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Abstract: The drastic increase of forest fire occurrence, which in recent years has posed severe threat
and damage worldwide to the natural environment and human society, necessitates smoke detection
of the early forest fire. First, a semantic segmentation method based on multiple color spaces feature
fusion is put forward for forest fire smoke detection. Considering that smoke images in different
color spaces may contain varied and distinctive smoke features which are beneficial for improving
the detection ability of a model, the proposed model integrates the function of multi-scale and multi-
type self-adaptive weighted feature fusion with attention augmentation to extract the enriched and
complementary fused features of smoke, utilizing smoke images from multi-color spaces as inputs.
Second, the model is trained and evaluated on part of the FIgLib dataset containing high-quality
smoke images from watchtowers in the forests, incorporating various smoke types and complex
background conditions, with a satisfactory smoke segmentation result for forest fire detection. Finally,
the optimal color space combination and the fusion strategy for the model is determined through
elaborate and extensive experiments with a superior segmentation result of 86.14 IoU of smoke
obtained.
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1. Introduction

The global increase in extreme weather events has led to a significant rise in the
frequency and size of wildfires in recent years. Wildfires pose a critical threat to natural
resources, economic interests, and the security of human societies [1–6]. Early intervention
in the growth of fires through vision-based early forest fire automated monitoring and
detection technologies is essential to minimize losses.

Forest fire monitoring and detection involve the detection of flames and smoke.
While there has been considerable research on flame detection [7–13], smoke detection
is more important in the early stages of a forest fire because smoke tends to appear ear-
lier than flames [14]. There have been numerous research works published on smoke
detection [15–17].

The methodology of smoke detection consists of traditional methods and deep learning
methods [18]. Traditional methods require manually designing and selecting appropriate
features based on the characteristics of forest fire smoke, which can significantly affect
the behavior of the classifier. However, this manual process is time-consuming and relies
heavily on the expertise and understanding of the designer. Additionally, the appearance of
smoke can vary depending on factors such as fuel type, burning conditions, and airflow [19],
making it challenging to design generalized and robust features. As a result, traditional
methods may have limited generalization capability and can lead to false positive and false
negative detections in new scenarios.
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On the other hand, deep learning methods offer automatic extraction of richer fea-
tures [20], making it easier to leverage a wider variety of data types and fuse their corre-
sponding features for better performance. Deep learning-based smoke detection (including
forest fire smoke) has been widely studied and applied in the field. Compared to smoke clas-
sification [21–26] and smoke detection tasks [27–33], smoke segmentation not only detects
the presence of smoke and its location but also provides information about the approximate
smoke area and boundary contour [2,3,34–39]. This additional information can be valuable
in assessing the scale of the fire and predicting its potential spread. Researchers have
proposed various methods for smoke segmentation, including a concentration weighting-
based approach to address the challenges posed by the transparency, fuzzy contour, and
concentration diversity of smoke. Wang et al. [40] proposed a forest fire smoke semantic
segmentation method based on concentration weighting to address the problem of smoke
label uncertainty leading to the degradation of smoke segmentation capability caused by
the transparency, fuzzy contour, and concentration diversity possessed by smoke in the
supervised smoke segmentation task. The method built the mathematical relationship
between smoke concentrations and its pixel values utilizing the clue that different concen-
trations of smoke reflect different pixel values in an image. Then, the authors jointly trained
the model with concentration weighting labels and basic labels, making the network realize
the distinct role of forest fire smoke pixels, which reduced the influence on the smoke
detection model brought by the uncertainty introduced from smoke data annotation.

Feature fusion [41] has been widely applied in image fusion [42] and visual recognition.
It combines the extracted features of images with similar content and objects but different
attributes, such as RGB and IR image pairs, near-focus and far-focus image pairs, and
low-light and over-exposed image pairs. By recovering the fused features, deep learning-
based image fusion produces a fused image that simultaneously exhibits the corresponding
attributes of the original two images. This fused image enhances and complements the
characteristics of images with different attributes, enabling downstream visual recognition
tasks. For example, in the case of forest fire detection, the presence of smoke in the early
stages can obstruct the detection of the fire source and hinder firefighting operations. To
address this issue, Liu et al. [43] fused RGB and IR image pairs captured by a UAV drone
to obtain fused images that contain both environmental information and a clear view of
the burning fire source. Then, the fused image was input into an object detection network
to detect smoke and obscured fire. Similarly, deep learning-based feature fusion can be
directly applied to object recognition tasks. Compared to the complex two-stage recognition
process, direct fusion of features extracted from multi-modal data simplifies the task in
a visual recognition model. This approach allows the feature extractor to capture more
diverse multi-modal features and retain more information from the original image data,
resulting in improved final predictions.

In remote sensing imagery semantic segmentation, Zhao et al. [44] achieved superior
segmentation results by directly fusing features from RGB images and depth images into
their semantic segmentation model. Additionally, Chen et al. [45] conducted unified forest
fire and smoke detection using RGB and IR image pairs captured by a UAV. They utilized
the feature fusion method to combine the characteristics of both RGB and IR images. The
fusion methods were divided into early fusion, which involved concatenating images
as input into the model, and late fusion, which involved directly fusing the extracted
features for the recognition task. The resulting features were then fed into a classifier to
predict the presence of fire and smoke. The late fusion approach yielded significantly better
classification results compared to single-channel input.

