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Abstract: Forest fires represent a significant menace to both the ecological equilibrium of forests and
the safety of human life and property. Upon ignition, fires frequently generate billowing smoke.
The prompt identification and management of fire sources and smoke can efficiently avert the
occurrence of extensive forest fires, thereby safeguarding both forest resources and human well-being.
Although drone patrols have emerged as a primary method for forest-fire prevention, the unique
characteristics of forest-fire images captured from high altitudes present challenges. These include
remote distances, small fire points, smoke targets with light hues, and complex, ever-changing
background environments. Consequently, traditional target-detection networks frequently exhibit
diminished accuracy when handling such images. In this study, we introduce a cutting-edge drone-
based network designed for the detection of forest fires and smoke, named FSNet. To begin, FSNet
employs the YOCO data-augmentation method to enhance image processing, thereby augmenting
both local and overall diversity within forest-fire images. Next, building upon the transformer
framework, we introduce the EBblock attention module. Within this module, we introduce the notion
of “groups”, maximizing the utilization of the interplay between patch tokens and groups to compute
the attention map. This approach facilitates the extraction of correlations among patch tokens,
between patch tokens and groups, and among groups. This approach enables the comprehensive
feature extraction of fire points and smoke within the image, minimizing background interference.
Across the four stages of the EBblock, we leverage a feature pyramid to integrate the outputs from
each stage, thereby mitigating the loss of small target features. Simultaneously, we introduce a
tailored loss function, denoted as L f orest, specifically designed for FSNet. This ensures the model’s
ability to learn effectively and produce high-quality prediction boxes. We assess the performance
of the FSNet model across three publicly available forest-fire datasets, utilizing mAP, Recall, and
FPS as evaluation metrics. The outcomes reveal that FSNet achieves remarkable results: on the
Flame, Corsican, and D-Fire datasets, it attains mAP scores of 97.2%, 87.5%, and 94.3%, respectively,
with Recall rates of 93.9%, 87.3%, and 90.8%, respectively, and FPS values of 91.2, 90.7, and 92.6,
respectively. Furthermore, extensive comparative and ablation experiments validate the superior
performance of the FSNet model.

Keywords: forest-fire prevention; drone surveillance; object detection; attention mechanism

1. Introduction

Forests are one of the most important ecosystems on Earth, nurturing a multitude of
plants and animals, maintaining ecological balance. Additionally, forests serve as natural
shields to prevent soil erosion, and are crucial for absorbing carbon dioxide and releasing
oxygen. Forest fires not only disrupt the ecological balance but also result in the loss of
wildlife and the destruction of their habitats, potentially causing ecological disasters [1,2].
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During forest fires, a large amount of carbon dioxide and harmful gases are released,
negatively impacting air pollution. As the fire spreads, it can endanger human lives and
properties, burning up a vast amount of forest resources, thereby affecting the supply of
timber and wood products, and even ruining tourist attractions. When fires spread to cities
and populated areas, they threaten the safety of nearby communities and residents, causing
large-scale disasters.

To ensure the ecological balance of forests and protect human economic interests,
detecting forest fires is crucial. Common detection methods include the use of satellites,
weather stations, Unmanned Aerial Vehicles (UAVs), etc., for the early detection and rapid
location of fires. This allows people to detect fires quickly and respond accurately and
swiftly, extinguishing the sources of the fires, thereby protecting forest resources and the
safety of human lives and properties. The cost of using satellites and weather stations to
detect forest fires is high, and these methods are easily affected by factors such as clouds,
terrain, and wind direction, which may lead to inaccurate detection results. Compared
with satellites and weather stations, the cost of using UAVs to monitor forest fires is lower,
making drone surveillance the mainstream method today. UAVs equipped with cameras
fly over forests, taking real-time fire-monitoring photos and transmitting them to servers
for analysis. There are also examples of hyperspectral and multispectral sensors being
mounted on UAVs and applied to forest-fire prevention [3–5], which have the following
problems compared to using RGB cameras: (1) hyperspectral and multispectral sensors
cost much more than RGB cameras, making it easier for individuals and organizations
to acquire and use RGB cameras without significant financial support; (2) RGB camera
technology is very mature, is easier to integrate with the system, and can provide more
comprehensive information; and (3) RGB cameras can provide real-time video streams and
can quickly respond to emergency situations such as forest fires. Although hyperspectral
and multispectral sensors can also provide real-time data, processing hyperspectral and
multispectral data requires more complex processing and analysis, which requires more
hardware equipment. When a forest fire occurs, target-detection technology can be used to
pinpoint the location of the fire. Several critical challenges remain to be addressed in the
task of utilizing Unmanned Aerial Vehicles (UAVs) for the detection of forest fires [6–8]:
(1) In scenes where forest fires occur, there may be scenarios similar to fire spots or smoke,
such as sunlight refracted in the forest, emitting light, and fog similar to fire points, which
may cause misjudgments; (2) when drones are used for patrolling and detecting forest fires,
they often maintain a relatively high and safe flying altitude. This results in the flames and
smoke of early-stage fires occupying only a small proportion of the captured images, with
the majority of the images being taken up by the background. Additionally, environmental
factors significantly influence the effectiveness of the detection; (3) when the drone captures
images from a high altitude, there may be multiple fire points and smoke in the fire, while
traditional target-detection networks only filter each local feature, and cannot make good
use of the global features of the entire image, which may lead to a large position deviation
during localization.

