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Abstract: Human papillomaviruses (HPVs) are the causative agent of several anogenital cancers
as well as head and neck cancers, with HPV+ head and neck squamous cell carcinoma (HNSCC)
becoming a rapidly growing public health issue in the Western world. Due its viral etiology and
potentially its subanatomical location, HPV+ HNSCC exhibits an immune microenvironment which
is more inflamed and thus distinct from HPV-negative HNSCC. Notably, the antigenic landscape in
most HPV+ HNSCC tumors extends beyond the classical HPV oncoproteins E6/7 and is extensively
targeted by both the humoral and cellular arms of the adaptive immune system. Here, we provide
a comprehensive overview of HPV-specific immune responses in patients with HPV+ HNSCC. We
highlight the localization, antigen specificity, and differentiation states of humoral and cellular
immune responses, and discuss their similarities and differences. Finally, we review currently
pursued immunotherapeutic treatment modalities that attempt to harness HPV-specific immune
responses for improving clinical outcomes in patients with HPV+ HNSCC.

Keywords: human papillomavirus; HPV; head and neck cancer; immuno-oncology; tumor-specific B
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1. Introduction

The incidence of human papillomavirus (HPV)-associated head and neck squamous
cell carcinoma (HNSCC) has dramatically increased over the last few decades, with cur-
rently approximately 18,000 new cases being diagnosed annually in the United States
(US) [1–4]. Notably, the number of new HPV+ HNSCC cases is estimated to exceed 30,000
per year by 2030 [5]. At present, HPV+ HNSCC accounts for approximately 90% of all
oropharyngeal cancers and 40% of all HPV-associated cancers in the US [4]. As a com-
parison, approximately 11,000 new cases of cervical cancer are diagnosed annually in the
United States, accounting for about 30% of all HPV-associated cancers [6]. While the rates
of cervical cancer in the US have continuously decreased over the last two decades, HPV+
oropharyngeal cancer cases in men continue to steadily climb at 2.7% per year [7].

While both HNSCC and cervical cancer develop from high-risk HPV subtypes, there is
a noticeable difference in the presence of individual HPV types in these two malignancies.
HPV16 is the most prevalent high-risk HPV type and accounts for the plurality (30–50%)
of HPV+ cervical cancers [8,9] but the vast majority (>80%) of HPV-associated cancers in
the oropharynx [10–16]. Notably, while HPV18 is the second most common HPV type in
cervical cancer, accounting for about 16% [17], HPV18 and other high-risk types such as
HPV31, HPV33, HPV35 and HPV52 only account for a minor fraction of HPV+ HNSCC.
Importantly, the factors contributing to the striking dominance of HPV16 among other high-
risk HPV types in HNSCC are ill understood, thus warranting additional investigation.
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The continuous rise in the incidence of HPV+ HNSCC is not solely restricted to the
US but has also been observed in other parts of the Western world. For example, the
incidence of HPV+ oropharyngeal cancer in the United Kingdom doubled between 2002
and 2011 [18,19]. Importantly, while the Western world experiences a dramatic rise in
HPV+ oropharyngeal cancer, which is now dominating in terms of cases over “traditional”
tobacco- and alcohol-associated cancers, this trend is also seen, albeit to a lesser extent,
globally. While rates of HPV+ HNSCC in China are similar to the United States [20], certain
regions of Africa exhibit much lower rates [21]. Although HPV+ oropharyngeal cancer has
now replaced cervical cancer as the leading HPV-associated cancer in the Western world,
which is mostly due to regular cervical cancer screenings and prophylactic HPV vaccination
efforts, globally, cervical cancer still vastly outnumbers HPV+ oropharyngeal cancer with
530,000 versus 29,000 newly diagnosed cases per year, respectively [22].

The major capsid protein L1, which self-assembles into virus-like particles (VLPs),
forms the basis of all prophylactic HPV vaccines [23]. Recombinant VLPs consisting of
L1 closely resemble the native HPV virions and are highly immunogenic, thus explaining
the success of this vaccination approach [23–25]. In the US, three HPV vaccines have been
licensed to date, with the nonavalent vaccine GARDASIL®9 being the solely distributed
HPV vaccine in the US since 2016. The nonavalent vaccine contains VLPs of nine different
HPV types, including low-risk types mostly associated with genital warts (HPV6 and 11)
and the most common high-risk types (HPV16, 18, 31, 33, 45, 52, and 58). Prophylactic HPV
vaccines have been reported to induce long-lasting immune responses, with responses being
detectable for at least a decade [26–28]. While there is no established correlate of protection,
which has been partly attributed to the high immunogenicity and efficacy of these vaccines,
neutralizing antibodies are thought to be the main mechanism of protection [29].

Prophylactic HPV vaccines induce vigorous antibody responses, which have been
characterized regarding magnitude, isotype composition, and neutralizing capacity in
circulation as well as in cervical/vaginal secretions [30–34]. Both HPV-specific IgG and
IgA antibodies are detectable in plasma after vaccination, with IgG antibodies dominat-
ing the response. Importantly, HPV-specific IgA and IgG antibodies are also detectable
in cervical and vaginal secretions, with IgG being the most prominent isotype, akin to
plasma [30]. In contrast to intramuscular vaccination, natural HPV infection results in
lower IgG but comparable IgA plasma antibody titers [35,36], highlighting the important
role of exposure route and potentially inflammatory context in antibody isotype switching.
Notably, mucosal secretions of infected individuals exhibit higher IgA titers compared to
vaccinated individuals [35], likely due to the retention of IgA+ plasma cells in mucosal sites
of antigen encounter and thus in situ IgA secretion [37]. Furthermore, with respect to HPV+
HNSCC, HPV-specific IgG antibodies have also been detected in the saliva of vaccinees [38],
supporting the notion that these vaccines are likely protective against oral infection as
well. Indeed, multiple studies assessing oral HPV infections reported markedly reduced
infection rates in vaccinees [39–41], highlighting that the currently available vaccines have
the potential to reduce the incidence of HPV+ HNSCC in the future by preventing the
initial infections.

