
between static positional information and dynamic variables. Additionally, most existing deep
learning models have not integrated the global system characteristics of the Earth’s features and
teleconnection during the learning phase. Here, we propose a static location-aware ConvLSTM
(SLA-ConvLSTM) model that is aware of static positional elements and interconnected with global
information and teleconnection. The model we propose can discern the influence of dynamic variables
across various geographical locations on predictive outcomes. Compared with other deep learning
models, our SLA-ConvLSTM model has achieved commendable performance. The outcomes indicate
that the collaborative interplay of spatiotemporal features and the extraction of static positional
information present a promising technique for wildfire prediction. Moreover, the incorporation
of climate indices and global feature variables enhances the predictive capability of the model in
wildfire prediction.
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1. Introduction

Wildfires are widely recognized as a critical factor within the Earth’s system [1] and are
a continuous global phenomenon occurring throughout the year. Their profound impact
extends to various aspects, such as global ecological balance, vegetation distribution, atmo-
spheric components, and infrastructure, as well as human life and property security [2,3].
The estimated annual burned area globally is currently about 420 Mha [4,5]. The measure-
ment of fire frequency spans from regional to continental and planetary scales, spanning
several years to millennia [6,7]. Wildfires within ecosystems depend on climate, vegetation
types, and human activities, exhibiting significant spatiotemporal variability on a global
scale [8]. With the ongoing climate warming, wildfires are increasingly impacting human
populations [9,10]. It is widely believed that extreme weather and climate patterns will alter
their frequency and patterns in the future [11–14]. Billions of dollars are spent annually on
mitigating or predicting wildfires, emphasizing the critical importance of understanding
and enhancing wildfire prediction for several vital domains, including emergency response,
ecosystem management, and land use planning, among others [10,15,16]. Wildfire predic-
tion involves the task of mapping wildfire danger using key remote sensing techniques,
meteorology, and human variables [17]. The development of comprehensive modeling
systems for Earth should consider wildfire events to better comprehend past patterns and
predict future ones [18]. Unlike typical prediction tasks, understanding when weather
conditions are most likely to trigger fires becomes exceedingly complex, involving fire
events [19] and the stochastic nature of fire-driving factors, which are interrelated among
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variables [20]. Moreover, the highly imbalanced nature of wildfire prediction tasks [21,22]
coupled with the complexity, interaction, and multiscale processes pose significant chal-
lenges to understanding wildfire occurrence mechanisms and prediction [23]. Consequently,
predicting changes in wildfire occurrences has become an increasingly serious task [20].

The existing research has delved into various domains of wildfire prediction, such as
fire occurrence prediction [24,25], fire severity [26,27], prediction of the burn area or sus-
ceptibility [28–30], and fire spread prediction [31–33]. Researchers have been committed to
providing predictions of combustion at different lead times, including short-term [19,34,35]
and long-term [36–39]. For instance, evaluations of human-induced and lightning factors
leading to wildfires [40] as well as decision tree assessments of long-term fire risk at local
scales [41] have been conducted. In addition, advances in numerical weather prediction
and climate models have simultaneously improved the spatial resolution and lengthened
delivery cycles [42]. In recent years, numerous studies have employed classical machine
learning methods to address this task [17,43,44]. Methods such as random forests, support
vector machines, logistic regression, and hybrid artificial intelligence have been applied in
wildfire prediction [39,45–48]. Scholars have utilized traditional machine learning meth-
ods to generate maps of wildfire susceptibility [49,50], along with comparative studies
involving multiple machine learning approaches [51–53].