Typically, object detection networks are categorized into two primary types: single-
stage and two-stage networks. As object detection needs to predict the location and
category of objects in images, these two methods both introduce a lot of prior information,
such as by pre-generating some anchor boxes. In the one-stage model, common ones
include SSD [9], DSSD [10], YOLO series [11], etc.; in the two-stage model, common ones
include R-CNN [12], Fast R-CNN [13], Faster R-CNN [14], etc. These methods do not
directly predict objects, but approximate using anchor boxes or proposal boxes. In the end,
they will generate many prediction boxes of various sizes, so in the post-processing stage,
non-maximum suppression (NMS) must be used to eliminate these redundant boxes. For
aerial fire images shot using UAVs, their backgrounds are complex and the fire spots and
smoke clouds are small. Common target-detection models’ backbone networks usually use
convolutional neural networks (CNNs) or a Vision transformer (ViT) [15]. Convolutional
layers in CNNs typically employ convolution kernels of a fixed size, with each neuron
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having the capacity to perceive only the local receptive field within the input image. When
dealing with forest-fire images, a CNN’s global information-extraction performance is
poor. In addition, the CNN reduces the number of parameters by sharing convolution
kernel parameters across the entire image, and its processing effect is not good for images
with multi-scale structures and complex textures, such as forest-fire images. Although
ViT can capture the correlation between tokens, it ignores the relationship between token
groups, which may be limited when dealing with forest-fire images [16]. At the onset of a
fire, the fire points and smoke clouds in the forest-fire images shot using UAVs are small,
and compared to the whole picture, the features of the fire points and smoke are more
influenced by global features, and using traditional ViT will cause problems such as the
incomplete feature extraction of fire points and smoke.

In response to the above question, we propose a new forest-fire- and smoke-image
object detection model called FSNet. FSNet transforms non-learnable components such as
anchors and NMS into learnable components, eliminating the reliance on prior information
and resulting in a simple yet effective end-to-end network. We add an Ebblock module after
the backbone to allow each token in the image to interact with tokens and groups, and to
generate group proxies, similar to transformers but without the need for complex operations
like anchors and NMS. This ensures that each object generates only one prediction box,
effectively removing redundant boxes. Through interactions between tokens and groups,
Ebblock can effectively extract features of small fires and smoke in forest-fire images
by perceiving the global image. Finally, by combining the proposed L f orest to select the
optimal predicted boxes of the model and calculate their loss, the model continuously
learns the feature information in forest-fire images. The experiment was conducted on three
public forest-fire-image datasets, including the Flame dataset, the Corsican dataset, and
the D-Fire dataset. Experimental results demonstrate that FSNet has achieved outstanding
performance in forest-fire image object detection.

The key contributions of this work are summarized as follows:

1. A new forest-fire image object detection model, FSNet, is proposed. The model can
effectively perceive the global features of forest-fire images and extract tiny features
between fire points and smoke in forest-fire images;

2. YOCO is employed as a data-augmentation strategy to effectively enlarge the dataset
without increasing the parameter count. This approach significantly enhances FSNet’s
capability in learning and recognizing features specific to forest-fire images. Addi-
tionally, based on the transformer, an EBblock attention module is proposed, which
fuses the outputs between the layers of EBblock using feature pyramids to avoid the
feature loss of small targets and ensure the model can fully extract the correlations
between various features;

3. A loss function L f orest suitable for FSNet is introduced, selecting the optimal predicted
boxes of the model and calculating their loss, while continuously allowing the model
to learn feature information in forest-fire images;

4. Extensive experiments are conducted on three public forest-fire image datasets: the
Flame dataset, the Corsican dataset, and the D-Fire dataset, demonstrating the out-
standing performance of FSNet in detecting fire points and smoke in forest-fire images,
as well as the effectiveness of each module.

2. Related Work
2.1. Object Detection Based on Deep Learning

As computer vision technology advances, artificial intelligence algorithms are increas-
ingly being applied in the realm of object detection. At present, the field of object detection
primarily bifurcates into two distinct approaches: single-stage and two-stage methods.

The one-stage algorithm is a regression-based object detection method, with the YOLO
series models being one of the most typical representatives. The preliminary version
of the YOLO model, as introduced by Redmond et al. [17], brings object detection to
a new stage. The fundamental concept behind it involves utilizing the entire image as
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the input for the model, directly pinpointing objects by regressing their positions and
categories, which in turn endows the model with robust generalization capabilities. Unlike
two-stage algorithms, YOLO does not need to generate candidate regions for feature
extraction, classification, and regression but directly utilizes the information contained in
the image. YOLOv2 [18] introduces an anchoring mechanism for local predictions and uses
Darknet19 as the backbone network to improve the detection accuracy of small targets.
YOLOv3 [19] proposes using three different scales of feature maps to enhance Darknet53,
thereby improving the detection accuracy of objects to be detected. Both YOLOv4 [20] and
YOLOv5 [21] make improvements based on YOLOv3. YOLOv5, proposed by Ultralytics
in 2021, is currently one of the most commonly used object detection networks. It uses
separate CSP modules in the backbone and neck parts to eliminate the redundancy of
gradient information, thereby reducing computational complexity. In general, one-stage
algorithms usually require generating anchors and extracting features in the network
to predict the classification and position of objects. Anchors need to define prior boxes,
which are manually designed to distribute at different positions and sizes in the image.
Then, through a CNN network, these anchors are classified and regressed, and the final
target-detection result is obtained through NMS. During the manual intervention process,
difficulties may arise in fully covering the sizes and shapes of some hard-to-detect targets,
leading to prediction errors and missed detections. Additionally, due to the highly similar
situations between anchors of different sizes, achieving optimal results might require
extensive training and adjustments.