Prophylactic HPV vaccination, first introduced in the US in 2006 and initially rec-
ommended only for females, is now being highly advocated for both women and men.
While cervical cancer rates in the US continuously decreased over the past decades through
the widespread implementation of cervical cancer screening [42], data highlighting the
effectiveness of the HPV vaccine in preventing invasive cervical cancer are now slowly
emerging as long lead times between the initial infection and cervical cancer diagnosis ham-
per the ready assessment of vaccine effectiveness [43]. For HPV+ HNSCC, however, which
is a predominantly male disease affecting three- to six-fold more men than women [44,45],
beneficial effects from HPV vaccination efforts have not yet come to fruition. The divergent
incidence trends for HPV+ HNSCC and cervical cancer in the US are likely multifactorial.
First, in contrast to cervical cancer, routine screening approaches for HPV+ HNSCC are
lacking. Second, the approval of the HPV vaccine for men was delayed and initially re-
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stricted to younger individuals (age 9–21), except for risk groups (up to age 26) [46,47].
Third, the initial vaccine uptake in men was tepid. However, the current male vaccination
rate of 60–70% is about to finally close the gender gap [7,48]. Finally, the long lag phase
between initial infection and development of overt HPV+ HNSCC, which is estimated to
be about 10–30 years based on individuals typically contracting HPV in their early 20s and
the average age at HPV+ HNSCC diagnosis (mid 50s) and further supported by seroconver-
sion as well as “mutational clock” studies [49–51], substantially delays the observance of
vaccine benefits. Due to the above-mentioned factors, the current HPV+ HNSCC epidemic
is predicted to last past 2060, with current vaccination efforts only expected to slowly curb
the incidence of HPV+ HNSCC from 2045 onwards [52].

2. HPV+ HNSCC: A Distinct Form of HNSCC and HPV-Associated Cancer

HPV+ HNSCC is distinct from HPV-negative HNSCC in several important aspects
such as therapy response rates, patient characteristics, mutational load, and subanatomical
location. Various factors most likely contribute to the higher response rates of HPV+ HN-
SCC, compared to HPV-negative HNSCC, to standard-of-care regimens such as chemother-
apy, radiation, and surgery, resulting in 5-year recurrence-free survival rates of 80–85% [53].
The prognostic significance of HPV status in HNSCC is also reflected in the recently up-
dated 8th edition of the staging guidelines of the American Joint Committee on Cancer
(AJCC), which effectively resulted in a major “downstaging” of HPV+ HNSCC as it incorpo-
rates the common presentation of lymph node metastases and restricts stage IV diagnoses
to patients with distant metastases [54]. An important defining characteristic of patients
with HPV+ HNSCC recognized during the early days of the HPV+ HNSCC epidemic is
that this disease mostly affects a younger and healthier population of males, who are less
likely to have a smoking history [53]. The overall younger age and better health status of
patients with HPV+ HNSCC compared to patients suffering from traditional alcohol- and
smoking-associated cancers most likely contributes to the improved response rates. How-
ever, recent data suggest that the age of patients with HPV+ HNSCC at time of diagnosis is
increasing, thus closing the age gap to HPV-negative HNSCC [55,56].

The excellent response rates of HPV+ HNSCC patients and their overall better health
status have triggered substantial efforts, referred to as treatment de-intensification or
de-escalation, which are aimed at reducing treatment intensity with the overall goal of
minimizing treatment-associated morbidities while maintaining high cure rates. Traditional
standard-of-care therapies often induce significant morbidities such as nerve damage,
salivary gland damage, tooth damage, and dysphagia, thus substantially reducing the
quality of life of these relatively young and healthy individuals [57,58]. Currently explored
de-escalation strategies involve omittance of chemotherapy, reduced radiation doses, and
transoral robotic surgery (TORS) for minimally invasive, tissue-sparing resections, as well
as incorporation of immunotherapeutic treatment modalities [59,60]. Notably, the first
randomized de-escalation trials showed a clear detriment in survival in a subset of patients
when chemotherapy was omitted or simply substituted with cetuximab [61,62]. Overall,
these studies highlight the lack of reliable biomarkers to faithfully distinguish patients
who would benefit from treatment de-escalation from patients who are at higher risk of
recurrence and would potentially even benefit from increased treatment intensity.

Due to its viral etiology, the genetic landscape of HPV+ HNSCC substantially differs
from HPV-negative HNSCC, which is mostly caused by prolonged exposure to chemical
carcinogens as a result of smoking, alcohol use, and chewing of tobacco or betel nut
products [63–65]. The divergent genetic landscapes in HPV+ and HPV-negative HNSCC
are the result of two distinct oncogenic pathways, with HPV-negative cancers frequently
displaying mutations of several tumor suppressors such as p53, which is mutated in the vast
majority of HPV-negative HNSCC [66–68]. In contrast, HPV+ HNSCC rarely exhibits p53
or other common driver mutations. HPV+ HNSCC is, instead, driven by the expression of
the viral oncoproteins E6 and E7 that inactivate the cellular tumor suppressors p53 and pRb,
respectively, and are thus required for the persistence of HPV-associated cancers [69,70].
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Consistent with the reduced dependence on cancer-driving mutations, two studies using
whole-exome sequencing demonstrated that HPV+ HNSCC exhibits a significantly lower
mutational burden than HPV-negative HNSCC [66,67]. However, a study examining 617
cancer-associated genes in a larger cohort of 120 patients with HNSCC, including 51 HPV+
cases, did not find significant differences in mutational loads [68]. These discrepant findings
might be the result of different sequencing methodologies (whole-exome vs. selected gene
set) as well as the composition of the HPV+ HNSCC populations at hand, as the latter
study reported a strikingly higher mutational burden in patients with HPV+ HNSCC who
had a history of heavy tobacco use. Nevertheless, independent of the mutational burden,
HPV+ HNSCC is considered a more immunogenic malignancy due to its viral origin and
expression of distinct viral antigens, thus providing an enhanced antigenic repertoire to be
recognized by the immune system.

HPV+ HNSCC substantially differs from HPV-negative HNSCC in terms of its sub-
anatomical location, with the vast majority of HPV+ HNSCC tumors occurring in the
oropharynx [10,12]. In contrast, HPV-negative HNSCC tumors are mostly located outside
the oropharynx and commonly affect the tongue or oral cavity. It is important to highlight
that the oropharyngeal areas affected by HPV+ HNSCC such as the tonsils and base of
tongue are lymphoid-rich tissues. As a corollary, general comparisons between HNSCC
tumors based on HPV status thus not only evaluate the impact of HPV but also the nature
of the affected tissue (lymphoid vs. non-lymphoid), unless HPV+ HNSCC tumors are
carefully matched with rare HPV-negative tonsilar or base of tongue cancers.

