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Abstract: Papillomaviruses (PV) infect epithelial cells and can cause hyperplastic or neoplastic lesions.
In felids, most described PVs are from domestic cats (Felis catus; n = 7 types), with one type identified
in each of the five wild felid species studied to date (Panthera uncia, Puma concolor, Leopardus wiedii,
Panthera leo persica and Lynx rufus). PVs from domestic cats are highly diverse and are currently
classified into three genera (Lambdapapillomavirus, Dyothetapapillomavirus, and Taupapillomavirus),
whereas those from wild felids, although diverse, are all classified into the Lambdapapillomavirus
genus. In this study, we used a metagenomic approach to identify ten novel PV genomes from rectal
swabs of five deceased caracals (Caracal caracal) living in the greater Cape Town area, South Africa.
These are the first PVs to be described from caracals, and represent six new PV types, i.e., Caracal
caracal papillomavirus (CcarPV) 1–6. These CcarPV fall into two phylogenetically distinct genera:
Lambdapapillomavirus, and Treisetapapillomavirus. Two or more PV types were identified in a single
individual for three of the five caracals, and four caracals shared at least one of the same PV types
with another caracal. This study broadens our understanding of wild felid PVs and provides evidence
that there may be several wild felid PV lineages.

Keywords: Caracal caracal; Papillomaviridae; Lambdapapillomavirus; Treisetapapillomavirus

1. Introduction

Papillomaviruses (PVs; family Papillomaviridae) are circular double-stranded (dsDNA)
viruses that infect mammals, birds, and reptiles [1–4]. Highly diverse and generally species-
specific, PVs are epithelial-cell-trophic. A single host can be infected with several PV types,
including types that are classified within different genera [5,6]. PV genomes are composed
of five to six early genes and two late genes. The L1 gene which encodes the major capsid
protein typically shows higher levels of conservation among PVs and is used for taxonomic
classification with those sharing >60% L1 nucleotide similarity belonging to the same genus,
>70% for species, and >90% for type [2]. Currently, most of the known PV types are those
infecting humans, with a significant knowledge gap for non-human PVs and their broader
evolution [2,4].

In felids, several unique papillomaviruses have been identified which can cause cuta-
neous or oral lesions [7]. The most studied feline species is the domestic cat (Felis catus).
In domestic cats, PVs rarely cause the hyperplastic papillomas (warts) which are common
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in other felid species [7]. Instead, many PV types are detected in association with preneo-
plastic viral plaques or invasive neoplasms of the skin [7,8]. Seven PV types from domestic
cats have been classified to date: Felis catus papillomavirus (FcaPV) 1–7 [9–15]. FcaPV7
(OL310516; [16]), although identified from a skin swab from a human, is thought to be of
feline origin due to the person being a cat owner and the genome showing similarities
to FcaPV2. In addition, an unclassified FcaPV genome (OQ836188; [17]) was recovered
from an infection associated with skin cancer in a domestic cat that will likely be FcaPV8,
and another, Bos taurus papillomavirus (BPV) 14 [18], was found to cause feline sarcoids
after cross-species infection from its bovine host [19] (Table 1). The FcaPVs belong to
three different genera, Lambdapapillomavirus (FcaPV1), Dyothetapapillomavirus (FcaPV2), and
Taupapillomavirus (FcaPV3, -4, -5, -6), and FcaPV7 is currently unclassified but sits with
FcaPV2 and is, therefore, likely a Dyothetapapillomavirus. In wild felid species, complete PV
genomes have previously been documented in a bobcat (Lynx rufus)—Lynx rufus papillo-
mavirus 1 (LrPV1), Asiatic lion (Panthera leo persica)—Panthera leo persica papillomavirus
1 (PlpPV1), snow leopard (Uncia uncia or Panthera uncia)—Uncia uncia papillomavirus 1
(UuPV1), mountain lion (Puma concolor)—Puma concolor papillomavirus 1 (PcPV1) [20,21],
and margay (Leopardus wiedii)—Leopardus wiedii papillomavirus 1 (LwiePV1) [22]. These
feline PV types all belong to the Lambdapapillomavirus genus, which has other PVs from the
Carnivora species. Several partial felid PV sequences representing novel papillomaviruses
have also been identified (Table 1) from domestic cats, cheetahs (Acinonyx jubatus) [23], the
African lion (Panthera leo) [23], and snow leopards [24,25].