Recently, deep learning has gained popularity [54,55] due to its ability to handle large,
diverse datasets and learn about complex relationships between the observed variables
and predicted outcomes [56,57]. It has been widely applied in predicting the Earth’s disas-
ters [58–60]. In the context of wildfire prediction, Convolutional Neural Networks (CNNs)
have been utilized for predicting forest fire susceptibility in Yunnan province, China [61].
Interpretable models have been employed for predicting wildfire danger in tropical re-
gions [62]. A combination of CNNs and Long Short-Term Memory (LSTM) models has
been used to model global burned areas and global wildfire susceptibility [63,64]. The use
of U-Net networks has been seen in predicting global wildfire danger [29] and combining
global information and teleconnection for global wildfire prediction [65]. Additionally,
a multibranch network has been used to predict wildfire danger in the Mediterranean
Sea [22]. However, there is relatively limited prediction focused on global combustion, with
most studies concentrating on local regions [66–68]. Some of these methods either do not
consider temporal changes [65], disregard the impact of teleconnection and global Earth
features on predicting tasks [22,63], or overlook the influence of static location variables
(latitude and longitude) on fire prediction [64]. We believe that considering and quantifying
the spatiotemporal contributions of all fire-driving factors are crucial. Global meteoro-
logical data and teleconnection have been proven to impact wildfire prediction [62,69].
Furthermore, static location variables (latitude and longitude) are closely related to dy-
namic variables. For instance, vegetation coverage or soil moisture in the Antarctic and
Arctic regions may be negligible, resulting in a wildfire occurrence rate of 0, whereas
around the equator (South America and Africa), wildfire occurrences require particular
attention. Therefore, there exists a certain continuity and correlation in geographical loca-
tions, akin to boundaries or textures in images. The fusion of teleconnection and global
Earth features has been shown to enhance the accuracy of wildfire prediction [65]. Hence,
it is necessary to simultaneously consider these two factors in the process of predicting
global wildfire danger.

Therefore, in this study, we propose a static location-aware Convolutional Long Short-
Term Memory neural network (SLA-ConvLSTM) for wildfire danger prediction, treating
the wildfire prediction task as an image segmentation task. For the extraction of static
location features, it employs up-sampling and down-sampling operations akin to the
U-Net network architecture [70]. Leveraging the characteristics of U-Net in extracting
image features while preserving detailed information, it extracts features of static location
variables and teleconnection. These are then combined with dynamic features using the
SKNet [71] for feature extraction and eventually integrated with global ecosystem data. Our
model simultaneously considers the collaborative effect of temporal and spatial information,
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demonstrating an advantage in extracting the spatial information of static locations while
incorporating global ecosystem data, treating the globe as an interconnected system for
global wildfire danger prediction. Our proposed model has shown excellent performance
compared with baseline models in our comparative analysis.

2. Materials and Methods
2.1. Data

In our experiments, we utilized the SeasFire cube, a spatio-temporal dataset designed
for sub-seasonal to seasonal wildfire prediction. This dataset is an analyzable, openly
accessible data cube stored in a cloud-friendly Zarr format [72]. The dataset includes
a variety of climate variables and wildfire burned area variables from channels such as
ER5-Land [73], Global Wildfire Information System [74], NOAA Climate Indices [75], etc.
It is suitable for modeling teleconnection and memory effects in the Earth system as well as
for modeling wildfire emissions and the evolution of wildfires. The regional divisions align
with the Global Fire Emissions Database (GFED4) [76], as illustrated in Figure 1.
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Figure 1. According to the division in GFED4, the world is divided into 14 regions.

We present a histogram illustrating the burned area in various regions across the
globe in Figure 2. Among these regions, SHAF (Southern Hemisphere Africa) and NHAF
(Northern Hemisphere Africa) exhibit significantly larger burned areas compared with
others. Following are SHSA (Southern Hemisphere South America) and AUST (Australia).
The wildfire-affected areas in Africa and South America collectively account for over 70%
of the global burned area [62]. Therefore, our subsequent focus in the deep learning model
is on paying greater attention to these high-incidence areas.
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In order to meet the model’s requirements, we focused on time-dynamic predictors
related to wildfires. We selected 14 global/local dynamic variables (including meteorologi-
cal variables, anthropogenic factors, and vegetation cover) and four static variables (cosine
and sine values of latitude and longitude), as outlined in Table 1. Among these, the first
seven meteorological factors were derived from ER5-Land, with a temporal resolution of
8 days and a spatial resolution of 0.25◦. Land Surface Temperature at Day, Normalized
Difference Vegetation Index, and Leaf Area Index were computed from NASA MODIS
satellite data, maintaining the same temporal and spatial resolutions of 8 days and 0.25◦,
respectively. Population density was derived from Gridded Population of the World (GPW)
v4 [77], also maintaining consistent temporal and spatial resolutions. Vegetation cover was
derived from ESA CCI Land Cover and includes Forests, Grassland, and Sparse vegetation.
All oceanic indices were obtained from NOAA Climate Indices. Our prediction target
was obtained from the Global Wildfire Information System (GWIS). Except for the oceanic
indices, all other dynamic variables were kept at the same resolution as the burning area.
Considering that the temporal dimension of the data significantly increases computational
requirements, we coarsened the resolution to 180 × 360. Total precipitation and population
were log-transformed using log(1 + x) to conform to a less skewed distribution, as shown
in Table 1. This study focuses on global wildfire prediction, emphasizing the investigation
of climatic temporal dynamics in controlling wildfires. However, in specific local regions,
such as the Russian Federation, Canadian, and North American forests, lightning is con-
sidered to be a predominant factor in determining burned areas by influencing ignition
frequency during the dry season [78]. In these areas where the dominance of temporal
control is relatively high, our proposed model may not perform as well as other DL models.
Nonetheless, in other global regions such as the western United States and India, wildfires
exhibit a strong dependence on local climatic delays [79,80]. Some extreme wildfires are
caused by prolonged droughts transitioning from wet to dry seasons, with several months
of lag [81,82]. Consequently, the SLA-ConvLSTM model, which considers temporal dynam-
ics, might demonstrate superior performance in such regions due to its ability to account
for temporal dependencies.
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Table 1. Input and target variables used from the SeasFire cube for all settings. The same variables
are used for both local and global views.