Mounting evidence demonstrates that, in HPV-associated cancers such as cervical
cancer and HNSCC, the HPV genome can exist in distinct forms: episomal, integrated,
or a mixture of both. In most cervical cancer cases, the HPV genome is stably integrated
into the host genome [71]. Notably, the linearization of the HPV genome as a result of the
integration event most frequently occurs in the coding region for the early gene E2, which
is a crucial transcription factor and responsible for tightly regulating the expression of the
viral oncogenes E6 and E7 during the viral life cycle [72]. The absence of functional E2
protein, due to HPV genome integration, thus prevents the transcriptional repression of E6
and E7 expression, resulting in excessive cell proliferation and cell transformation. While
the integration of the HPV genome in the E2 coding region and concomitant abrogation
of functional E2 protein is considered a key event in HPV-mediated oncogenesis, this is
not a universal requirement as E2-mediated regulation of E6 and E7 expression can also be
impacted by other mechanisms such as methylation of the E2 binding sites in the upstream
regulatory region of E6 and E7 [73]. Notably, primary samples of cervical cancer can also
contain a mix of integrated and episomal HPV genomes, with episomal forms being lost
upon cell culturing [71,74]. However, whereas in more than 80% of cervical cancers the
HPV genome is integrated into the host genome [75], the vast majority of HPV+ HNSCC
contains episomal HPV genomes, either in a pure episomal form or a mixture of integrated
and episomal genomes [16]. This major but not well understood difference between cervical
cancer and HNSCC likely has important implications regarding the immunogenicity of
these two HPV-driven malignancies. An emerging body of evidence demonstrates that
several, if not all, early genes (E1, E2, E4, E5, E6, and E7) are expressed when the HPV
genome is episomally maintained [16,76,77]. The expression of additional viral antigens,
besides the classical oncoproteins E6 and E7, thus likely endows these cancers with a
significantly larger antigenic repertoire (Figure 1), especially when considering that E1 and
E2 surpass the relatively small oncoproteins E6 and E7 two- to six-fold in terms of size
and thus antigenic information. Hence, the immune response to HPV+ HNSCC containing
episomal HPV genomes is expected to be of greater breadth compared to cervical cancers
that mostly harbor integrated HPV genomes.
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integration status and its impact on HPV protein expression. The tumor microenvironment con-
tains germinal center B cells (GCBs), memory B cells (MBCs), activated B cells (ABCs), antibody 
(Ab)-secreting cells (ASCs), follicular dendritic cells (FDCs), dendritic cells (DCs), and CD8+ T 
cells (CD8), as well as several CD4+ T helper (TH) subsets. Tumor/HPV-specific immune cells are 
depicted in green and non-tumor-specific bystander cells in orange. Outstanding questions are 
highlighted in italics. Dashed lines indicate potential interactions/differentiation trajectories. Anti-
gen specificities that have not been experimentally validated in the respective compartment and 
immune cell subset are highlighted in red. Created with BioRender.com. 
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cal focus on tumor-specific immune responses in circulation for a solid malignancy such 
as HPV+ HNSCC is likely due the ease of accessing peripheral blood and independence 
from a high-volume surgical center required to obtain sufficient fresh tumor tissues for 
immunological analyses. Here, we will review the immunological studies performed so 
far and highlight the few studies assessing HPV-specific immune responses in the tumor 
microenvironment (TME). 

Figure 1. The HPV-specific immune landscape in the tumor and peripheral blood of patients with
HPV+ HNSCC. Schematic highlighting HPV-specific immune responses as well as HPV genome
integration status and its impact on HPV protein expression. The tumor microenvironment contains
germinal center B cells (GCBs), memory B cells (MBCs), activated B cells (ABCs), antibody (Ab)-
secreting cells (ASCs), follicular dendritic cells (FDCs), dendritic cells (DCs), and CD8+ T cells (CD8),
as well as several CD4+ T helper (TH) subsets. Tumor/HPV-specific immune cells are depicted in
green and non-tumor-specific bystander cells in orange. Outstanding questions are highlighted in
italics. Dashed lines indicate potential interactions/differentiation trajectories. Antigen specificities
that have not been experimentally validated in the respective compartment and immune cell subset
are highlighted in red. Created with BioRender.com.

3. HPV-Specific Immune Responses in HPV+ HNSCC

The viral origin of HPV+ HNSCC and hence the continuous presence of foreign
antigens of defined nature renders HPV+ HNSCC an exquisite malignancy to probe bona
fide tumor-specific immune responses in humans. The presence of defined virus-derived
tumor antigens further facilitates the development of cost-effective, off-the-shelf therapeutic
vaccines for this disease, which is in stark contrast to other non-viral malignancies that
require personalized and laborious targeting of private neo-antigens. Importantly, to date,
the vast majority of studies analyzing HPV/tumor-specific immune responses in patients
with HPV+ HNSCC have focused entirely on peripheral blood. This somewhat paradoxical
focus on tumor-specific immune responses in circulation for a solid malignancy such as
HPV+ HNSCC is likely due the ease of accessing peripheral blood and independence
from a high-volume surgical center required to obtain sufficient fresh tumor tissues for
immunological analyses. Here, we will review the immunological studies performed so
far and highlight the few studies assessing HPV-specific immune responses in the tumor
microenvironment (TME).

BioRender.com
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3.1. HPV-Specific Immune Responses in the Peripheral Blood
3.1.1. HPV-Specific T Cell Responses

The analysis of HPV-specific immune responses in the peripheral blood of patients
with HPV+ HNSCC has so far mostly focused on either the enumeration and character-
ization of HPV-specific T cell responses or HPV-specific antibodies. Studies assessing
HPV-specific T cell responses have repeatedly shown that T cell responses against various
HPV E proteins are present in most patients with HPV+ HNSCC (Figure 1) [78–83]. How-
ever, in general, these responses are undetectable directly ex vivo and require extensive
in vitro expansion with HPV peptides for at least 1–2 weeks prior to being detectable
by standard approaches such as ELISpot, intracellular cytokine staining, or pMHC-I/II
tetramer staining [78–83]. Notably, CD4+ and CD8+ T cell responses directed against all
HPV E proteins (E1, E2, E4, E5, E6, and E7) can be detected in most patients [81]. How-
ever, to date, most studies have exclusively focused their analyses on T cell responses
against the oncoproteins E6/7 and neglected to assess responses against other HPV E
proteins [79,80,82,83]. The exclusive focus of immunological studies on the oncoproteins
E6/7 was most likely driven by the now outdated assumption that complete HPV genome
integration, akin to cervical cancer, occurs in most HPV+ HNSCC.