In addition to the feature fusion, fire detection has been studied in different color
spaces. Color space refers to a system used to describe and represent colors in computer
vision. Common color spaces, such as RGB, HSV, and YCbCr, offer different ways of
representing colors and can capture specific color details of target objects, such as fire. Fire
detection based on color spaces has been extensively studied in previous research [16].
Flame detection, in particular, has been widely explored using traditional and deep learning-
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based methods due to the distinct color of flames [7]. For example, Zeineb D et al. [46]
utilized the PJF color space to better highlight fire regions in flame images as a preprocessing
step before feeding them into a lightweight network they had designed. Haridasan et al. [47]
applied multiple color space transforms to RGB fire images with flame areas and fused
the resulting features using concatenation to improve classification performance. Xing D
et al. [48] achieved refined smoke segmentation results by merging smoke segmentation
regions using HSV and LAB color spaces. Similarly, Prema E et al. [49] and Pundir, A.S.
et al. [50] used color spaces (YUV and YCbCr, respectively) as color criteria and combined
them with other feature extraction analyses to detect smoke presence in video frames.

However, using strong neural networks for efficient feature extraction from multiple
color spaces is still lacking in these studies. Moreover, while the research on flame detection
based on color spaces is well-established, the research on smoke detection using deep
feature fusion from multiple color spaces requires further development. With multi-color
spaces and feature fusion, it is possible to highlight distinct smoke features and enhance
the final detection results. This research direction represents an advancement in the field.

This paper introduces SUFN (Smoke U-Shape Fusion Network), a semantic segmen-
tation network for forest fire smoke. The proposed method fuses features from multiple
color spaces to enhance the visual deep learning-based approach into the forest fire smoke
segmentation direction in the hope of supplementing and completing the research field
of forest fire smoke detection. The method leveraged the idea of feature fusion based on
deep learning semantic segmentation in order to obtain a superior smoke detection perfor-
mance under various and complex situations in real application by more conveniently and
efficiently satisfying the enrichment and complementarity of distinctive features of smoke
images in multiple color spaces.

The main contributions of this paper are as follows:

(1) Compared with the smoke data selected or captured by humans in previous studies,
this research utilizes a dataset of forest fire smoke derived from real-time forest fire
monitoring cameras. This dataset encompasses a variety of real-world scenarios,
providing a more impartial assessment of forest fire smoke detection models.

(2) Our study introduces SUFN, a semantic segmentation model explicitly designed for
forest fire smoke detection. SUFN builds upon the U-Net foundation and innovatively
integrates features from multiple color spaces using three specialized fusion modules:
multi-scale feature encoding, deep feature fusion, and multi-scale shallow feature
fusion.

(3) We present a novel local fusion strategy employing element-wise self-adaptive weighted
addition, with an adaptive fusion weight policy devised for different local contexts
and dependencies within the model. It enables the extraction of comprehensive,
complementary smoke features from the diverse color spaces, significantly enhancing
the model’s detection performance.

2. Materials and Methods
2.1. Dataset and Prepocessing

The forest fire smoke image dataset used in the study was from part of the Fire Ignition
Library—FIgLib [4]. FIgLib is a large, publicly available wildfire smoke detection dataset
containing wildfire image sequences selected from images taken by the fixed-view cameras
of the High Performance Wireless Research and Education Network—HPWREN on remote
mountain tops in Southern California, USA. This research was one of the few to have
used such a high-quality and authentic forest fire smoke dataset for detection by semantic
segmentation.

In this study, there were 14 fire videos selected from the FIgLib database from June
2016 through to December 2021. These videos have varying degrees of smoke scale and
scene complexity. We extracted sequences of smoke images from the start of ignition to the
smoke generation process to construct the dataset. To evaluate better the performance of the
model, in this paper, we defined three types of smoke in the FIgLib database after thorough
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observation and statistical analysis: Normal clear smoke (NCS), normal interference smoke
(NSI), and inconspicuous smoke (IS). The NCS represented easily visible smoke, occupying
a relatively large proportion of the image without any surrounding interference. The NSI
represented similar conspicuous smoke but difficult to recognize the smoke contours with
some interferences. Interferences usually include clouds, glare, smoke, or a background
mixed with smoke, etc. The IS represented smoke occupied a very small proportion in an
image due to the incipient stage of fire ignition or a very distant fire shot from the camera,
or thin faint smoke with low concentration. Figure 1 shows three examples of images of
smoke.
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interference smoke as NSI. (c) Inconspicuous smoke as IS. The red boxes in sub-figure (c) indicate the
smoke occurrence area.

Hence, the dataset comprised 3 NCS, 9 NSI, and 2 IS fire video clips, representing the
complexity of the data. We randomly selected 3 of the 14 forest fire videos and sampled
71 images based on smoke type to form the test set consisting of 29 NCS, 22 NSI, and 20 IS
smoke images. The remaining 11 videos sampled 281 smoke images (including all three
smoke types) as the training set. The ratio of the training set to the test set is approximately
8:2, while ensuring that the training and test sets do not overlap. The dataset consisted
of 352 high-resolution forest fire smoke RGB images, with resolutions of 2048 × 3072,
1536 × 2048, or 1200 × 1600 pixels. The details of the dataset are shown in Table 1.