The two-stage algorithm centers on a region-proposal-based approach for object
detection, with R-CNN, Fast R-CNN, and Faster R-CNN standing out as its most notable
exemplars. Typically, the operation of two-stage detection models is segmented into two
phases: initially, they incorporate a region-proposal-generation network within the CNN
to produce high-quality candidate boxes for object detection; subsequently, they employ
specialized sub-networks to refine and classify these candidate boxes. In 2014, Girshick
et al. [12] proposed the R-CNN algorithm. The algorithm extracts features from the image
using a sliding window strategy; however, this operation results in a lot of redundant
information, leading to the low detection efficiency of the model. Building upon R-CNN,
Girshick et al. [13] propose an optimized algorithm—the Fast R-CNN algorithm. This
algorithm borrows the idea of spatial pyramid Pooling (SPP) and adds an ROI Pooling
layer throughout the network structure to generate uniformly sized feature vectors, thereby
increasing detection speed. Based on the previous work, Ren et al. [14] propose the Faster
R-CNN algorithm. The model utilizes a region-proposal network (RPN) to generate a
large number of anchor boxes, thus improving processing efficiency. Furthermore, the
algorithm has a small model size, fast candidate-box generation speed, and does not affect
the accuracy of the algorithm. However, the design of these anchor boxes typically needs
to be selected based on the distribution of the dataset’s targets. Choosing inappropriate
anchor boxes may lead to performance degradation. Additionally, since the features of
small targets in convolutional neural networks will be reduced to very small sizes, Faster R-
CNN faces challenges in detecting small targets, potentially leading to decreased detection
performance. In practical forest-fire prevention, UAVs usually patrol at high altitudes to
monitor forest fires. In images captured during the early stages of a fire, the proportion of
fire points and smoke is extremely small compared to the whole image. Therefore, using
Faster R-CNN may not achieve high-precision detection results.

2.2. Forest Fire and Smoke Detection

Forest fires are usually accompanied by a large amount of smoke. The detection task
for forest fires mainly focuses on detecting the occurrence of fire spots and smoke [22].
Three primary methodologies exist for detecting fire spots and smoke: (1) manual detection
techniques and sensor-based detection; (2) detection approaches utilizing machine learning;
and (3) detection strategies grounded in deep learning.
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Forest-fire smoke detection primarily employs two basic methods: manual observation
and the use of sensors. Manual detection hinges on the physical patrol of forestry personnel
within the forest. Once a fire is discovered, they report to the fire department promptly
through communication means such as walkie-talkies for emergency rescue. Nevertheless,
this approach presents several limitations, such as high error rates, restricted patrol zones,
elevated costs, and limited coverage. These factors collectively fall short of the required
speed and accuracy standards for effective forest-fire detection [23]. Another method is
to use sensors, including optical smoke sensors, ion smoke sensors, etc. However, the
effectiveness of sensors is influenced by environmental elements like distance, shading,
and angle, which can impact the accuracy of smoke humidity or particle sampling. In
addition, the internal structure of sensors may cause serious time delays. Furthermore,
sensors are expensive, operationally complex, and have limited applications [24]. Therefore,
manual monitoring methods and sensor methods face certain difficulties in meeting the
requirements of forest-fire smoke detection. Traditional manual detection and sensor-
detection methods have disadvantages such as high costs, delayed response times, and
limited applicability.

Early research mainly focus on using traditional image-processing algorithms to ana-
lyze the spatiotemporal relationships in image sequences. Ho [25] proposes an integrated
machine vision analysis method for monitoring systems, deriving the likely locations of
smoke through motion-history detection algorithms, and calculating the area and perimeter
of smoke by combining spatial probability density and turbulent phenomena of smoke.
Chen et al. [26] conduct an in-depth analysis of early-fire-smoke video segments. They
construct a decision tree for smoke recognition based on the distribution pattern of smoke
color estimation and dynamic diffusion changes in smoke color for early-fire alarming
systems. Gubbi et al. [27] introduced an alternative approach that utilizes wavelet trans-
form to decompose the gradient, mean, and variance of single-frame images in sequences.
These decomposed attributes are then merged to depict the characteristics of fire smoke.
Following this, support vector machines are applied to ascertain the presence of fire spots or
smoke in the images. Yuan et al. [28] introduce an improved fire-smoke-detection method
considering both local and global texture features of images. However, accurately measur-
ing local and global boundaries remains a challenge. Setting a unified threshold applicable
to the pixel level in this research method is difficult because balancing the differences
between close-range and distant smoke is challenging, which may lead to false alarms or
missed detections. Töreyin et al. [29] employed a combined background-estimation tech-
nique for identifying moving pixel regions in video footage. They suggested the use of a
two-dimensional wavelet transform to extract energy levels from high-frequency channels,
which aids in determining the existence of fire spots and smoke. However, due to the com-
putational complexity of feature selection and the uncertainty of smoke, these traditional
image-processing methods perform poorly in adapting to complex and ever-changing
forest environments. Machine learning detection methods also suffer from issues such as
incomplete feature extraction and high false-alarm rates.

As computer vision technology rapidly advances, employing deep learning method-
ologies for forest-fire-image detection during UAV patrols has emerged as a prominent
area of research [30]. A CNN framework, grounded in GoogleNet, for fire detection in
surveillance videos, along with several convolutional neural network-based algorithms for
fire-image detection, opens new avenues for the real-time monitoring of forest-fire imagery.
Furthermore, experiments show that YOLOv3 outperforms two-stage object-detection
networks like Faster R-CNN in forest-fire-image detection, marking the first application of
YOLO series algorithms in this context.

Furthermore, an innovative neural network guided by feature entropy has been
introduced for forest-fire detection, designed to equalize the content complexity across
various training samples [31]. An approach called SAP is introduced for weakly super-
vised forest-fire segmentation in UAV imagery, which enhances foreground awareness for
distinguishing object categories in images [1]. MMFNet [32] presents a mixed-attention
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multiscale convergence coordinated pyramid network and a fast robust NMS for rapid
forest-fire-smoke detection. The latest YOLOV8 introduces an anchor-free method as an
alternative to traditional anchor methods, avoiding issues related to low anchor accuracy.
However, it performs poorly in scenarios with small targets and potential target occlusion
in forest-fire images.

Current models for forest-fire-image detection rely on generating anchors or proposals
for detection [33]. In this article, an innovative detection model named FSNet is proposed
for detecting fire spots and smoke in forest-fire images. This model utilizes the YOCO data-
augmentation method to enhance the dataset and improve the model’s feature-learning
capability. Unlike traditional CNN and transformer methods for extracting image features,
the EBblock module is introduced to focus on the correlation between features. Since fire
spots and smoke always appear simultaneously in forest-fire images, the EBblock module
effectively prevents the misidentification of fire spots or smoke. Additionally, we introduce
the L f orest loss function for FSNet, selecting the optimal predicted box of the model and
calculating its loss while continuously learning feature information in forest-fire images.