Category Full Name Data Array Name Unit Pre-Processing

Local/Global Variables

Mean sea level pressure mslp Pa

Total precipitation tp m Log-transformed

Vapor pressure deficit vpd hPa

Sea surface temperature sst K

Temperature at 2 m—mean t2m_mean K

Surface solar radiation downwards ssrd MJ m−2

Volumetric soil water level 1 swvl1 m3/m3

Land surface temperature at day lst_day K

Normalized Difference Vegetation
Index ndvi unitless

Population density pop_dens
persons per

square
kilometers

Log-transformed

Leaf Area Index lai m2/m2

Forest lccs_class_2 %

Grassland lccs_class_3 %

Sparse vegetation, bare areas,
permanent snow and ice lccs_class_7 %

Static Variables

Cosine of longitude - unitless

Sine of longitude - unitless

Cosine of latitude - unitless

Sine of latitude - unitless

Climatic Indices

Western Pacific Index oci_wp unitless

Pacific North American Index oci_pna unitless

North Atlantic Oscillation oci_nao unitless

Southern Oscillation Index oci_soi unitless

Global Mean Land/Ocean
Temperature oci_gmsst unitless

Pacific Decadal Oscillation oci_pdo unitless

Eastern Asia/Western Russia oci_ea unitless

East Pacific/North Pacific
Oscillation oci_epo unitless

Nino 3.4 Anomaly oci_nino_34_anom unitless

Bivariate ENSO Timeseries oci_censo unitless

Target Burned areas from GWIS gwis_ba ha

2.2. Methodology

Problem Formulation: Given multi-dimensional spatiotemporal data X({C, T, H, W}),
where H and W denote the spatial extent of the cube, T represents a temporal sequence
from 1 to T over past time intervals, and C is the number of variables. Our objective is to
learn a mapping function f approximated by a neural network that predicts the probability
of wildfire events occurring on T + 1 day, denoted as YT+1 ∈ [0, 1].

f : X({B, T, C, H, W}) → Yt+1 (1)
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To achieve this objective, we propose a deep learning network called SLA-ConvLSTM,
which incorporates static location awareness. In the subsequent sections, we will first
introduce the basic architecture and design of the model, followed by an explanation of the
specific experimental setup. Finally, we will apply the proposed model to predict global
wildfire danger.

2.2.1. ConvLSTM

The traditional LSTM structure has demonstrated excellent performance in time series
prediction [83]. However, its input format, which consists of vectors, is not suitable for
handling 5D data. During the process of flattening feature maps into one dimension, spatial
information is lost. ConvLSTM is a highly effective development of LSTM specifically
designed for action recognition tasks [84]. ConvLSTM can be represented as follows:

ft = σ
(

W f ∗ [ht−1, Xt] + b f

)
it = σ(Wi ∗ [ht−1, Xt] + bi)
Ct = ft × Ct−1 + it × tanh(Wc[ht − 1, Xt] + bc)
ot = σ(Wo ∗ [ht−1, Xt], bo)
ht = ot × tanh(Ct)

(2)