It is important to note that the ratio of NCS, NSI, and IS types in our dataset was 3:8:3.
This ratio closely aligned with the statistical ratio of the original FIgLib dataset. During the
statistical process, we observed that the NSI type of fire situations occurred more frequently
than the other two types, especially compared to the IS type. The IS type of fire situations
occurred the least, resulting in a relatively small amount of fire samples of this type in
our dataset. Considering that the NCS type, as an easy sample, would not significantly
contribute to the model’s performance or accurately represent real-world scenarios, we
intentionally reduced the number of NCS samples in the dataset.

Unfortunately, we could not obtain the corresponding ground truth labels for the
images in the original dataset. We annotated the images in the dataset using the online
annotation site CVAT [51] to obtain smoke segmentation masks. In training, we performed
geometric transformations such as random cropping, random scaling, and random flipping
on the original training images. The image size remained at 512 × 512 pixels.
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Table 1. Fires data details in the dataset.

Data Datetime of the Fire Location of the Fire Smoke
Type #Images Total

Training

11:19 on 20 May 2017 Lyons Peak South NCS 38

281

14:19 on 13 August 2019 L. A. Co. F. D Helibase 69 Bravo East NCS 34
11:30 on 6 July 2018 Mt. San Miguel North NSI 24

13:31 on 27 July 2018 Mt. Woodson North NSI 29
15:03 on 29 May 2019 Otay Mountain North NSI 23
13:03 on 16 July 2019 Mesa Grande North NSI 21

18:34 on 6 August 2020 Otay Mountain North NSI 24
10:56 on 29 August 2020 Cuyamaca Peak South NSI 24

14:25 on 5 September 2020 Los Pinos West NSI 23
09:43 on 26 July 2018 Sky Oaks North IS 24

13:34 on 16 December 2020 Lyons Peak West IS 17

Testing
14:56 on 24 September 2019 Lyons Peak North NCS 29

7114:29 on 5 September 2020 Mt. San Miguel East NSI 22
11:55 on 25 July 2018 High Point North IS 20

2.2. Model Architecture

Inspired by the idea of feature fusion of multi color spaces of images, we chose the
semantic segmentation network U-Net [52] as baseline model and modified it to achieve
multi-space feature fusion. The overview of the proposed forest fire smoke segmentation
model SUFN (Smoke U-Shape Fusion Network) is in Figure 2.
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Figure 2. Overview of the proposed SUFN architecture.

The U-Net semantic segmentation model can segment the small objects in images as
mentioned in previous research, which was consistent with our observation of segmenting
smoke at the early stage in our case. Therefore, we designed a U-shape encoder–decoder
segmentation model for smoke segmentation based on the paradigm of U-Net architecture,
combined with the feature fusion method of multi color spaces of images, namely the
smoke U-shape fusion network (SUFN). The proposed model contained four basic modules,
named as encoder module, attention module, feature fusion module, and decoder module.
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2.2.1. Encoder Module

In the inputs and encoder module, the input images of HSV and YCbCr color spaces
xHSV, xYCbCr with shape 512× 512× 3 were fed into the encoder part of the model to extract
the corresponding deep features f dp

HSV , f dp
YCbCr with equal shape 32 × 32 × 512.

The backbone used in the study as model encoder was based on VGG-16 [53] with
fully-connected layers removed for future operations. Additionally, to enhance the features
extracted from the RGB space which was easy for collecting, observing. and utilizing in
reality, we fused the RGB features at multiple middle scales with the corresponding middle
scale features from HSV and YCbCr spaces and made the RGB space dominant with larger
fusion weights when fusing its features. Specifically, we first input the images of RGB space
with the equivalent size to the encoder and obtained the non-fused shallow features f si

RGB
at the first scale as Equation (1):

f si
RGB = θi

ec(xRGB), i = 1 (1)

Then we fused the multi-scale shallow features, the backbone output from HSV, and
the YCbCr space f si

HSV , f si
YCbCr with those from the RGB space in the corresponding feature

scales by the element-wise self-adaptive weighted addition method as in Equation (2) to
enrich and complement the RGB space shallow features with other two spaces as the fused
RGB features f ′si

RGB:

f ′si
RGB = Wec

RGB × f si
RGB + Wec

HSV × f si
HSV + Wec

YCbCr × f si
YCbCr, i = 1, 2, 3, 4, (2)

where Wec
RGB, Wec

HSV , and Wec
YCbCr represented the self-adaptive encoding fusion weights for

the RGB, HSV, and YCbCr spaces, respectively.
The fused RGB features f ′si

RGB were input to the subsequent part of the encoder to
obtain the non-fused shallow RGB features at the next scale followed by the next similar
encoding fusion.

The deep RGB features f dp
RGB were non-fused at the last scale imax = 5 while the shallow

features from the HSV and YCbCr space remained non-fused during the entire encoding
process. As a result, the model encoder output two types of non-fused deep features from
the HSV and YCbCr space and a type of deep feature RGB space containing information of
three spaces, shown in Figure 3.

2.2.2. Attention Module

Considering both the background in forest fire images as being generally complicated
with early smoke mostly occupying a small fraction in an image in the smoke dataset, and
the inputs of the proposed model containing various multi-channel representations, we
separately fed deep features from three spaces extracted by the encoder into the attention
module CBAM [54] (Figure 4) to augment the spatial and channel information of the smoke
object in images.