3. Methods
3.1. Network Structure of Proposed FSNet

The comprehensive architecture of our proposed forest-fire-image detection model,
FSNet, is illustrated in Figure 1. For the input image, data augmentation is first performed
using the YOCO method. The image then goes through a convolutional neural network
(ResNet101) to extract features, which are serialized into a one-dimensional sequence. This
sequence is then fused with positional encoding information and fed into the Ebblock
attention module. After passing through four stages of the Ebblock, N prediction boxes
are generated. The model calculates the matching loss between these N prediction boxes
and all ground truth (GT) boxes. Subsequently, the binary matching loss Lm between the
N prediction boxes and GT boxes is computed to select the best-matching prediction box
for each object. If a forest-fire image contains one fire spot and one smoke cloud, only two
boxes representing them are selected as the foreground, while the remaining N − 2 boxes
are labeled as the background. Finally, calculate the LH between the predicted box and the
label to train the model.

3.2. Data Augmentation Based on YOCO

Common image-data-augmentation methods include horizontal flipping, vertical
flipping, color distortion, Gaussian blur, and random erasing. These methods operate at the
image level, altering attributes such as viewpoint, color, clarity, etc., to enhance the model’s
generalization ability and robustness. By imitating human visual perception, these methods
retain the global semantic information of images, enabling models to adapt to different
scenarios. When humans identify objects, they often utilize local image information, such
as specific regions or details within the image. These local cues are referred to as strong
natural signals in images and serve as important cues for the human visual system to
recognize and understand images.

Patches refer to local regions within an image that carry vital information within the
overall context of the image, aiding in enhancing the model’s understanding and analytical
capabilities of the image content. Similar to ViT segmenting images into non-overlapping
patches for the network input, utilizing non-image-level data augmentation offers several
advantages: increasing diversity in local regions, enhancing overall image variability, and
encouraging the network to extract useful information from partial images. For small
targets like fire spots and smoke clouds in forest-fire images captured using UAVs, which
may appear in specific regions of the image, we employ the YOCO [34] technique for data
augmentation for the forest-fire images. The process is illustrated in Figure 2.
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In this context, we represent the model’s input image as X0 ∈ RC×H×W . Therefore, the
data-augmentation method A(·) can be represented as

A(·) : RC×H×W → RC×H×W (1)

X = A(X0) (2)

where X represents the image after data augmentation. The YOCO data-augmentation
method first divides the forest-fire image into two parts evenly along the width or height
dimension, which can be represented by the following formula:

[X1, X2] = CutW(X0) (3)

or
[X1, X2] = CutH(X0) (4)

Here, A(·) can be specifically represented as

A(X0) = A([X1, X2]) = concat[a1(X1), a2(X2)] (5)

where a1(·) and a2(·) represent two different common image-level data-augmentation
methods.

3.3. EBblock Attention Module

EBblock is a transformer-based module that adopts a structure with four stages. The
structure of EBblock’s stagei is depicted as each stage of EBblock in Figure 1. In the initial
layer of EBblock, image embedding is achieved using two consecutive 3 × 3 convolutional
layers with a stride of 2 and two 3 × 3 convolutional layers with a stride of 1, resulting in a
4× image embedding. In the subsequent three stages, 2× image embedding is achieved
using 3 × 3 convolutional layers. Each stage contains multiple encoder blocks, each of
which includes the GA_block to be introduced below, a Feed-Forward network (FFN), layer
normalization, and identity shortcuts. Finally, the results of each stage are fed into a feature
pyramid for fusion and prediction-box output.

The GA_block is a crucial component of EBblock used for information interaction
and feature fusion within images. The four stages of EBblock and multiple encoder blocks
contribute to gradually extracting higher-level features and ultimately generating prediction
boxes. Overall, the EBblock model combines the strengths of convolutional neural networks
and transformer architecture to effectively handle image tasks. The overall framework of
the GA_block is illustrated in Figure 3.

In the GA_block, we replace some components of Query(Q), Key(K), and Value(V)
with the aggregated values of the entire group, where the feature x can be represented by
Q, K, and V. We partition the Q, K, and V components into 5 segments, denoted as xq

n, xk
n,

xv
n representing the segments divided by Q, K, V, respectively. We aggregate four of these

segments to generate group representatives Q′, K′, and V′ as follows:

Q′ = Aggn
(

xq
n

)
, n ∈ [1, 2, 3, 4] (6)

K′ = Aggn
(

xk
n

)
, n ∈ [1, 2, 3, 4] (7)

V′ = Aggn(xv
n), n ∈ [1, 2, 3, 4] (8)

where Agg(·) represents an operation process based on a sliding window. The aggregated
feature can be expressed as xn:

xn = Aggn(x) (9)
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Next, attention calculation is performed on the group representatives by inputting Q′,
K′, and V′ into the attention function to generate the final output.

Attention =
Q′
√

d
So f tmax

(
K′TV′

)
(10)

where So f tmax(·) represents the normalized exponential function, and K′T denotes the
transpose of K′.
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During the aggregation process, the resolution of the features does not change, which
means that the GA_block can extract more fine-grained features for attention calculation
without altering the low spatial resolution. This feature-extraction method is superior to
methods that rely on smaller feature scales.

EBblock uses deep convolutions to implement the aggregator Agg(·), with these
convolutional layers having different kernel sizes. Since the input in EBblock is group
representatives, multiple tokens of size k × k (where k represents the kernel size of Agg(·))
can be associated simultaneously to ensure the model can comprehensively and adequately
capture image features. By using aggregators with different kernel sizes, group representa-
tives are constructed based on sliding window operations to ensure that each token can
blend different-sized groups and information of varying granularity. This process involves
employing different kernels at different stages for aggregation, concatenation, and output.