ConvLSTM is a hybrid model that combines Long Short-Term Memory (LSTM) and
Convolutional Neural Network (CNN). In this model, convolutional operators are used
for input and state transformations, as well as for state-to-state transitions, rather than
matrix multiplication. This enables the algorithm to perform convolutional computations,
resulting in better outcomes for spatial feature maps. Leveraging LSTM’s memory gates,
ConvLSTM can determine the future state of units in a grid by incorporating inputs from
neighboring cells in the past. The internal structure is depicted in Figure 3. The key
distinction between ConvLSTM and traditional LSTM lies in the operator “*”. Here, “*”
denotes convolutional operations instead of vector multiplication, while “×” represents
the Hadamard product. In this architecture, W f , Wi, and Wo are convolutional kernels.
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2.2.2. SLA-ConvLSTM

The SLA-ConvLSTM model is based on the Convolutional LSTM (ConvLSTM) frame-
work. However, it preserves spatial information during computations, enhancing its
effectiveness in handling spatiotemporal data synergies. To enable the model to focus on
the static positions of variables, we conducted feature extraction before the input variable
X entered the model. The extraction process is illustrated in Figure 4. Initially, the model
passes through two 3 × 3 convolutional neural network layers, then reduces the window
size of the image through max-pooling. Subsequently, it merges with the input OCI using
Hadamard product for element-wise multiplication. Following data fusion, the model em-
ploys Selective Kernel Networks (SKNet) to automatically select among multiple kernels of
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different sizes. Finally, the output undergoes up-sampling and skip-connection operations,
resulting in the ultimate static positional output variable.
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Figure 4. Static feature extraction and fusion.

After extracting static features, we combine them with dynamic variables as the model
input for the neural network. We aim for the model to simultaneously focus on global
variable information. To achieve this, we subject the features of global variables (180 × 360)
to convolutional processing with convolutional kernel size of 3 × 3. The purpose is to
maintain consistency in the image size after convolutional processing with the local size
(H × W). Once the features have been extracted for the global information, they are then
combined with the ConvLSTM output of the hidden state of the last time step and the
previously extracted static positional features with a convolution kernel of size 1 × 1 and
step size 1, with the aim of processing the final output as a tensor of shape (B, 2, H, W).
With this, our network has completed all the required processing steps. Figure 5 illustrates
the operations input into the ConvLSTM model, while Figure 6 showcases the overall
architecture of the SLA-ConvLSTM model.
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2.2.3. Performance Evaluation

Evaluation criteria are key factors in assessing classification performance and guiding
classifier modeling [85]. Accuracy, precision, recall, F1 score, and Kappa coefficient are used
to assess the two-class classification capability [86]. The statistical metrics are calculated
as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1 = 2 ∗ Precision ∗ Recall
TP + FP + TN + FN

(6)

where TP, TN, FP, and FN represent the numbers of true positive, true negative, false
positive, and false negative, respectively. The Kappa coefficient is used to evaluate the
reliability of the four classifiers. The Kappa index is estimated as follows:

Kappa =

(
Pobs − Pexp

)
1 − Pexp

(7)

Pobs = TP + TN (8)

Pexp = (TP + FN)× (TP + FP) + (FP + TN)× (FN + TN)) (9)

where Pobs is the proportion of pixels correctly classified as burning/non-burning, and
Pexp represents the proportion of pixels expected to agree by chance alone. The value of
the Kappa coefficient ranges from 0 to 1, where 0 indicates random agreement between
predicted and observed pixels, and 1 indicates complete agreement.

The overall performance assessment of predictive models can be quantified through
the ROC curve, constructed by plotting sensitivity on the y-axis against 1.0-specificity
on the x-axis [87]. The ROC curve of a good classifier typically shows a sharp rise near
the origin and then stabilizes around the maximum value of 1, while the values of an
ordinary classifier will be plotted closer to the diagonal line. The area under the curve
(AUC) ranges between 0.5 and 1 and is commonly used for quantitatively evaluating the
overall accuracy of classification models. The closer the AUC value is to 1, the better the
predictive performance of the classification model.
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3. Results
3.1. Model Comparison

The accuracy of the models was evaluated using five performance metrics: precision,
recall, F1 score, accuracy, and Kappa coefficient. As shown in Table 2, the performance
of the models on the test set (2019) was evaluated and compared using two different
calculation methods: metrics based on global data and metrics based on grid points. Here,
VIT represents the Vision Transformer model [88], and VITi,g denotes the original Vision
Transformer model considering both climate lag data OCI and global system data. Our
proposed model is represented similarly; SLA-ConvLSTMi,g indicates the consideration of
both climate variables and global data. In the experiment, ConvLSTM was also utilized as
a benchmark to verify if adding temporal dimension data improves the model, to assess if
incorporating static position feature extraction (SLA-ConvLSTM) brings enhancements, and
to analyze the performance when considering both teleconnection and global information
in SLA-ConvLSTMi,g.