2.2.3. Feature Fusion Module

The feature fusion module in this paper contained three parts of fusion operation,
namely features encoding fusion, deep feature fusion and shallow feature fusion. Fea-
tures encoding the fusion part overlapped with the corresponding part in the encoder
module, which was discussed in Section 2.2.1. For the deep feature fusion, the features of
multi spaces with the attention augmented were fused by the element-wise self-adaptive
weighted addition method similar to the encoder fusion part to obtain the deep fused
features f dp

f used as shown in Equation (3):

f dp
f used = Wdp

RGB × f dp
RGB + Wdp

HSV × f dp
HSV + Wdp

YCbCr × f dp
YCbCr (3)
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where Wdp
RGB, Wdp

HSV , Wdp
YCbCr are the self-adaptive fusion weights for fusing the deep fea-

tures from the corresponding space.
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feature scale using the similar fusion strategy to obtain the multi-scale shallow fused
features f si

f used for later fusions as shown in Equation (4):

f si
f used = Wdc

RGB × f ′si
RGB + Wdc

HSV × f si
HSV + Wdc

YCbCr × f si
YCbCr, i = 1, 2, 3, 4, (4)

where Wdc
RGB, Wdc

HSV , Wdc
YCbCr are the self-adaptive fusion weights of shallow feature fusion

for concatenation to the decoder.

2.2.4. Decoder Module

In the decoder module, according to the characteristics of the original U-Net architec-
ture, the extracted deep fused features f dp

f used by the encoder, attention, and feature fusion
module were up-sampled and restored by the decoder. And the shallow fused features
in multi scales obtained by the same encoder f si

f used were fused with the shallow features
decoded in the corresponding scales, respectively, by concatenation to retain more spatial
and positional information, named as multi-scale skip concatenation. This was similar to
the skip connection known in the original U-Net architecture, that completed the entire “U”
shape encoding and decoding. The decoder of the proposed model was the original U-Net
decoder, shown in Figure 5. Finally, the fused map from the decoder was fed into the pixel
classifier to classify the smoke and non-smoke pixel to achieve the smoke segmentation
prediction.
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Figure 5. The SUFN decoder.

The pseudocode of the proposed method is shown in the below Algorithm 1.
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Algorithm 1 The Pseudo-Code of the Proposed SUFN Method

Input: original RGB images xRGB, smoke GT images ŷ
Output: The smoke segmentation prediction y
Initialized: the pretrained VGG16 backbone on VOC-2007 dataset θec, and the pretrained U-Net
decoder θdc
for i in 1, 2,. . ., Nepoch do

for j in 1, 2,. . ., Nbatch do
xHSV, xYCbCr ← ColorTransformRGB→HSV (xRGB), ColorTransformRGB→YCbCr (xRGB)
for k in 1, 2, 3, 4 Blockec do

if k = 1 do
f sk
RGB, f sk

HSV , f sk
YCbCr ← θk

ec (xRGB), θk
ec (xHSV), θk

ec (xYCbCr)
else do

f sk
RGB, f sk

HSV , f sk
YCbCr ← θk

ec(Maxpool( f ′sk−1
RGB)), θk

ec(Maxpool( f sk−1
HSV)),

θk
ec(Maxpool( f sk−1

YCbCr))
end if
f ′sk

RGB ← Norm(Wec
RGB f sk

RGB + Wec
HSV f sk

HSV +
(
1−Wec

RGB −Wec
HSV

)
f sk
YCbCr)

f sk
f used ← Norm(Wdc

RGB f ′sk
RGB + Wdc

HSV f sk
HSV +

(
1−Wdc

RGB −Wdc
HSV

)
f sk
YCbCr)

end for

f dp5
RGB, f dp5

HSV , f dp5
YCbCr ← θ5

ec(Maxpool( f ′s4
RGB)), θ5

ec(Maxpool( f s4
HSV)), θ5

ec(Maxpool( f s4
YCbCr))

f dp5
RGBaug

, f dp5
HSVaug

, f dp5
YCbCraug

← CBAM( f dp5
RGB), CBAM( f dp5

HSV), CBAM( f dp5
YCbCr)

f dp5
f used ← Norm(Wdp

RGB f dp5
RGBaug

+ Wdp
HSV f dp5

HSVaug
+

(
1−Wdp

RGB −Wdp
HSV

)
f dp5
YCbCraug

)

f 4
dc ← θ4

dc(Cat(Upsample( f dp5
f used), f s4

f used))
for m in 3, 2, 1 do

f m
dc ← θm

dc(Cat(Upsample( f m+1
dc ), f sm

f used))
end for
y← FC ( f 1

dc)
L← CE (y, ŷ)
Using gradient descent with Adam for loss backward
Update θec, θdc, Wec

RGB, Wec
HSV , Wdp

RGB, Wdp
HSV , Wdc

RGB and Wdc
HSV

end for
end for

3. Results and Analyses
3.1. Evaluation Protocol

The mean intersection-over-union (mIoU) metric, as a commonly used evaluation
protocol in semantic segmentation tasks, was computed to evaluate the forest fire smoke
segmentation performance by the models experimented in this study. The mIoU is defined
as follows:

mIoU =
1
N∑N

i=1 IoUi, (5)

where N is the number of categories and IoUi score of categories i. And N = 1 in our study
since only the IoU score of smoke was focused, which is defined as follows:

IoU =
TP

TP + FP + FN
, (6)

where TP, FP, FN are, respectively, the number of true positives, false positives, false
negatives of smoke in the segmentation results.