In the final pre-attention branch, no aggregator is used to further diversify the struc-
ture and make it an identity mapping. In addition to this branch, a non-attention branch is
constructed with an aggregator but no attention. Finally, integration layers with normaliza-
tion and activation linear projections are used for mixing. To utilize the predictions from the
four stages of EBblock simultaneously, the outputs of the four stages are fed into a feature
pyramid network (FPN), where they are fused, respectively, to produce N prediction boxes.
Here, we set the number of prediction boxes N to 20, which is generally greater than the
number of targets in the image.

3.4. Loss Function

To address the N predicted-output boxes, it is necessary to compute the optimal bipar-
tite matching loss between these boxes and the actual ground truth objects. Subsequently,
we undertake loss optimization tailored to the specific objects, namely the bounding boxes.
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We use y to represent the set of ground truth GT_boxes of real objects, then the set of N
prediction boxes can be represented by y′:

y′ =
{

y′i
}N

i=1 (11)

where N is typically greater than the number of objects present in the image. Therefore, we
treat y as a set with N elements, filling positions corresponding to non-existent objects with
∅ (None).

In order to determine the optimal bipartite matching between these two sets, it is
essential to identify a permutation of N elements, denoted as σ ∈ ϑN , which results in the
lowest matching cost:

σ̂ = arg min
σ∈ϑN

N

∑
i

Lm

(
yi, y′σ(i)

)
(12)

where Lm

(
yi, y′σ(i)

)
denotes the cost of pairwise matching between the actual object yi and

the predicted object at the index σ(i).
The calculation of the matching cost incorporates factors such as the accuracy of

category prediction and the similarity between the predicted and actual values. The
element i in the real object can be represented as yi:

yi = (zi, oi) (13)

where zi signifies the target class label (typically ∅), and oi ∈ [0, 1]4 specifies the actual
center coordinates, height, and width, all relative to the overall size of the image. For
the prediction located at index σ(i), the class probability for zi is defined as p̂σ(i)(zi), and
the corresponding predicted value is represented as ôσ(i). Therefore, the matching cost

Lm

(
yi, y′σ(i)

)
between the predicted and actual values can be expressed as

Lm

(
yi, y′σ(i)

)
= −⋖{zi ̸=∅} p̂σ(i)(zi) +⋖{zi ̸=∅}L f orest

(
oi, ôσ(i)

)
(14)

Prior to determining the loss function, it is crucial to compute the Hungarian loss for
each pair of matched elements. The loss function, denoted as LH(y, y′), encompasses a
linear combination of the negative log-likelihood for class predictions and the bounding-box
loss, which is to be defined subsequently:

LH
(
y, y′

)
=

N

∑
i=1

[
−logp̂σ̂(i)(zi) +⋖{oi ̸=∅}L f orest(oi, ôσ̂(i))

]
(15)

where σ̂ is the optimal assignment calculated in Equation (12). In calculating the matching
cost, we use the probability p̂σ̂(i)(zi) instead of the log probability, which allows the category
prediction term to be unified with L f orest(·, ·), resulting in better model performance.

The second component of both the matching cost and the Hungarian loss is represented
by L f orest(·), which serves to assess the accuracy of the bounding-box matches. Unlike
many detectors, we use an IoU loss and impose a loss on ô:

L f orest

(
oσ(i), ôi

)
= λiouLiou

(
oσ(i), ôi

)
+ λL1∥oσ(i) − ôi∥1 (16)

where λiou, λL1 ∈ R are hyperparameters, Liou is the generalized IoU, calculated as

Liou

(
oσ(i), ôi

)
= 1 −


∣∣∣oσ(i) ∩ ôi

∣∣∣∣∣∣oσ(i) ∪ ôi

∣∣∣ −
∣∣∣B(oσ(i), ôi

)
\oσ(i) ∪ ôi

∣∣∣∣∣∣B(oσ(i), ôi

)∣∣∣
 (17)
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where |·| denotes the “area”, and the intersection over union (IoU) of the predicted
bounding-box coordinates is used as shorthand for the box itself. The area for the IoU
is calculated through the minimum/maximum values of the linear functions of oσ(i) and

ôi, making the loss sufficiently robust for stochastic gradients. B
(

oσ(i), ôi

)
represents the

smallest box containing both oσ(i) and oi.

4. Experiments and Results
4.1. Dataset

In relation to our proposed FFNet model, we conducted experiments on three publicly
available datasets—the Flame dataset, the Corsican dataset, and the D-Fire dataset. The
Flame dataset, obtained from drone surveillance at high altitudes, encompasses various
scenarios of forest-fire occurrences, including instances where fire points are small and
partially obscured by vegetation, as well as different manifestations of forest fires across
seasons. Moreover, this dataset includes images captured from multiple perspectives
including top-down, oblique, and horizontal views. The Corsican dataset focuses on
forest-fire scenes with closer distances and more prominent fire points, enabling the clear
visualization of fire details in the images. The D-Fire dataset comprises 21,000 images
related to smoke and flames. From this dataset, we selected 5843 images of forest fires for
our experiments, covering various scenes captured from both distant and close distances
and providing a rich data foundation for our experimentation. These three datasets cover a
range of scenarios that may occur during forest fires, making them representative of such
incidents. Below are partial images from two of the datasets, as shown in Figure 4.

Forests 2024, 15, x FOR PEER REVIEW 12 of 21 
 

 

 
Figure 4. Example images of the Flame, Corsican, and D-Fire datasets. 

4.2. Evaluation Metrics 
For an objective assessment of FSNet’s capability in detecting fire points and smoke 

in forest-fire images captured using UAVs, we employ three key metrics: Recall rate (R), 
mean average precision (mAP), and frames per second (FPS) to evaluate the efficacy of 
various fire-detection methodologies. The metrics of precision (P) and Recall (R) are de-
fined as follows: 𝑃 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 (18) 

𝑅 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (19) 

where True positives (TPs) represent the number of fire points or smoke clouds correctly 
detected using the FSNet model, false positives (FP) represent the number of instances 
where FSNet incorrectly detects fire points or smoke, and false negatives (FNs) represent 
the number of instances where FSNet fails to detect fire points or smoke. 