Table 2. Evaluation metrics of four models on the test set.

Calculated from All Test Data Sets Calculated from Global Grid Point

Model Accuracy Precision Recall F1 Kappa Accuracy Precision Recall F1 Kappa

VIT 0.955 0.740 0.585 0.653 0.629 0.848 0.789 0.794 0.783 0.525

VITi, g 0.956 0.769 0.570 0.654 0.632 0.848 0.800 0.786 0.786 0.549

ConvLSTM 0.958 0.772 0.596 0.673 0.651 0.870 0.833 0.773 0.792 0.560

SLA-
ConvLSTM 0.958 0.775 0.599 0.676 0.654 0.870 0.826 0.781 0.800 0.566

SLA −
ConvLSTMi,g

0.958 0.756 0.612 0.676 0.654 0.870 0.822 0.818 0.805 0.577

Based on the displayed test results in the table, it is observed that the ConvLSTM model
outperforms the VIT model, which does not consider temporal dimension data. The bold
font in the table represents the highest quality of the current column. This indicates that
considering temporal dimension data enhances the predictive performance of the model.
Meanwhile, based on ConvLSTM, we perform static location-specific feature extraction
(SLA-ConvLSTM), whose global precision, recall, F1 score, and Kappa coefficients are much
better than those of ConvLSTM without static location feature extraction. This advantage is
further demonstrated and realized when the OCIs and the Earth’s global information are
taken into account (SLA-ConvLSTMi,g).

Following this, we present the ROC curves for the five models across 14 distinct
regions and globally in Figure 7. These curves are similarly drawn based on all sample
points in the test set. The AUC serves as a metric to evaluate the overall performance of
classifiers, aiding in determining which model performs better. Upon observation, in the
majority of regions, our proposed SLA-ConvLSTM model outperforms the other models.
Additionally, the ConvLSTM model, which considers temporal information, performs
better than the VIT model that disregards temporal information. However, in select regions
like AUST, the predictive performance of the ConvLSTM model surpasses the other four
models. In this specific region, we speculate that the wildfire trend is more influenced
by time delays rather than relying heavily on global information and OCI indices. The
inclusion of global information and OCI appears to reduce the predictive performance of
the models: VITi,g < VIT, SLA-ConvLSTMi,g < SLA-ConvLSTM. Overall, considering both
global information and OCI indices tends to enhance the evaluation metrics of the models
across global regions.
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To assess the predictive performance of our designed models across global grid points,
we calculated the median average of burnt grid cells worldwide and displayed the boxplots
of the five models in Figures 8–10. The medians of the five models appear to be quite
close; however, differences among the models become noticeable when examining the
lower edge of the accuracy values in the boxplots. The accuracy of the SLA-ConvLSTM
model consistently remains above 0.6. This trend aligns with the median values observed
in Table 2, where the metrics of SLA-ConvLSTM and SLA-ConvLSTMi,g for average grid
points are very similar, but overall, SLA-ConvLSTMi,g appears to have a slight edge. Since
we only consider grid points where burning occurs globally, neglecting certain non-burning
grid points, this could explain the proximity of these metrics among the three models.



Forests 2024, 15, 216 11 of 24

Forests 2024, 15, x FOR PEER REVIEW 11 of 24 
 

 

 
Figure 8. Accuracy box plot based on global grid points. 

 
Figure 9. F1 score box plot based on global grid points. 

 
Figure 10. Precision box plot based on global grid points. 

Figure 8. Accuracy box plot based on global grid points.

Forests 2024, 15, x FOR PEER REVIEW 11 of 24 
 

 

 
Figure 8. Accuracy box plot based on global grid points. 

 
Figure 9. F1 score box plot based on global grid points. 

 
Figure 10. Precision box plot based on global grid points. 