While in vitro expansion of antigen-specific T cells with peptides represents a powerful
approach to detecting antigen-specific T cell responses, it also has several limitations. First,
it is unclear whether the expanded antigen reactivities obtained after prolonged in vitro
stimulation with peptide pools accurately reflect their in vivo distribution, as different
antigen specificities can exhibit striking differences in their capacity to expand in vitro [84].
Second, while in vitro expansion procedures allow for the greatest sensitivity for detecting
antigen-specific T cells, significant phenotypic changes occur during prolonged in vitro
stimulation [84], precluding firm conclusions about the in vivo phenotype of these cells. No-
tably, the fact that circulating HPV-specific T cells expand upon in vitro peptide stimulation,
however, suggests that all or at least a fraction of these cells possess proliferative capacity.
Thus, while data derived from in vitro expanded T cells can provide clues regarding the
fine specificity and proliferative potential of circulating HPV-specific T cells in a given
patient, they do not provide any insights into the true in vivo frequency and phenotype of
HPV-specific T cells in circulation and, even more important, into the antigen specificity
and phenotype of HPV-specific T cells in the TME.

3.1.2. HPV-Specific Humoral Responses

HPV-specific antibodies can be detected in the plasma of most patients with HPV+
HNSCC but are rarely present in individuals without HPV+ HNSCC, including patients
with HPV-negative HNSCC (Figure 1) [11,49,85–90]. These HPV-specific antibodies target
most HPV E proteins, with E6 and E7 being the most widely studied reactivities, akin to
the “historic” focus on HPV-specific T cell responses against these antigens.

The presence of HPV E-specific antibodies has been suggested as a sensitive and
specific biomarker for early disease detection. Notably, antibodies against HPV E6 are
detectable in the blood of patients with HPV+ HNSCC long before clinical diagnosis, with
seroconversion being observed on average about 11.5 years, in some patients up to 30 years,
prior to diagnosis [49,50]. Based on these data, a recent study estimated the absolute
risk of HPV+ HNSCC in HPV E6 seropositive individuals and found the 10-year risk for
seropositive males to be between 17% and 27%, with an estimated 30-year risk approaching
almost 50% for seropositive males [91]. Efforts are currently ongoing to harness a general,
prospective, population-based cohort study, the Hamburg City Health Study, with an
overall enrollment goal of 45,000 middle-aged participants (45–74 years of age), to further
evaluate HPV-specific antibodies for early disease detection. Notably, an interim analysis
of about 4500 serum samples identified several individuals seropositive for HPV E6 and
at least one additional HPV E antigen. Three out of nine seropositive individuals who
consequently underwent regular head and neck follow-up examinations were diagnosed



Viruses 2023, 15, 1296 7 of 23

with HPV+ HNSCC within three to four years of their initial blood draw, further supporting
the diagnostic value of HPV serology for early disease detection [92].

In contrast to the accumulating data supporting the use of HPV serology for early
diagnosis of HPV+ HNSCC, the predictive value of HPV-specific antibodies for survival
and recurrence is still controversial [85,86,93–95]. While one study found an association
between higher pretreatment E6 antibody titers and increased risk of recurrence [94], two
studies reported opposing findings, with E6 seropositivity being associated with improved
progression-free survival and reduced risk of locoregional recurrence [85,86]. Furthermore,
two studies found no association between pretreatment E6 antibody titers and risk of
recurrence [93,95]. However, one of these studies reported significantly higher E6 and
E7 antibody titers in recurrent patients during the follow-up period [93], suggesting the
continuous maintenance of active B cell responses due to antigen persistence. The reasons
for these contradictory findings are likely to be manifold. All studies analyzed rather
small cohorts of patients (n ≤ 115), which combined with the low recurrence rate of HPV+
HNSCC resulted in almost all studies in a very low number of recurrent cases. Notably, the
study by Spector et al. [93] contains, to date, the largest number of recurrent cases (n = 22)
and found no association between pretreatment antibody titers and risk of recurrence. The
cohorts of the above-mentioned studies also varied substantially in terms of treatment
modalities. One study focused exclusively on chemoradiation [93], whereas the other
studies included patients receiving a wide range of treatment modalities. The studies can
further be divided based on their approach of detecting HPV-specific antibodies, with
two studies employing a pan-immunoglobulin (Ig) approach (IgA/G/M) [85,95] and three
studies focusing on IgG antibodies [86,93,94]. Notably, we have recently shown that HPV-
specific plasma antibodies in HPV+ HNSCC patients mostly consist of the IgG isotype,
with negligible IgM contribution [11]. However, a subset of patients exhibits sizeable
IgA responses, prompting further investigations into the predictive value of distinct Ig
isotypes. Overall, additional large-scale studies are required to ultimately answer the
question whether HPV-specific antibodies can be employed as prognostic biomarkers for
HPV+ HNSCC.

Although HPV-specific antibodies have been extensively studied for their value as
early diagnostics and their predictive value for survival and recurrence, it is currently not
known whether HPV-specific antibodies play an active role in anti-tumor immunity or
rather just represent a surrogate for cellular cytotoxicity and associated tumor antigen
release. While it is unlikely, due to the intracellular localization of HPV E proteins, that
HPV-specific IgG antibodies exhibit direct anti-tumor effects through antibody-dependent
cellular cytotoxicity (ADCC) or phagocytosis (ADCP), these antibodies could potentially
contribute to the maintenance of cytotoxic CD8+ T cell responses. Upon tumor cell lysis
and antigen release, HPV-specific antibodies could bind to their respective target antigens,
form immune complexes, mediate FcγR-dependent antigen uptake, and thus enhance cross-
presentation of HPV antigens on professional antigen-presenting cells [96]. Importantly,
previous studies evaluating HPV-specific IgG antibodies did not assess the IgG subclass
composition, which allows for the diversification of IgG effector functions. In humans, four
IgG subclasses (IgG1–4) exist, which differ dramatically in their affinity for distinct FcγRs
and thus their ability to engage various effector cells for downstream IgG effector func-
tions [97,98]. Notably, we recently showed that the vast majority of HPV-specific plasma
antibodies are IgG1 [11], a highly active IgG subclass that can efficiently trigger activating
FcγRs and IgG effector functions such as ADCC or ADCP. However, a subset of patients
also exhibited substantial IgG2 and IgG4 responses, which are commonly associated with
low or absent IgG effector functions. Our findings might thus at least partially explain the
discordant findings in the predictive value of HPV-specific antibodies [85,86,93–95,99], as
none of previous studies assessed IgG subclasses to account for their divergent IgG effector
functions [85,86,93–95].