Average precision (AP) can be obtained from the relationship between P and R: 

𝐴𝑃 = (𝑟 − 𝑟 )𝑃 (𝑟 ) (20) 

where 𝑃 (𝑟) represents the maximum precision in the interval [𝑟, 1]. Here, we use mAP 
as the standard to measure FSNet’s ability to detect fire points and smoke, which can be 
expressed as 𝑚𝐴𝑃 = ∑ 𝐴𝑃𝑘  (21) 

Figure 4. Example images of the Flame, Corsican, and D-Fire datasets.



Forests 2024, 15, 787 12 of 20

4.2. Evaluation Metrics

For an objective assessment of FSNet’s capability in detecting fire points and smoke
in forest-fire images captured using UAVs, we employ three key metrics: Recall rate (R),
mean average precision (mAP), and frames per second (FPS) to evaluate the efficacy of
various fire-detection methodologies. The metrics of precision (P) and Recall (R) are defined
as follows:

P =
TP

TP + FP
(18)

R =
TP

TP + FN
(19)

where True positives (TPs) represent the number of fire points or smoke clouds correctly
detected using the FSNet model, false positives (FP) represent the number of instances
where FSNet incorrectly detects fire points or smoke, and false negatives (FNs) represent
the number of instances where FSNet fails to detect fire points or smoke.

Average precision (AP) can be obtained from the relationship between P and R:

AP =
n−1

∑
i=1

(ri+1 − ri)Pi(ri+1) (20)

where Pi(r) represents the maximum precision in the interval [r, 1]. Here, we use mAP
as the standard to measure FSNet’s ability to detect fire points and smoke, which can be
expressed as

mAP =
∑k

i−1 APi

k
(21)

In this formula, k signifies the total count of distinct categories within forest-fire
images, encompassing fire points, smoke, and the background. Additionally, APi denotes
the average precision (AP) value corresponding to class i.

FPS (frames per second) is utilized as a metric to gauge the processing speed of FSNet
when handling forest-fire images. FPS can be understood as the refresh rate of forest-fire
images, indicating how many frames of forest-fire images FSNet can process per second.
Assuming FSNet takes b seconds to detect one forest-fire image, the formula to calculate
FPS is

FPS = 1/b (22)

4.3. Implementation Details

The experiments were performed on a system running Ubuntu 18.04, equipped with
an RTX NVIDIA 3090 24G GPU. The software environment included PyTorch 1.8.0 and
Python 3.9. The settings for the model-training hyperparameters were as follows: a batch
size of 16, an initial learning rate of 0.01, a weight decay set at 0.0005, and the use of the
AdamW optimizer in conjunction with a cosine learning-rate schedule.

In this study, each of the three datasets was divided individually, allocating 20% of the
data for the test set and 80% for the training set. Specifically, the Flame dataset comprises
a total of 2003 forest-fire images, out of which 1602 were utilized for training and 401 for
testing. The Corsican dataset contains 1135 forest-fire images, with 908 designated for
training and 227 for testing. Similarly, the D-Fire dataset includes 5843 forest-fire images,
with 4674 assigned for training and 1169 for testing purposes.

4.4. Comparison with Other Target-Detection Algorithms

We trained the FSNet and the latest object detection networks, including MS-DETR [35],
YOLOX [36], DETR [37], and YOLOV7 [38], on the Flame, Corsican, and D-Fire datasets,
respectively. The experimental results are detailed in Tables 1–3.
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Table 1. Mean average precision (mAP), Recall (R), and frames per second (FPS) evaluation metrics
on the Flame test set.

Model mAP R FPS

MS-DETR 93.6% 88.3% 82.3
YOLOX 86.8% 83.6% 79.7
DETR 79.9% 74.1% 67.6

YOLOV7 88.4% 85.5% 89.3
FSNet 97.2% 93.9% 91.2

Table 2. Mean average precision (mAP), Recall (R), and frames per second (FPS) evaluation metrics
on the Corsican test set.

Model mAP R FPS

MS-DETR 86.7% 85.8% 80.0
YOLOX 85.2% 83.4% 78.8
DETR 80.6% 80.1% 64.3

YOLOV7 84.7% 84.9% 85.2
FSNet 87.5% 87.3% 90.7

Table 3. Mean average precision (MAP), Recall (R), and frames per second (FPS) evaluation metrics
on the D-Fire test set.

Model mAP R FPS

MS-DETR 87.5% 86.2% 82.4
YOLOX 86.2% 83.6% 78.3
DETR 84.4% 79.9% 65.6

YOLOV7 85.6% 82.1% 89.6
FSNet 94.3% 90.8% 92.6

In the experimental results, YOLOX, and YOLOV7 belong to the YOLO series of
algorithms, which generate multiple prediction boxes and then select the optimal ones
through non-maximum suppression (NMS). On the other hand, MS-DETR and DETR are
end-to-end models that only generate a single prediction box. The FSNet model adopts a
prediction-box-generation approach similar to MS-DETR and DETR instead of using the
multiple-prediction-box method of the YOLO series. However, FSNet effectively utilizes
information interaction and feature fusion in the backbone network EBblock, which leads
to an outstanding performance in forest-fire-image object detection.

Due to the small size and occlusion of fire point objects in the Flame dataset, the
detection difficulty is high. FSNet can leverage token-to-token, token-to-group, and group-
to-group correlations during feature extraction. For small fire point targets, this model
performs much better than other models. FSNet’s mAP is 3.6%, 10.4%, 17.3%, and 8.8%
higher than MS-DETR, YOLOX, DETR, and YOLOV7, respectively. Its Recall is 1.5%, 3.6%,
13.2%, and 1.5% higher than MS-DETR, YOLOX, DETR, and YOLOV7, respectively. Its FPS
is 8.9, 11.5, 23.6, and 1.9 higher than MS-DETR, YOLOX, DETR, and YOLOV7, respectively.
The results of the FSNet model in detecting small targets or occluded fire points are quite
impressive compared to other networks. For the Corsican dataset and D-Fire dataset, which
have larger fire point targets, the detection difficulty is not as high as in the Flame dataset.
However, FSNet still shows improvement compared to the other four networks in fire
point detection.