Figure 9. F1 score box plot based on global grid points.

Forests 2024, 15, x FOR PEER REVIEW 11 of 24 
 

 

 
Figure 8. Accuracy box plot based on global grid points. 

 
Figure 9. F1 score box plot based on global grid points. 

 
Figure 10. Precision box plot based on global grid points. Figure 10. Precision box plot based on global grid points.



Forests 2024, 15, 216 12 of 24

3.2. Wildfire Danger Map

After obtaining the trained models, the five DL models were derived to assess the
predictive performance using the global distribution of fire burning from the test dataset
(2019). Initially, Figure 11 illustrates the global burning status on a randomly selected day
(10 June 2019). Regions with fire incidents are marked in red, while areas without fire
incidents are not marked. Subsequently, the predictive performance of five models (VIT,
VITi,g, ConvLSTM, SLA-ConvLSTM, and SLA-ConvLSTMi,g) are displayed in Figures 12–16.
We filtered out predictions below 0.2 and retained those above 0.2. Based on observations,
it is noted that on 10 June 2019, fire distribution was concentrated in central Brazil, southern
Africa, and some regions in northern Australia—known sensitive areas to global wildfires.
Overall, all five DL models accurately predicted the global fire distribution. However, a
notable difference was observed in the southern part of Australia: while the VIT model
identified it as a low-danger burning area, suggesting potential significant fire incidents,
the SLA-ConvLSTM model predicted no fire incidents, aligning more closely with actual
observations. According to the Kappa coefficient and F1 score shown in the figure, the
proposed model achieved the best performance.
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The following information from Figures 17–21 displays the predictive performance
indicators for each grid point in the test dataset, including accuracy, F1 score, and precision,
used to evaluate the models. Examining the accuracy shown in the left column, the models’
performance is extremely close to the actual values. Notably, in the central regions of
Africa and South America, the models accurately capture the areas prone to wildfires,
closely aligning with the ground truth. Beyond these emphasized regions, most global
areas exhibit a remarkably high level of accuracy, demonstrating minimal differences
among the four models in this metric. However, discernible model differences emerge
when considering distinct indicators like the F1 score and precision. As illustrated by the
red ellipses, discrepancies exist in the central Asian and southeastern Australian regions.
In the central Asian region, regardless of whether the VIT model incorporates the OCI
climate index and global Earth system information, the ConvLSTM model, which considers
temporal dimensions, outperforms it in terms of the F1 score. Furthermore, after performing
static location feature extraction, the SLA-ConvLSTM model exhibits better performance in
this region compared with ConvLSTM without static location feature extraction. The SLA-
ConvLSTMi,g, considering OCI and global Earth system information, also demonstrates
similar results. Finally, precision, which showcases the model’s ability to capture positive
samples, is displayed in the blue ellipses on the far right. These two areas represent
locations with a relatively low probability of wildfires. Therefore, it is pertinent to focus
on how different models capture wildfire occurrences in these regions. The observed
differences indicate that the VIT model and VITi,g model slightly lag in capturing variations
compared with SLA-ConvLSTM and SLA-ConvLSTMi,g. This could be attributed to the
lower frequency of wildfire occurrences in these areas. Considering temporal dimensions
may lead the models to assimilate excessive unrelated information, consequently reducing
the final accuracy. Notably, the remaining blank areas, having no prior occurrences of
wildfires, are not within the scope of this experiment.