In addition to the presence of HPV-specific antibodies in circulation, we recently
demonstrated the presence of HPV-specific memory B cells (MBCs) in the peripheral blood
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of patients with HPV+ HNSCC [11]. MBCs are an important component of the humoral
immune system and together with antibody-secreting, long-lived plasma cells provide
two complementary B cell memory “walls” to mediate protection from pathogens [100].
In contrast to long-lived plasma cells that constantly secrete large amounts of antibodies,
mostly reside in the bone marrow, are quiescent, and represent a terminally differenti-
ated cell type, MBCs do not produce antibodies, are found in circulation, undergo slow
homeostatic proliferation to maintain their numbers, and can quickly differentiate into
antibody-secreting cells as well as reenter new germinal center reactions upon reencounter
of their cognate antigen [101]. On average, HPV E2-, E6-, and E7-specific MBCs each
accounted for about 0.2% of circulating IgG+ MBCs in patients with HPV+ HNSCC [11]. In
comparison, influenza-specific IgG+ MBCs accounted for roughly 1% of the total IgG+ MBC
pool, consistent with previous reports in healthy individuals [102]. These data demonstrate
that HPV-specific MBCs, while representing not the most dominant antigen reactivity in
the MBC pool, are readily detectable and account for a sizeable fraction of the IgG+ MBC
pool in patients with HPV+ HNSCC.

Chronic inflammation and antigenic stimulation have been shown to contribute to the
development of atypical MBCs, a distinct subset of MBCs that is characterized by impaired
functionality and recall potential [103]. Notably, HPV-specific IgG+ MBCs detected in
patients with HPV+ HNSCC were functional [11], as the experimental approach for their
enumeration relied on their reactivation and differentiation into antibody-secreting cells
prior to detection [104–106]. However, whether the HPV-specific IgG+ MBCs we detected
only represent a functional subset of the total HPV-specific IgG+ MBCs pool that might
also contain atypical, dysfunctional MBCs requires further investigation.

Overall, these studies demonstrate that HPV-specific immune responses in the periph-
eral blood of patients with HPV+ HNSCC differ quite dramatically between the humoral
and the cellular arms of the adaptive immune system. Thus, while HPV-specific B cell
responses in the form of antibodies and MBCs are readily detectable in circulation, HPV-
specific T cell responses are, although present, quite rare and require in vitro expansion
prior to analysis, thus hampering their analysis.

3.2. Intratumoral Immune Responses in HPV+ HNSCC

While HPV-specific immune responses in the circulation of patients with HPV+ HN-
SCC have been relatively well studied, little work has been performed regarding the
magnitude, breadth, and differentiation state of HPV-specific tumor-infiltrating lympho-
cytes (TILs). Notably, several studies assessed immune infiltrates in HPV+ HNSCC tumors
and contrasted them with HPV-negative HNSCC, demonstrating important key differences
in the composition of the TME between these two distinct diseases [107–114]. Overall,
HPV+ HNSCC exhibits several features associated with a more inflamed or “hotter” im-
mune microenvironment such as increased B cell infiltrates and higher frequencies of
PD-1+ CD8+ TILs, T helper type 1 (TH1) CD4+ T cells, TH17 CD4+ T cells, and T follicular
helper (TFH) CD4+ T cells (Figure 1). Furthermore, the gene expression profiles of tumor-
infiltrating B cells, CD4+ T cells, and myeloid cells demonstrate marked differences between
HPV+ and HPV-negative tumors [107], further underlining that these two malignancies
are immunologically highly distinct.

3.2.1. Intratumoral Lymphoid Structures

The increased presence of intratumoral B cells is one of the hallmarks distinguish-
ing HPV+ from HPV-negative HNSCC [107,108,110,114]. Importantly, these two distinct
malignancies also differ substantially in the composition of intratumoral B cells, with
HPV+ tumors containing more germinal center (GC) B cells [107,110]. These intratumoral
GC B cells expressed canonical GC B cell genes such as BCL6, AICDA, and TCL1A, and
were located in bona fide GCs or structures resembling GCs [11,110]. Notably, consistent
with their role in maintaining GC reactions [115], TFH CD4+ T cells were also found to be
more prevalent in HPV+ HNSCC [107,110], suggesting ongoing GC reactions in the TME
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(Figure 1). Overall, B cells in HPV+ HNSCC tumors were preferentially localized in distinct
lymphoid structures ranging from unstructured aggregates within the tumor stroma to
fully developed GCs [11,110].

Tertiary lymphoid structures (TLSs), which are defined as de-novo generated lym-
phoid structures within non-lymphoid tissues and consist to a substantial degree of B
cells, have been associated with improved overall survival as well as clinical responses to
immunotherapy in many cancer types [110,116–118]. Importantly, TLSs can exist along a
wide spectrum of maturation states ranging from lymphoid aggregates to fully defined
secondary follicles with GCs, with the most mature TLS form exhibiting the greatest as-
sociation with improved outcomes. Due to this association, intensive efforts are currently
ongoing to elucidate the exact steps leading to TLS formation, with the ultimate goal of
harnessing TLSs for improved responses to immunotherapy [119]. Notably, the presence
of intratumoral GC B cells and structures resembling TLSs has also been associated with
improved survival in both HPV+ and HPV-negative HNSCC [110]. However, it is impor-
tant to note that, due to preferential occurrence of HPV+ HNSCC on the tonsils or base of
tongue, both of which are lymphoid-rich tissues, the lymphoid structures observed in HPV+
HNSCC tumors cannot be considered “classic” TLSs (i.e., de novo generated lymphoid
structures in non-lymphoid tissues). While it is plausible that some of the observed struc-
tures in HPV+ HNSCC tumors are de novo generated, markers faithfully distinguishing
these potentially de novo generated structures from remnant lymphoid structures that have
been engulfed by the tumor are lacking. Thus, although it might be a semantic argument,
it is important to consider the lymphoid nature of the tissues affected by HPV+ HNSCC
when analyzing TLS-resembling lymphoid structures in this malignancy and attempting to
translate findings to other malignancies occurring in non-lymphoid tissues.

3.2.2. HPV-Specific TIL Responses

The analyses of immune infiltrates yielded important insights into the TME of HPV+
HNSCC, demonstrating an overall more immunologically active environment compared to
HPV-negative HNSCC as highlighted by an increased presence of CD8+ T cells [108,120,121].
However, the antigen specificity of TILs in HPV+ HNSCC was not assessed in most studies.
Notably, in various malignancies a sizeable fraction, if not the majority, of intratumoral
CD8+ T cells are bystander cells that are not tumor-specific but directed against common
human pathogens such as herpesviruses and influenza viruses [122–127]. Bystander CD8+
T cells often exhibit phenotypic traits commonly associated with T cell exhaustion such
as expression of the inhibitory receptor PD-1, thus “disguising” themselves as exhausted
T cells at first glimpse despite being highly functional memory T cells [99,128]. Hence,
the presence of T cells in the TME should not be confused or equated with their tumor
specificity. Importantly, while bystander infiltration has been assessed in various malig-
nancies such as melanoma, lung, and colorectal cancer, no dedicated studies have been
performed in HPV+ HNSCC. However, such studies would provide important insights
into intratumoral bystander recruitment by contrasting previous findings with a primary
tumor that predominantly occurs in lymphoid tissues and is of viral origin. While the
extent of bystander recruitment in HPV+ HNSCC is unknown and needs to be experi-
mentally assessed, we would anticipate, due to the lymphoid character of the affected
tissue, a considerable proportion of bystander T cells to be present. Overall, a better under-
standing of the bystander populations and their antigen specificities might further open
additional therapeutic venues by harnessing their functional potential for improved tumor
control [99,124,129,130].