Tables 1–3 present the experimental results of each model on the Flame, Corsican, and
D-Fire dataset. To provide a more intuitive comparison of the detection performance of
each model on these datasets, we created visualizations of the detection results for some
forest-fire images. The visualized results are shown in Figures 5–7.
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Figure 5 shows the visualized results of smoke recognition by various models on the
Flame dataset. The Flame dataset primarily consists of images captured using UAVs at rela-
tively high or far distances of forest-fire scenes. These images commonly exhibit issues such
as small smoke or fire point targets and occlusions, which are typical scenarios encountered
during actual drone patrols. From Figure 5, it is evident that MS-DETR and YOLOX have
more missed detections for small targets of smoke and fire points at far distances, failing to
meet the requirements of drone patrols for fire detection. DETR performs reasonably well in
identifying fire points at far distances, but its detection performance for smoke is mediocre,
especially for relatively sparse smoke, which tends to occur at the early stages of a fire. The
timely detection of such sparse smoke can effectively prevent large-scale fires. Compared
to YOLOV7, both YOLOV7 and the FSNet model are capable of detecting sparse smoke
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and small fire points. However, YOLOV7 exhibits an inferior performance in detecting the
contours of smoke and fire points compared to FSNet. In forest-fire prevention, detecting
the contours of smoke and fire points is crucial for assessing the scale of a fire and allocating
corresponding manpower and resources. However, the contours of smoke and fire points
detected by YOLOV7 are evidently larger than the actual situation, potentially leading to a
waste of manpower or resources.

Forests 2024, 15, x FOR PEER REVIEW 16 of 21 
 

 

area based on the size and position of the fire points. Additionally, assessing the direction 
of the smoke helps predict the next steps in the fire’s development. Therefore, simply de-
tecting smoke and fire points is insufficient to meet the requirements at this stage. Our 
proposed FSNet model accurately locates smoke and fire points in such scenarios. It excels 
in detecting smoke by identifying different clusters of smoke, unlike MS-DETR and 
YOLOX, which detect smoke as a single entity. This capability of FSNet is crucial as it 
enables a more detailed analysis of the fire situation, aiding forest workers in making in-
formed decisions based on the specific characteristics of the smoke and fire points de-
tected. 

 
Figure 6. The visualized results of smoke recognition by various models on the Corsican dataset. 
The number in the green detection box indicates the probability of detecting smoke, and the red 
detection box indicates the probability of detecting fire. 

Figure 6. The visualized results of smoke recognition by various models on the Corsican dataset. The
number in the green detection box indicates the probability of detecting smoke, and the red detection
box indicates the probability of detecting fire.



Forests 2024, 15, 787 16 of 20

Forests 2024, 15, x FOR PEER REVIEW 17 of 21 
 

 

Figure 7 illustrates the visualization of the experimental results of the models on the 
D-Fire dataset. The D-Fire dataset contains both long-range and close-range forest-fire 
smoke data, as well as scenes with backgrounds similar to smoke or fire points. The two 
visualized images selected have certain representativeness. In the left column of Figure 7, 
there is fog in the mountainous background, which may affect smoke detection. In the 
right column of Figure 7, the fire occurred during autumn dusk, and the color of the entire 
background is similar to that of the fire points, which may affect the detection of fire 
points. From the visualization of the entire experimental results, it is evident that YOLOV7 
is greatly disturbed when detecting smoke, while MS-DETR, YOLOX, and DETR are dis-
turbed by dry grass in the background when detecting fire points. This leads to the lower 
detection accuracy of these models. However, the EBblock added to the FSNet model fully 
utilizes the group information between pixels, effectively avoiding the risk of background 
confusion in images with significant distractions. From the detection results in Figure 7, it 
is clear that FSNet achieves higher detection accuracy than the other four models. 

 
Figure 7. The visualized results of smoke recognition using various models on the D-Fire dataset. 
The number in the green detection box indicates the probability of detecting smoke, and the red 
detection box indicates the probability of detecting fire. 

Figure 7. The visualized results of smoke recognition using various models on the D-Fire dataset. The
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Figure 6 presents the experimental visualization results of the models on the Corsican
dataset. Images in the Corsican dataset generally exhibit characteristics such as large smoke
and fire point ranges. The MS-DETR, YOLOX, DETR, YOLOV7, and FSNet models can
all detect smoke and fire points in the images relatively accurately. However, from the
visualized detection results of each fire point and smoke cloud, it is evident that FSNet
achieves higher precision in detecting fire points and smoke compared to the other four
models. In fire scenes captured in the Corsican dataset, which often represent the mid-
stage of a fire where the fire has spread to some extent, smoke and fire points captured
using UAVs at high altitudes tend to have larger ranges. At this stage, common detection
networks trained to detect smoke and fire points do not face significant challenges. For
forest workers, the focus is on determining the specific location and assessing the affected
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area based on the size and position of the fire points. Additionally, assessing the direction
of the smoke helps predict the next steps in the fire’s development. Therefore, simply
detecting smoke and fire points is insufficient to meet the requirements at this stage. Our
proposed FSNet model accurately locates smoke and fire points in such scenarios. It excels
in detecting smoke by identifying different clusters of smoke, unlike MS-DETR and YOLOX,
which detect smoke as a single entity. This capability of FSNet is crucial as it enables a more
detailed analysis of the fire situation, aiding forest workers in making informed decisions
based on the specific characteristics of the smoke and fire points detected.