The false positive rate FPR and false negative rate FNR were also applied for measuring
the false segmentation of and miss segmentation of smoke, respectively, which were defined
as follows:

FPR =
FP

TN + FP
, (7)

FNR =
FN

TP + FN
. (8)
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3.2. Experimental and Training Settings

The hardware configuration in the study included a GPU of GeForce GTX 1080ti and
a CPU of E5-2620. The experimental environment was Ubuntu 16.04 with PyTorch deep
learning framework based on Python 3.6.

The input size of images to the model was 512 × 512. The network was trained
end to end with the cross-entropy loss function. The backbone network of the modified
VGG-16 was pretrained on the VOC dataset. The initial learning rate and momentum for
training were, respectively, 0.0001 and 0.9 with Adam optimization. The batch size was 2
for 150 training epochs. In the feature fusion module, the richer and more prominent image
information of the smoke object was in the RGB color space based on observation and our
primary experiment on the smoke images. We set empirically larger initial trainable fusing
weights of RGB space to 0.6 during the element-wise self-adaptive weighted addition
fusion process, and two series of fusing weights of the other two spaces equal to 0.2. If
only two spaces were input with the RGB space involved, the fusion weights were set to
0.7 and 0.3 for the other. Otherwise, the two series of weights were equally set to 0.5. These
three series of fusion weights were automatically optimized during the training process so
that it could obtain the most superior fused features and final segmentation prediction by
obtaining the most appropriate self-adaptive weights.

The progress of loss decline and IoU score boosting in training are shown in Figures 6
and 7. The training ends up with a good trend and number as well as acceptable stability.

Forests 2024, 15, x FOR PEER REVIEW  11  of  19 
 

 

primary experiment on the smoke images. We set empirically larger initial trainable fusing 

weights of RGB space to 0.6 during the element-wise self-adaptive weighted addition fu-

sion process, and two series of fusing weights of the other two spaces equal to 0.2. If only 

two spaces were input with the RGB space involved, the fusion weights were set to 0.7 

and 0.3 for the other. Otherwise, the two series of weights were equally set to 0.5. These 

three series of fusion weights were automatically optimized during the training process 

so that it could obtain the most superior fused features and final segmentation prediction 

by obtaining the most appropriate self-adaptive weights. 

The progress of loss decline and IoU score boosting in training are shown in Figures 

6 and 7. The training ends up with a good trend and number as well as acceptable stability. 

 

Figure 6. The loss curve of the proposed model during training process. 

 

Figure 7. The IoU score curve of the proposed model during training process. 

3.3. Results 

In this study, we aimed to evaluate the effectiveness of fusing features from different 

color spaces for smoke segmentation. We conducted experiments to compare the perfor-

mance of our proposed model with other segmentation models when incorporating fea-

tures from various color spaces. The results are shown in Table 2. 

Figure 6. The loss curve of the proposed model during training process.

Forests 2024, 15, x FOR PEER REVIEW  11  of  19 
 

 

primary experiment on the smoke images. We set empirically larger initial trainable fusing 

weights of RGB space to 0.6 during the element-wise self-adaptive weighted addition fu-

sion process, and two series of fusing weights of the other two spaces equal to 0.2. If only 

two spaces were input with the RGB space involved, the fusion weights were set to 0.7 

and 0.3 for the other. Otherwise, the two series of weights were equally set to 0.5. These 

three series of fusion weights were automatically optimized during the training process 

so that it could obtain the most superior fused features and final segmentation prediction 

by obtaining the most appropriate self-adaptive weights. 

The progress of loss decline and IoU score boosting in training are shown in Figures 

6 and 7. The training ends up with a good trend and number as well as acceptable stability. 

 

Figure 6. The loss curve of the proposed model during training process. 

 

Figure 7. The IoU score curve of the proposed model during training process. 

3.3. Results 

In this study, we aimed to evaluate the effectiveness of fusing features from different 

color spaces for smoke segmentation. We conducted experiments to compare the perfor-

mance of our proposed model with other segmentation models when incorporating fea-

tures from various color spaces. The results are shown in Table 2. 

Figure 7. The IoU score curve of the proposed model during training process.



Forests 2024, 15, 689 11 of 19

3.3. Results

In this study, we aimed to evaluate the effectiveness of fusing features from different
color spaces for smoke segmentation. We conducted experiments to compare the per-
formance of our proposed model with other segmentation models when incorporating
features from various color spaces. The results are shown in Table 2.

Table 2. Testing results (in IoU) obtained from different spaces. The values in bold represent the
optimal numerical result for the proposed SUFN in every multiple spaces combination.