3.3. Probability Distribution of Wildfire

Figure 22 illustrates the percentage distribution of wildfire probabilities predicted by
each model. The x-axis represents the range of the predicted probability values, while
the y-axis denotes the percentage within each interval. Analyzing the global prediction
distribution would result in a histogram heavily concentrated within the 0–0.2 interval,
making it difficult to observe differences in model predictions. The probability distribution
depicted in Figure 22 is predominantly concentrated between 0.8 and 1, aligning with
our expectations. Notably, the distribution of the SLA-ConvLSTM model in this range is
significantly higher compared with the VIT model. Other intervals are distributed across
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the ranges of 0.2–0.4, 0.4–0.6, and 0.6–0.8. Overall, all five models predict these areas to
have extremely high wildfire danger, which is consistent with our anticipated outcomes.
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To investigate the global wildfire probability distribution, Figures 23–27 illustrate the
distribution maps of five different models’ predictions regarding global wildfire danger
levels. We categorized the predictions globally into five levels—0.2, 0.4, 0.6, 0.8, and 1—
using a five-grade classification on 10 June 2019, for display purposes. These levels depict
the wildfire danger across various regions globally. According to the distribution map, the
most frequent occurrences of wildfires are primarily concentrated in central South Africa
and Brazil. Following these regions are areas of notable severity, primarily in the northern
regions of Australia. These findings align with previous studies that have identified these
areas as having significant wildfire danger. Other regions, such as southern South America,
indicate potential areas for wildfires. Meanwhile, central Asia is categorized as having a
relatively lower probability of wildfires occurring at a frequent rate. Beyond these regions,
the rest of the globe is uniformly designated as a series of areas where wildfires are less
likely to occur, with a danger probability rated at 0. These areas and regions need less
attention regarding wildfire occurrences. Moreover, as indicated by the red ellipsoid, a
specific area in China historically demonstrated a low propensity for wildfires. However,
a burning event occurred on 10 June 2019, detected by the SeasFire dataset (as indicated
by the observed values in Figure 11). In this particular region, models incorporating the
temporal dimension, such as ConvLSTM and SLA-ConvLSTM, exhibited less effective
predictions compared with the VIT model. This area is classified as having infrequent burn
occurrences, indicating a weaker dependence on temporal factors for wildfires. Therefore,
the predictive performance of the VIT model surpasses other models in this region.

In summary, all models accurately predicted the regions characterized by extremely
frequent burning. Specifically, the overall performance metrics of SLA-ConvLSTM sur-
passed those of the VIT model. The primary reason lies in the former’s consideration of
global spatiotemporal correlations when predicting wildfires, retaining both spatial and
temporal characteristics. It is this advantage that enables the SLA-ConvLSTM model to
yield superior predictive results. Furthermore, when integrating the climate index OCI and
global Earth information comprehensively, this advantage was further enhanced.
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4. Discussion

Due to the complexity of wildfire danger prediction, limitations in observational data,
and the concurrent and compounded effects of multiple driving variables, predicting global
wildfires is a challenging problem [89]. Researchers have utilized statistical or machine
learning frameworks to quantify current wildfire distributions or predict future global
wildfire danger [39,90]. Moreover, some studies have used deep learning methods to
establish wildfire danger in global and local regions [62,63]. However, these investigations
have not taken into account the influence of static location information on wildfires nor
simultaneously considered teleconnection and global Earth information. In this paper, we
showcase a deep learning model, SLA-ConvLSTM, designed for predicting global wildfire
danger. Our model builds upon the ConvLSTM framework, enhancing its capability to
explore static location, teleconnection, and global Earth information. While researchers
have explored beneficial mixed DL approaches in various domains [91,92], to date, there
remains insufficient in-depth research on global wildfire prediction. Furthermore, current
global wildfire prediction studies are constrained by limited datasets, leading to modeling
analyses that are confined to specific local regions and adding complexity to predictions
within the spatiotemporal context.
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To address these issues, we propose a ConvLSTM model with static location aware-
ness for predicting global wildfire danger. Leveraging the ability of ConvLSTM to capture
spatial and temporal features better in the complex multivariate relationships inherent
in wildfire prediction, our model automatically extracts deep features and captures time-
related correlations. To enhance the model’s focus on distinct location features, we utilize
the spatial feature extraction capabilities of U-Net and SKNet networks to extract critical
features of static location information from the model, amalgamating it with teleconnection.
Eventually, this amalgamation incorporates global information from Earth systems, local
information, and static location information. Wildfire danger possesses spatial attributes,
requiring the consideration of spatial correlation with neighboring information rather than
viewing prediction variables from a single pixel perspective. Moreover, the variations in
wildfires exhibit temporal periodicity, necessitating the consideration of long time series
for predicting wildfire danger. The strengths of the SLA-ConvLSTM model lie in capturing
the inherent connections within adjacent pixels when handling spatially contextual data
while concurrently considering static location position information, global features, and
teleconnection to address the complex nonlinear relationships among various wildfire vari-
ables. Furthermore, we treat the wildfire danger prediction task as an image segmentation
task, resolving the continuity and consistency apparent in geographical locations.