As mentioned above, relatively little work has been performed regarding HPV-specific
TILs in HPV+ HNSCC. Prior works showed the presence of intratumoral HPV E6- and E7-
specific CD4+ and CD8+ T cells, which predominantly secreted IFN-γ but also a substantial
amount of IL-17, suggesting the intratumoral presence of HPV-specific TH1 and TH17
responses in HPV+ HNSCC (Figure 1) [83,131,132]. However, additional information about
the phenotypic and transcriptional landscape of HPV-specific TILs required to assess the
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differentiation state of these cells and their potential responsiveness to various treatment
modalities has been lacking. The analysis of HPV-specific TIL responses has been mostly
restricted to the viral oncoproteins E6 and E7, as other viral antigens were thought not to
be expressed due to complete HPV genome integration, which, however, only occurs in a
minority of HPV+ HNSCC tumors as highlighted by recent studies [16,76,77]. We recently
reported the presence of HPV-specific CD8+ T cells in the TME of patients with HPV+
HNSCC, demonstrating that a substantial proportion of CD8+ TILs are directed against
HPV antigens other than the oncoproteins E6 and E7. Using peptide-MHC-I tetramers
that allow for the physical detection of antigen-specific CD8+ T cells, we showed that in
some HPV+ HNSCC tumors up to 10% of CD8+ TILs recognized a given epitope [78].
Surprisingly, most CD8+ T cell epitopes discovered in our study were derived from HPV
E2 and E5, which also encompassed the most immunodominant responses, with little to
no reactivity detected against HPV E6 and E7. Notably, a recent study identified CD8+
TIL responses against HPV E1, E2, and E6 [133], further supporting the notion that “non-
classical” HPV antigens such as E1, E2, E4, and E5 are targeted by a substantial portion
of HPV-specific CD8+ TILs and should thus not be neglected in the development of novel
therapeutic interventions for HPV+ HNSCC. Importantly, our findings also confirmed
previous studies demonstrating that HPV-specific CD8+ T cells are virtually undetectable
in the peripheral blood of patients with HPV+ HNSCC [79–83], despite individual epitope-
specific responses accounting for up to 10% of CD8+ T cells in the TME [78]. Overall, these
data highlight that HPV-specific T cell responses target several HPV antigens and are highly
localized to the TME.

HPV-specific CD8+ T cell responses in HPV+ HNSCC tumors were not only char-
acterized by a high degree of tissue retention but also exhibited a striking degree of
oligoclonality, with the four most prevalent clonotypes accounting for more than 50%
of the cells responding to a given epitope in most patients [78]. In some patients with
particularly immunodominant HPV-specific CD8+ TIL responses, individual clonotypes
made up for more than 5% of all CD8+ TILs, further highlighting the high degree of oligo-
clonality, which is likely driven by extensive and prolonged antigen exposure. Importantly,
HPV-specific CD8+ T cell responses and their clonotypic composition were comparable
in patient-matched primary tumor and metastatic lymph node samples, suggesting that
different HPV+ HNSCC tumor sites exhibit similar immune environments and immune
pressure [78].

HPV-specific CD8+ TILs in primary tumors and metastatic lymph nodes of patients
with HPV+ HNSCC uniformly expressed high levels of the inhibitory receptor PD-1 and the
transcription factor TOX [78], which are both commonly associated with T cell exhaustion.
A detailed analysis of HPV-specific CD8+ TILs from both tumor sites revealed a marked
heterogeneity of these exhausted CD8+ T cells, with three distinct clusters being present in
all examined samples: stem-like, transitory, and terminally differentiated cells (Figure 2A).
Stem-like CD8+ T cells, often also referred to as progenitor exhausted, are characterized
by co-expression of PD-1, TOX, and TCF-1, an important transcription factor encoded by
TCF7 and crucial for imparting the stem-like properties onto this subset [134–139]. Notably,
stem-like CD8+ T cells possess the ability to self-renew, exhibit substantial proliferative
potential, lack cytotoxic capacity but can give rise to a more differentiated, cytotoxic
progeny, and are essential for maintaining CD8+ T cell responses during conditions of
antigen persistence such as chronic viral infections and cancer. Importantly, this subset
has been shown to be responsible for the proliferative burst of CD8+ T cells upon PD-
1 pathway blockade in several preclinical mouse models (Figure 2B) [134–139], and its
intratumoral presence has been associated with improved outcomes and responsiveness
to immune checkpoint blockade (ICB) in several malignancies [138,140,141]. Transitory
cells are recently differentiated cells and likely exhibit the highest cytotoxic capacity among
exhausted CD8+ T cells [142,143]. They express high levels of effector molecules such as
granzymes and perforin, and relatively low levels of additional co-inhibitory receptors
such as CD39 when compared to terminally differentiated CD8+ T cells, which represent
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the most dysfunctional cells [142,143]. Notably, the three clusters of HPV-specific CD8+
TILs exhibited a substantial degree of clonal overlap, with individual clonotypes being
present in all three differentiation states [78]. These data thus strongly support a distinct
lineage relationship model in which HPV-specific stem-like CD8+ T cells give rise to
the more differentiated subsets (Figure 2A), akin to the experimentally validated lineage
relationship of exhausted T cells in preclinical mouse models [134,136]. It is important to
highlight that HPV-specific PD-1+ TCF-1+ CD8+ T cells in patients with HPV+ HNSCC
not only phenotypically resembled stem-like CD8+ T cells but indeed possessed stem-like
capabilities [78]. HPV-specific stem-like CD8+ T cells proliferated and differentiated into
a more effector-like state, characterized by upregulation of granzyme B and TIM3, when
stimulated in vitro with their cognate antigen, highlighting the therapeutic potential of
targeting this unique CD8+ T cell subset through ICB and/or therapeutic vaccination.
Overall, these data demonstrate that HPV-specific CD8+ T cells responsive to ICB are
abundantly present in the TME of HPV+ HNSCC, suggesting that this malignancy contains
the cellular machinery necessary for response to ICB in situ.
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indicated. (B) PD-1 pathway blockade increases proliferation and differentiation of stem-like CD8+
T cells into transitory cells and abrogates PD-1-mediated inhibition of transitory and terminally
differentiated cells, resulting in increased secretion of effector cytokines and cytotoxic molecules.
Based on data from preclinical mouse models. Dashed arrow indicates the unclear role of PD-1
pathway blockade onto self-renewal rate of stem-like cells. Created with BioRender.com.