Models

Spaces

RGB HSV YCbCr RGB
HSV

RGB
YCbCr

HSV
YCbCr

RGB
HSV

YCbCr

DeepLabv3+ Based Basic Fusion Model 68.03 66.89 65.14 70.86 67.99 68.41 73.44

PSPNet Based Basic Fusion Model 74.60 71.91 70.32 74.36 72.52 73.78 77.53

U-Net Based Basic Fusion Model 83.12 79.33 78.46 82.61 78.08 82.19 82.14

U-Net Based Fusion Model w. CBAM 83.54 79.32 79.47 82.29 79.86 83.05 84.05

U-Net Based Fusion Model w. CBAM &
Self-Adaptive Weights —— —— —— 84.44 81.44 85.88 85.04

SUFN w/o CBAM nor Self-Adaptive Weights 83.12 79.33 78.46 84.89 82.83 —— 84.57

SUFN w/o Self-Adaptive Weights 83.54 79.32 79.47 85.21 83.73 —— 84.63

SUFN —— —— —— 85.44 84.86 —— 86.14

In Table 2, the DeepLabv3+/PSPNet Based Basic Fusion Model is based on the original
semantic segmentation models DeepLabv3+ [55]/PSPNet [56] with the least modifications
according to the method that we reconstructed for the original U-Net as two segmentation
models with the function of multi-color spaces feature extraction and fusion. It is worth
noting that SUFN is unavailable for the HSV and YCbCr space inputs due to the absence of
principal RGB space, and the proposed self-adaptive fusion weights for the U-Net Based
Basic Fusion Model and SUFN are disabled for the single color space input since the
self-adaptive weights can be defined only when the feature fusion of multiple spaces is
implemented.

The results indicate that using the RGB color space as the principal space yields
superior segmentation performance compared to other single-color spaces. The reason
for this is the use of RGB images in the adopted VGG pre-training model, which makes
the model more adaptable to RGB images. For the fusion of features from multiple color
spaces, we observed that the fusion of RGB and HSV spaces resulted in higher IoU scores
than any single space model. This improvement was further enhanced when incorporating
a self-adaptive weighted fusion strategy, indicating the efficacy of multi-color space feature
fusion. Similar improvements were observed in the proposed SUFN model, where the
fusion of RGB and YCbCr spaces outperformed any single space model. It supports
the conclusion that multi-color space feature fusion is efficient for smoke segmentation.
Moreover, when fusing features from RGB, HSV, and YCbCr spaces together, the results
were overall enhanced compared to any single space or double space fusion combination,
except for the triple space fusion result of the U-Net Based Basic Fusion Model. Specifically,
the RGB and HSV and YCbCr fusion by the SUFN model achieved an IoU score of 86.14,
outperforming other fusion combinations. It demonstrates the superiority of the proposed
multi-color space feature fusion and segmentation approach.

In terms of network architecture, applying the attention mechanism CBAM before deep
feature fusion generally improved the segmentation performance. In addition, employing
a self-adaptive weighted fusion strategy instead of constant empirical fusion weights
further harmonized the features from different spaces and led to superior segmentation
results. When comparing our SUFN model with the DeepLabv3+ Basic Fusion Model and
the PSPNet Based Basic Fusion Model, the SUFN model consistently exhibited superior
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segmentation performance, regardless of the color space used for feature extraction, fusion,
and segmentation.

In addition to the displayed results in the IoU score of smoke, which indicated the
superiority and the upper limit the model could achieve, the result to measure the degree
of detection failures, including smoke false segmentation and miss segmentation of the
obtained optimal models by giving the FPR and FNR percentage at the pixel level, is shown
in Table 3 below.

Table 3. Testing results for measuring detection failures by the obtained optimal models with the
corresponding color space combination shown.

Models FPR (%) FNR (%)

DeepLabv3+ Based Basic Fusion Model (RGB & HSV & YCbCr) 14.85 15.33

PSPNet Based Basic Fusion Model (RGB & HSV & YCbCr) 12.27 11.12

U-Net Baseline Model 8.10 10.06

U-Net Based Fusion Model
w. CBAM & Self-Adaptive Weights (HSV & YCbCr) 7.28 7.65

SUFN (RGB & HSV & YCbCr) 4.93 6.13

The proposed SUFN significantly reduced the false segmentation and miss segmen-
tation rate by 3.17 and 3.93, respectively, compared to the original U-Net baseline in
Table 3. And the optimal modified DeepLabv3+ Based Basic Fusion Model tended to
have a relatively high miss detection rate of smoke while the optimal modified PSPNet
Based Basic Fusion Model tended to have a relatively high false detection rate of smoke
on the contrary. The FPR and FNR of two optimal comparative models were, respectively,
9.92 and 9.20 weaker for the former, and 7.34 and 4.99 weaker for the latter, both com-
pared to the proposed SUFN. The results demonstrated leveraging the diverse and distinct
smoke information from multiple color spaces could enhance the smoke characteristics and
suppress the interferences of the smoke-like object or the complex background, which is
advantageous for the robust detection in the challenging real-world forest fire monitoring
scenarios.

Overall, the results validate the effectiveness of our proposed multi-color space feature
fusion.

3.4. Self-Adaptive Weighted Fusion Strategies and Coefficients

Feature fusion in our model is a critical component for accurate segmentation results.
We considered different fusion strategies based on the location where the fusion occurred.
In the U-Net Based Fusion Model, feature fusion was only performed in the deep feature
fusion and the multi-scale shallow feature fusion. We designed three fusion schemes:
scheme A, which used a single set of self-adaptive weights for all the fusion operations;
scheme B, which used a double set of self-adaptive weights for the deep feature fusion
and the entire multi-scale shallow feature fusion separately; and scheme C, which used
a quintuple set of self-adaptive weights for the deep feature fusion and the quadruple
shallow feature fusion. Similar fusion schemes were also applied to the proposed SUFN
model, denoted as schemes D, E, and F. The results on the testing set are shown in Table 4.
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Table 4. Testing results (in IoU) with various fusion strategies of self-adaptive weights. The values in
bold represent the optimal numerical result for the designed models and fusion strategies.