The DL model proposed in this study presents a promising spatiotemporal analysis
framework for global wildfire research. In contrast with shallow neural networks and other
classical learning algorithms that demand the selection of a set of crucial discriminative
features, which, when inadequate, can impact model performance [93], SLA-ConvLSTM
possesses the ability to form directed cycles between neurons, enabling the generation of
complex dynamics akin to memory processes [94]. This capability is lacking in traditional
feedforward neural networks while simultaneously allowing attention to be focused on
the connections between adjacent pixels in space. These advantages make the model
superior to other feedforward neural networks. The VIT model, capable of capturing
remote and spatial features, only attends to spatial information, failing to observe long-
term dependencies in time series. Although ConvLSTM possesses the capability to capture
both spatial and temporal aspects, it lacks attention to static location information and
fails to amalgamate global information and teleconnection. The SLA-ConvLSTM, with its
ability to simultaneously extract static location information and capture spatiotemporal
characteristics, proves to be more suitable for predicting global wildfire danger.

The results demonstrate that the SLA-ConvLSTM model can effectively capture static
location information, temporal dimensions, global Earth system information, and telecon-
nection features. This model outperforms the traditional VIT and ConvLSTM models. Due
to the temporal nature of wildfires, the VIT model exhibited poor predictive performance.
In addition, ConvLSTM failed to extract specific static location information from the input
data and neglected global Earth system information and teleconnection, resulting in inferior
predictive performance compared with the SLA-ConvLSTM model. We also observed a
strong correlation between wildfire and spatiotemporal information in most global regions,
a finding consistent with previous research [19,63]. Wildfires are influenced by climatic
factors, including prolonged droughts transitioning from wet to dry seasons. The model
built in this study operates at a global scale and achieved an F1 score of 0.805 and a Kappa
coefficient of 0.577 calculated per grid point globally. However, the predictive accuracy still
varies across regions. In tropical and subtropical regions with significant burning areas
such as SHSA, NHAF, and SHSA, the proposed SLA-ConvLSTM model demonstrated
superior predictive performance. Conversely, for specific regions like central and eastern
China, our model exhibited lower predictive performance due to weak seasonal trends in
wildfires, capturing excessive irrelevant features for these particular areas. Nonetheless,
overall, the model demonstrated strong predictive performance in most regions across
the globe.

However, this study has certain limitations and uncertainties. The model training
involved considerable parameter and hyperparameter adjustments, inevitably introducing
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uncertainties. Furthermore, the opaque nature of DL models leaves us unaware of how
global variables and teleconnection impact the wildfire prediction process. In conclusion,
future endeavors should aim to develop interpretable DL models to investigate the varying
influences of different factors on global wildfire occurrences, enhancing our comprehension
of DL models in predicting fires. Additionally, exploring how lightning affects wildfires
will be an essential avenue for further investigation.

5. Conclusions

In this study, we approached wildfire prediction as an image segmentation task, in-
vestigating the application of five models—VIT, VITi,g, ConvLSTM, SLA-ConvLSTM, and
SLA-ConvLSTMi,g—in global wildfire prediction. ConvLSTM validated whether consider-
ing temporal features would enhance predictive performance. SLA-ConvLSTM examined
if extracting static location features would improve predictions. Finally, SLA-ConvLSTMi,g
evaluated the impact of teleconnection and global features on model predictions. Following
model training, we utilized five evaluation metrics—precision, accuracy, recall, F1 score,
and Kappa coefficient—to assess the accuracy of the five trained models in global wildfire
prediction. We then showcased evaluation metrics based on two different testing methods
(entire test set and global grid points). Subsequently, ROC curves and the AUC were
plotted on the entire test set to compare the models’ performance.

Through this experiment, we found that the SLA-ConvLSTMi,g model effectively
leverages contextual spatial information, exhibiting the highest model evaluation metrics.
The model performance ranking was observed as SLA-ConvLSTMi,g > SLA-ConvLSTM >
ConvLSTM > VITi,g > VIT. From these findings, several conclusions were drawn:

• The SHAF, NHAF, and SHSA regions account for the majority of wildfire occurrences.
• The fusion of global system data and remote correlation indices enhances model

capabilities.
• The synergy between spatiotemporal data improves predictive performance.
• Static geographical location information also influences wildfire predictions.
• Treating the prediction task as an image segmentation task is feasible, allowing for

attention to be paid to geographical continuity and correlation.
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