3.2.3. HPV-Specific Intratumoral B Cell Responses

Increased frequencies of B cells as well as the presence of GC B cells and physical GCs
are characteristics of HPV+ HNSCC tumors [107,108,110,114]. However, little is known
about the antigen specificity of intratumoral B cells in HPV+ HNSCC. We recently demon-
strated the intratumoral presence of HPV-specific B cells in primary tumors and metastatic
lymph nodes [11]. Antibody-secreting cells (ASCs) producing IgG antibodies specific for
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HPV E2, E6, and E7 were readily detectable in the vast majority of HPV+ HNSCC tumors
but absent in HPV-negative tumors. HPV-specific IgG+ ASCs accounted for 0.1–20% of
all intratumoral IgG+ ASCs, with E2 being the most dominant target, similar to our find-
ings regarding the intratumoral CD8+ T cell response [78]. Notably, HPV-specific IgG+
ASC responses in primary tumors correlated with responses observed in patient-matched
metastatic lymph nodes, suggesting that ongoing anti-tumor responses are mirrored be-
tween these two tumor sites. Furthermore, we observed a positive correlation between
intratumoral HPV-specific IgG+ ASCs and HPV-specific plasma IgG titers, suggesting that
HPV-specific plasma IgG antibodies can provide insights into the intratumoral HPV-specific
ASC response in the absence of available tumor tissue [11]. In contrast to the abundance of
HPV-specific IgG+ ASCs in the TME, no HPV-specific ASCs were detected in the peripheral
blood, indicating a highly localized ASC response akin to the HPV-specific T cell response
in HPV+ HNSCC.

Notably, the presence of HPV-specific ASCs in the TME was not driven by indis-
criminate, inflammation-associated recruitment and differentiation of circulating MBCs.
Influenza-specific IgG+ ASCs were rarely detectable intratumorally, while influenza-specific
IgG+ MBCs vastly outnumbered HPV-specific IgG+ MBCs in the circulation of patients
with HPV+ HNSCC [11]. These findings suggest that, among intratumoral IgG+ ASCs in
HPV+ HNSCC, bystander responses directed against common human pathogens such as
influenza are relatively rare and that most IgG+ ASCs might be directed against tumor
antigens, which is in stark contrast to the ample presence of bystander CD8+ TILs in most
malignancies [122–127]. However, additional studies are required to support this notion,
as even in patients exhibiting the highest intratumoral HPV E2-, E6-, and E7-specific ASC
responses, the assessed HPV specificities accounted for less than 30% of IgG+ ASCs, raising
important questions about the specificity of the vast majority of intratumoral ASCs.

Besides ASCs, the TME of HPV+ HNSCC also contains additional active B cell subsets
that are identified by elevated expression of the transferrin receptor CD71: activated B cells
(ABCs), GC B cells, and a small cluster of transitory cells sharing transcriptional similarities
with both GC B cells and ASCs [11]. The antigen specificity of ABCs was assessed by flow
cytometric staining with a fluorescently labeled HPV E2 antigen probe and subsequently
confirmed by generation of human monoclonal antibodies (hmAbs). The generation of
hmAbs not only yielded useful reagents to assess the role of HPV proteins in the viral
life cycle [144] but also revealed a striking degree of somatic hypermutation (SHM) in the
antibody-encoding genes of intratumoral HPV-specific ABCs. Notably, the degree of SHM
in HPV-specific ABCs was substantially greater than in human B cells elicited by various
vaccinations or acute viral infections [145–150], suggesting that the observed intratumoral
HPV-specific B cell responses represent actively ongoing responses driven by continuous
antigen exposure. ABCs are B cells that recently encountered their cognate antigen and
do not secrete antibodies [145]. Furthermore, ABCs are distinct from MBCs by elevated
expression of several genes related to antigen presentation such as MHC-II, suggesting that
they might actively present antigens to intratumoral CD4+ T cells. While direct interactions
between HPV-specific ABCs and CD4+ TILs, which have been scarcely studied regarding
their antigen specificity in HPV+ HNSCC [131,133], are likely to occur in the TME, direct
interactions between HPV-specific B cells and CD8+ T cells are, despite similar antigen
reactivity patterns [11,78], unlikely as dendritic cells (DCs) and not B cells are in general
considered the major cell type capable of antigen cross-presentation [151]. Although B
cells might not directly present antigens to CD8+ T cells, the production of HPV-specific
antibodies might still indirectly contribute to the cross-presentation of HPV antigens by
enhancing uptake and processing of HPV antigens in the form of immune complexes
and subsequent cross-presentation by DCs [96], providing a potential mechanistic link
explaining the comparable antigen reactivity patterns between HPV-specific CD8+ T cells
and B cells in the TME (Figure 1).
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4. Implications for Immunotherapy

The overall “hot” immune microenvironment in HPV+ HNSCC tumors combined with
the presence of conserved, virus-derived antigens that are targeted by both intratumoral T
and B cells renders this disease a prime candidate for immunotherapeutic interventions.
Notably, current de-escalation strategies attempt to incorporate immunotherapeutic treat-
ment modalities with the overall goal of reducing morbidities associated with traditional
treatments such as chemotherapy and radiation, while maintaining high cure rates [59,60].

4.1. Immune Checkpoint Blockade

ICB has transformed the clinical management of several malignancies, and several
inhibitors of the PD-1 signaling pathway have obtained FDA approval over the past decade,
including for the treatment of HNSCC [59,152]. However, despite the ample presence of
HPV-specific B and T cells in the TME and expression of viral antigens by the tumor, re-
sponse rates to ICB have been rather disappointing and did not exceed 30% in patients with
HPV+ HNSCC [59,153]. This is especially surprising as HPV+ HNSCC tumors not only con-
tain HPV-specific CD8+ T cells but also a substantial number of stem-like CD8+ T cells [78],
which have been linked to responsiveness to ICB in preclinical mouse models as well as sev-
eral clinical studies [135–141]. Notably, the substantial infiltrations of HPV-specific CD8+ T
cells, including the stem-like subset, were observed in treatment-naïve patients undergoing
surgical resection as first-line treatment [78]. In contrast, ICB has so far only been assessed
in the recurrent setting, in which patients with HPV+ HNSCC had previously received
several rounds of conventional treatments such as chemotherapy and radiation. These
treatment modalities might have substantially reduced or potentially even completely
abrogated intratumoral HPV-specific CD8+ T cell responses, thus hampering subsequent
responsiveness to ICB. An alternative explanation for the limited ICB responses in patients
with HPV+ HNSCC might be the presence of additional, unknown immunoregulatory
mechanisms preventing the proliferation and differentiation of HPV-specific stem-like
CD8+ T cells or the execution of sufficient effector functions of their cytotoxic progeny upon
ICB. Further studies are required to assess how the TME and especially intratumoral T cell
responses of patients with HPV+ HNSCC evolve in response to conventional treatment
modalities in terms of antigen specificity and differentiation state.