Models & Fusion Hyper-Parameters Type

Spaces

RGB HSV YCbCr RGB
HSV

RGB
YCbCr

HSV
YCbCr

RGB
HSV

YCbCr

U-Net Based Basic Fusion Model 83.12 79.33 78.46 82.61 78.08 82.19 82.14

U-Net Based Fusion Model w. CBAM 83.54 79.32 79.47 82.29 79.86 83.05 84.05

U-Net Based Fusion Model
w. CBAM & Self-Adaptive Weights (A) —— —— —— 83.47 80.93 84.16 82.74

U-Net Based Fusion Model
w. CBAM & Self-Adaptive Weights (B) —— —— —— 84.44 81.44 85.88 85.04

U-Net Based Fusion Model
w. CBAM & Self-Adaptive Weights (C) —— —— —— 81.79 78.90 84.56 83.33

SUFN w/o CBAM nor Self-Adaptive Weights 83.12 79.33 78.46 84.89 82.83 —— 84.57

SUFN w/o Self-Adaptive Weights 83.54 79.32 79.47 85.21 83.73 —— 84.63

SUFN (D) —— —— —— 84.81 84.00 —— 85.22

SUFN (E) —— —— —— 85.44 84.86 —— 86.14

SUFN (F) —— —— —— 85.30 83.29 —— 83.32

To determine the best fusion strategy, we compared the results of these fusion schemes
on the testing set. As presented in Table 4, scheme B in the U-Net Based Basic Fusion Model
and scheme E in the SUFN model achieved optimal segmentation results, outperforming
the models with constant empirical fusion weights.

The sub-optimal strategies were scheme A for the U-Net Based Basic Fusion Model
and scheme D for the SUFN model. Schemes A and D, while outperforming the constant
empirical weights in most cases, do not perform as well as Schemes B and E. It may be
because they control only one set of fusion weights throughout the fusion operation, which
restricts the optimization of fusion weights for each fusion stage.

On the other hand, schemes C and F, which used multiple sets of fusion weights,
yielded the worst segmentation results. This could be due to the excessive independence
between the sets of fusion weights, leading to increased model complexity and making it
challenging to optimize the fusion weights for each phase and position during training.

Based on these findings, we selected scheme B for the U-Net Based Basic Fusion Model
and Scheme E for the SUFN model as the ideal self-adaptive weighted fusion scheme. These
schemes consistently produced superior results, as shown in Table 5, when the self-adaptive
weights were activated.

Table 5. The self-adaptive weighted fusion parameters derived from the optimal fusion strategies.

Models

Features Fusion Phases

Features Encoding Fusion Deep Features Fusion Shallow Features Fusion

RGB HSV YCbCr RGB HSV YCbCr RGB HSV YCbCr

U-Net Based Fusion Model
w. CBAM & Self-Adaptive

Weights (B)
—— —— —— —— 0.491 0.509 —— 0.437 0.563

SUFN (E) 0.592 0.170 0.238 0.584 0.197 0.219 0.543 0.142 0.315

3.5. Results for Different Smoke Type and the Visualization Performance

To verify the generalization of the model to smoke segmentation, the segmentation
performance of the derived optimal model for the various types of smoke image in the
NCS, NSI, and IS was also tested, shown in Table 6.
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Table 6. Results (in IoU) for testing different smoke types.

Model
Testing Smoke Type

NCS NSI IS

SUFN(E) in RGB &
HSV & YCbCr Spaces 90.31 85.79 80.47

In Table 6, the NCS (normal-scale and clearly seen smoke without obvious interfer-
ences) type has the highest IoU score of 90.31, which is reasonable because this type of
smoke has well-defined contour and relatively few surrounding disturbances, which makes
it easier to recognize and accurately classify. The NSI (normal-scale and interference smoke)
type achieves an IoU score of 85.79, representing the average performance of the model.
This type is more common in real smoke detection scenarios and is often accompanied
by various external interferences such as clouds, haze, fog, and glare, making the smoke
contour less distinct. However, the model still provides accurate smoke segmentation
masks to indicate the presence of smoke in the image, albeit with a slightly lower accuracy.
The IS (inconspicuous smoke) type achieves an IoU score of 80.47, which is comparatively
weaker than the other two types. This is due to the difficulty in identifying and delineating
the small and inconspicuous smoke regions in the image, which poses a challenge for
the model and human observers. In addition, the limited number and proportion of IS
images in the dataset may contribute to the lower performance of this type. It may be
necessary to increase the number and proportion of IS-type training samples in the dataset
to improve the model’s performance on the IS type. Despite these challenges, the model
still demonstrated the ability to segment IS-type smoke. Furthermore, visual detections of
challenging forest fire smoke images from the complementary set of FIgLib, which were
not included in our dataset, are presented in Figure 8 to showcase the effectiveness of our
model in smoke detection and segmentation.