Figure 7 illustrates the visualization of the experimental results of the models on the D-
Fire dataset. The D-Fire dataset contains both long-range and close-range forest-fire smoke
data, as well as scenes with backgrounds similar to smoke or fire points. The two visualized
images selected have certain representativeness. In the left column of Figure 7, there is fog
in the mountainous background, which may affect smoke detection. In the right column
of Figure 7, the fire occurred during autumn dusk, and the color of the entire background
is similar to that of the fire points, which may affect the detection of fire points. From
the visualization of the entire experimental results, it is evident that YOLOV7 is greatly
disturbed when detecting smoke, while MS-DETR, YOLOX, and DETR are disturbed by
dry grass in the background when detecting fire points. This leads to the lower detection
accuracy of these models. However, the EBblock added to the FSNet model fully utilizes the
group information between pixels, effectively avoiding the risk of background confusion in
images with significant distractions. From the detection results in Figure 7, it is clear that
FSNet achieves higher detection accuracy than the other four models.

4.5. Ablation Experiments

To validate the effectiveness of the data-augmentation method YOCO, the attention
module EBblock, and the proposed loss function in the FSNet model, we conducted ablation
experiments. The experimental results are summarized in Table 4.

Table 4. Effectiveness of the components.

Backbone YOCO EBblock Lforest
Flame
mAP

Corsican
mAP

D-Fire
mAP

√
- - - 79.9% 80.6% 84.4%√ √

- - 82.6% 81.8% 87.3%√
-

√
- 88.5% 84.3% 90.4%√

- -
√

83.7% 83.5% 85.9%√ √ √
- 90.6% 86.8% 92.5%√ √

-
√

85.9% 83.9% 88.3%√
-

√ √
95.7% 87.2% 93.7%√ √ √ √
97.2% 87.5% 94.3%

After incorporating the data-augmentation method YOCO, the attention module
EBblock, and L f orest into our model, we conducted experiments on the Flame, Corsican,
and D-Fire dataset. When only YOCO or L f orest is added, there is a slight improvement
in the experimental results on all three datasets, but the improvement is not significant.
However, when EBblock is added alone, there is a more noticeable improvement in the
experimental results on all three datasets. Furthermore, when YOCO, L f orest, and EBblock
are all added, the model achieves mAP scores of 97.2%, 87.5%, and 94.3% on the Flame,
Corsican, and D-Fire dataset, respectively. This indicates that the addition of YOCO, L f orest,
and EBblock has a synergistic effect on the object detection of forest-fire images, and all
three components contribute to improving the accuracy of object detection.

5. Discussion

Forest fires have profound negative impacts on ecosystems, human health, and socio-
economic aspects [39]. Effective fire prevention and control are crucial for maintaining
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ecological balance, achieving the sustainable development of human society, and ensuring
the normal functioning of ecosystems. Despite advancements in detection technology,
detecting forest-fire smoke remains challenging [40,41]. Further research is therefore needed
in forest-fire smoke detection.

While Unmanned Aerial Vehicle (UAV) patrols have become the primary method
for forest-fire prevention, existing detection technologies often struggle to cope with the
complexity of forest-fire images captured from high altitudes [3–5]. For example, Rahman
et al. [42] utilized the SSD model, leveraging texture and color information, to equip UAVs
with high-speed and high-accuracy capabilities. Challenges include remote locations, small
fire spots, light-colored smoke targets, and complex background environments. FSNet
incorporates innovative components to enhance detection accuracy and robustness. The
YOCO data-augmentation method enriches the dataset, improving the model’s ability
to identify specific features of forest-fire images. Additionally, the EBblock attention
module based on the transformer framework facilitates comprehensive feature extraction
by fostering patch annotations and inter-group correlations.

Compared to earlier research methods, FSNet offers significant advantages. Traditional
manual detection and sensor-based methods suffer from high costs, delayed response times,
and limited applicability [43]. Similarly, earlier research primarily relied on traditional
image-processing algorithms, which often struggled to adapt to the complex and evolving
forest environment. Ho [25] proposed an integrated machine vision analysis method
for monitoring systems. Pérez-Porras et al. [44] used machine learning techniques and
SVM, RF, MLP, and Logistic regression (LR) algorithms in detecting forest fires. Although
machine learning detection methods have improved, challenges such as incomplete feature
extraction and high false-alarm rates persist. In contrast, FSNet utilizes deep learning
methods tailored specifically for forest-fire detection during UAV patrols. Unlike previous
methods, FSNet integrates the YOCO data-augmentation method and eblock attention
module to enhance feature learning and correlation extraction. By effectively preventing
the misidentification of fire spots and smoke, FSNet outperforms traditional CNN and
transformer methods. While recent advancements, such as MMFNet [32] and YOLOV8,
introduce innovative techniques, they still rely on generating anchors or proposals for
detection, which may lead to issues related to low anchor accuracy and occlusion in forest-
fire images. In contrast, FSNet’s innovative approach eliminates the need for anchors or
proposals, providing a more efficient and accurate detection mechanism.

However, despite the progress made, FSNet is not without limitations. To validate the
effectiveness and applicability of this method, further comparisons with recent research
findings and evaluations under different environmental conditions and forest types are
necessary. Additionally, studying its computational efficiency is crucial for deployment
on resource-constrained UAVs. Future research directions include integrating the FSNet
model with actual UAV patrol systems to optimize its performance and stability and further
enhance its applicability. Furthermore, improvements to the model can be made to better
adapt to different types of forest environments and fire characteristics, making it more
versatile and adaptable.

6. Conclusions

In conclusion, this study validates FSNet as a highly effective model for detecting
and locating fire spots and smoke in forest-fire images, offering substantial improvements
over existing models. The incorporation of YOCO data augmentation, the innovative
EBblock attention module, and the L f orest loss function within FSNet’s architecture are key
to its exceptional performance. The comprehensive experimental results, including the
mAP scores, Recall rates, and FPS values across three datasets, provide strong evidence of
FSNet’s potential in practical applications such as drone-based forest-fire surveillance. This
work opens the door for the implementation of FSNet in real-world scenarios, enhancing
forest-fire management and prevention efforts.
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