4.2. Therapeutic Vaccines

The presence of a defined set of conserved antigens of foreign/viral nature in HPV+
HNSCC renders this malignancy an excellent candidate for therapeutic vaccination ap-
proaches. Notably, multiple therapeutic vaccine platforms including peptide-, nucleic-acid-,
and vector-based vaccines are currently being investigated for the treatment of several
HPV-associated malignancies including HPV+ HNSCC [154]. While the employed vaccine
platforms vary widely, they are all exclusively focused on eliciting immune responses
against the viral oncoproteins E6 and E7, thus not taking advantage of the full antigenic
breadth of most HPV+ HNSCC tumors, which express virtually all HPV E proteins due to
episomal maintenance of the HPV genome [16,76,77].

Therapeutic vaccines can improve anti-tumor CD8+ T cell responses, in general,
through two distinct mechanisms: (i) either by de novo priming CD8+ T cells that were not
recruited into the initial response due to inefficient or absent presentation of their respective
target peptides on professional antigen-presenting cells or (ii) by re-priming/stimulation
of antigen-experienced CD8+ T cells to undergo further proliferation. Although definitive
experimental data in humans are lacking, data from preclinical mouse models demonstrate
that therapeutic vaccines can exert detectable therapeutic effects through the stimulation of
pre-existing, exhausted CD8+ T cells [155]. These responses are most likely mediated by
re-priming of stem-like CD8+ T cells, the only exhausted T cell subset with proliferative
potential, through the simultaneous provision of cognate antigen and co-stimulatory signals
such as CD28, which has been shown to be crucial for the proliferative burst of exhausted
CD8+ T cells in response to ICB [156].
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The limited clinical efficacy of therapeutic vaccines for HPV+ HNSCC, especially
in the monotherapy setting, can also be explained by the fact that, even if anti-tumor
responses are elicited, the primed or re-primed CD8+ T cells will eventually encounter
negative immunoregulatory signals in the TME such as PD-L1 and other immunoregulatory
cell subsets such as regulatory T cells and myeloid suppressor cells, thus blunting their
activity [157]. Notably, while therapeutic vaccines employing synthetic long peptides
(SLPs) of HPV E6 and E7 elicit robust HPV-specific T cell responses in patients with
premalignant lesions and cervical cancer, their clinical efficacy as monotherapy is limited
to the treatment of premalignant anogenital lesions, with clinical responses in about 50%
of individuals [158–160]. Preclinical data demonstrate that, while therapeutic vaccines as
monovalent therapies can have modest impacts on antigenic burden, concomitant ICB
exerts synergistic effects and results in efficient rejuvenation of exhausted CD8+ T cell
responses and striking therapeutic effects [155]. In line with this, a recent trial assessing
the combination of HPV SLPs and PD-1 pathway blockade showed promising results in
patients with HPV+ HNSCC, with overall response rates of around 33% [161]. Furthermore,
the combination of HPV SLPs and chemotherapy to ablate immunosuppressive myeloid
cells induced robust T cell responses, which were associated with prolonged survival of
patients with cervical cancer [162,163].

Overall, these data suggest that inclusion of additional HPV antigens, besides the
classical HPV oncoproteins E6 and E7, into therapeutic HPV vaccines and their combination
with ICB or other immunomodulatory interventions will unleash anti-tumor immune
responses of maximal breadth, magnitude, and functionality in HPV+ HNSCC.

4.3. Adoptive Cell Therapies

Adoptive cell therapies (ACTs) are another promising immunotherapeutic treatment
modality for HPV+ HNSCC. Overall, two distinct adoptive cell therapy approaches have
been evaluated for their efficacy against HPV-associated cancers in phase I/II studies:
infusion of TIL products that were enriched for reactivity against HPV E6 and E7 [164–166],
or infusion of T cells genetically engineered to express a T cell receptor (TCR) directed
against either an HPV E6- or E7-derived peptide presented by HLA-A*02:01 [167–169]. Both
ACT approaches showed promising results with objective responses in a substantial fraction
of patients, with some patients even exhibiting complete regressions. A major limitation of
currently employed TCR-modified ACTs, however, is that they so far exclusively target
HPV E antigens restricted by HLA-A*02:01. While HLA-A*02:01 is by far the most prevalent
HLA allele in Caucasians, the currently available TCR products do not benefit the vast
majority of the population. Notably, we recently identified several TCRs recognizing two
immunodominant HPV E2 epitopes presented by HLA-A*01:01 [78], thus expanding the
repertoire of potential TCRs for ACTs not only in terms of antigenic breadth but also
HLA restriction. Overall, TCR-engineered ACTs are a promising treatment modality, and
their further development and broader applicability will benefit from future studies on
HPV-specific intratumoral CD8+ T cells by yielding novel TCRs directed against additional
epitopes restricted by a wider range of HLAs.

5. Conclusions

Substantial progress has been made over the past few decades in the area of HPV+
HNSCC, resulting in a better understanding of the genetic and immunological landscape
of HPV+ HNSCC. However, there are still substantial gaps in our knowledge regarding
the immunological landscape of this disease. In particular, the antigen specificity and
differentiation states of tumor-specific B and T cells within the TME are not well understood.
Some of the outstanding questions are: What are the immunodominant antigens recognized
by intratumoral HPV-specific B and T cells? Do the differentiation states of TILs specific
for distinct HPV antigens differ, with some reactivities being more prone to terminal
exhaustion? Is there an interplay between humoral and cellular HPV-specific TILs? If
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so, what is the mechanistic basis, and can it be harnessed to develop novel therapeutic
approaches and improve treatment outcomes?

A better understanding of the immunological landscape will crucially inform the
development of novel therapeutic approaches to increase cure rates while simultaneously
reducing treatment-associated morbidities. Importantly, the insights gained from studying
anti-tumor responses in HPV+ HNSCC will also substantially improve our general under-
standing of tumor-specific immune responses in humans as this malignancy, due to the
expression of distinct virus-derived tumor antigens, can serve as a unique model enabling
the study of bona fide tumor-specific B and T cell responses in humans.
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