As seen in Figure 8, the proposed SUFN could segment the smoke in challenging
background scenarios in most cases, such as strong background glare interference in the
NSI case (a), the IS cases (c) and (d), cloud disturbance in the IS case (c), background
blurriness caused by saturation near the horizon in the IS cases (b) and (d). Notably, the
three IS cases (b–d) are, respectively, the very early stage of fire with little smoke spreading
outwards, the small visible smoke with surrounding obstruction, and the relatively faint
smoke due to the long distance to the camera, which leads to the difficulty of segmentation.
However, the smoke detection visualizations from our model are satisfactory when dealing
with the above challenges. It could be seen that the IS case (c), that is partly blocked by the
hill with a small proportion uncovered in the image, is nearly perfectly segmented and
the main body of smoke in the other three cases in the figure is almost detected accurately
with little edge of smoke acceptably under-segmented for (a) and (b) or over-segmented
for (d). In comparison to our method, the optimal comparative DeepLabv3+ Based Basic
Fusion Model tends to have higher false negative due to the missing detection of smoke
contour under-segmentation for IS cases (b) and (d), and the failing detection for NSI case
(a) and IS case (c). The optimal comparative PSPNet based basic fusion model tends to be
the opposite of the higher false positive except for the same failing detection for the IS case
(c), which is over-segmented for the NSI case (a), the IS case (b) and (d), with low accuracy
especially for the case (d). In all, the detection visualization demonstrates that the proposed
SUFN have strong detection ability to face the challenging conditions brought about by
ambiguous smoke itself or its complex surroundings in completely new scenarios.
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4. Discussion

We propose the SUFN model, optimized for forest fire smoke detection. We introduced
feature fusion to the original segmentation baseline model to incorporate multiple inputs
from different color spaces. We added features encoding fusion blocks for the principal RGB
space and employed the CBAM attention mechanism for feature augmentation. Moreover,
we improved the fusion method by applying self-adaptive weighted addition at local fusion
positions. Experimental results demonstrate the effectiveness of our approach, with an IoU
of 86.14 achieved for smoke detection.

Regarding the single dataset used for testing and training in this paper, a brilliant
smoke detection model should have good detection results when testing on diverse data
in different datasets to prove the generalizability. This still needs our further verification
on additional types of data to be collected. However, the quality of training data is critical
for the model to acquire favorable performance. Compared to the dataset used in many
previous studies which was not from actual fire monitoring scenarios or even not from
actual forest fire occurrence with low image resolution (e.g., experimental simulations
of fire [32], synthetic forest fire smoke images [14,32,33]), the dataset we used for model
training was from an extremely rare publicly available database so far containing authentic
forest fire smoke from the actual fire ignition with high data quality of high image resolution,
high image content clarity, rich and multifarious smoke pattern and background. This
made the model achieve superior detection results for testing and visualization on various
types of authentic smoke images with the help of our fine smoke annotations.

Nevertheless, some objective limitations certainly exist in this research:

(1) The volume of data samples used for training and testing are relatively small due to
the lack of smoke annotation, especially for the IS smoke samples, which would lead
to a decrease in the model accuracy, robustness, and reliability in real application.
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(2) The CBAM attention mechanism and the way it was introduced into the proposed
model may not be the optimal one. More attention mechanisms are needed to be
taken into consideration, and how to incorporate them more properly into the baseline
model requires further attempts.

(3) Only three color spaces are involved for multiple color spaces feature fusion, which
limits the research refinement. More distinct color spaces and combinations could be
considered and the appropriate number of multiple inputs for multiple color spaces
needs further study.

Subsequent studies will focus on the above problems by adding more smoke samples
of various categories defined in the paper with fine annotations to further stabilize the
detection results. The methodology of the improvement to the model structure and the
refinement to the multiple color space study will also be developed in the future. In addition,
the idea of leveraging multiple color space information combined with the extracted feature
fusion could obtain richer and more complementary smoke features. However, how do
the features from multiple color spaces emphasize and distinguish smoke features from
other smoke-like phenomena being suppressed (e.g., fog, clouds, haze) share similar visual
characteristics and how to understand, control, and magnify this advantage further to
reduce the false positives for better forest fire smoke detection is worth future exploration.
In addition to multiple color space information of the image, more static information such
as texture and shape of smoke, or dynamic information such as the direction of smoke
motion, contour change in temporal consecutive frames, or videos could also be included
in the future for richer feature fusion study.

5. Conclusions

Our proposed method introduces a semantic segmentation approach for fire smoke
detection using self-adaptive weighted feature fusion from multiple color spaces. The
model (i.e., SUFN) is a U-Net extension and integrates self-adaptive weighted fusion
strategies for features extracted from RGB, HSV, and YCbCr color spaces. In addition,
an attention mechanism is integrated to enhance deep features from these spaces before
fusion. Through extensive experimentation, we demonstrated the effectiveness of our
method in smoke segmentation, achieving an optimal IoU score of 86.14. The performance
of our proposed model surpasses that of other models modified for weighted feature
fusion. Fusing multiple color spaces improves segmentation results, regardless of the
specific model architecture. Notably, the optimal color space combinations for fusion are
RGB, HSV, and YCbCr. Our experiments were conducted with a high-quality and diverse
forest fire smoke dataset called FIgLib, which contains challenging smoke forms in various
backgrounds. The test results and visualization performance in unknown complex scenes
further demonstrated the superiority of our proposed method.
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