Table 1. Summary of PVs (full genome and partial sequences available in GenBank) that have been
identified in felids. N/A—not avaliable/unknown.

Type/Species/Genus Source Accession
Number

Collection
Date Country Nucleotide

Completeness Isolation Source Reference

Acinonyx jubatus papillomavirus
1 (AjuPV1)/unclassified

Cheetah
(Acinonyx
jubatus)

MG552617-
MG552632,
MG552634-
MG552638,
MG552640-
MG552642,
MG552644-
MG552651,
MG552653-
MG552668

2014/2015 Namibia Partial Oral lesion [23]

Leopardus wiedii papillomavirus
1 (LwiePV1)/unclassified/

Lambdapapillomavirus

Margay
(Leopardus wiedii) MH910493 2017 Costa Rica Complete Skin lesion [22]

Lynx rufus papillomavirus 1
(LrPV1)/Lambdapapillomavirus

1/Lambdapapillomavirus

Bobcat (Lynx
rufus) AY904722 N/A USA Complete Oral lesion [20]

Panthera leo persica
papillomavirus 1

(PlpPV1)/Lambdapapillomavirus
1/ Lambdapapillomavirus

Asiatic lion
(Panthera leo

persica)
AY904724 N/A USA Complete Oral lesion [20]

Cheetah KP760482,
KP760483 2014 Namibia Partial Oral lesion [23]

African lion
(Panthera leo) KP760481 2014 Namibia Partial Oral lesion [23]

MG552616 2014 South Africa Partial Oral lesion [23]

MG552633 2014 South Africa Partial Oral lesion [23]

MG552639 2014 Namibia Partial Oral lesion [23]

MG552652 2017 South Africa Partial Oral lesion [23]

MG552669 2017 South Africa Partial Oral lesion [23]

Asian tiger
(Panthera tigris

tigris)
MG552643 2015 South Africa Partial Oral lesion Unpublished



Viruses 2024, 16, 701 3 of 17

Table 1. Cont.

Type/Species/Genus Source Accession
Number

Collection
Date Country Nucleotide

Completeness Isolation Source Reference

Uncia uncia
papillomavirus/unclassified

Snow leopard
(Panthera uncia)

OR355483 N/A USA Partial Skin lesion [25]

MT799783 2012 Mongolia Partial Rectal swab [24]

Uncia uncia papillomavirus 1
(UuPV1)/Lambdapapillomavirus

1/Lambdapapillomavirus

Snow leopard
(Panthera uncia) DQ180494 N/A USA Complete Oral lesion [20]

Puma concolor papillomavirus 1
(PcPV1)/Lambdapapillomavirus

1/Lambdapapillomavirus

Puma (Puma
concolor) AY904723 N/A USA Complete Oral lesion [20]

Bos taurus papillomavirus 14
(BVP14) /Deltapapillomavirus

4/Deltapapillomavirus

Domestic cat
(Felis catus) KP276343 2012 USA Complete Skin lesion [19]

Feline sarcoid-associated
papillomavirus/unclassified

Domestic cat
(Felis catus) FJ977616 2008 USA Partial Skin lesion [26]

Felis catus papillomavirus 1
(FcaPV 1)/Lambdapapillomavirus

1/Lambdapapillomavirus

Domestic cat
(Felis catus) AF480454 N/A N/A Complete Skin lesion [11]

Felis catus papillomavirus 2
(FcaPV 2)/Dyothetapapillomavirus

1/Dyothetapapillomavirus

Domestic cat
(Felis catus)

EU796884 2007 Germany Complete Skin lesion [14]

LC612600 N/A Japan Complete Skin lesion [27]

KP868617 2014 Italy Partial Skin lesion [28]

Felis catus papillomavirus 3
(FcaPV 3)/Taupapillomavirus

3/Taupapillomavirus

Domestic cat
(Felis catus)

JX972168 2010 New Zealand Complete Skin lesion [9]

KY825188 2012 USA Complete Oral lesion [29]

KP868618 2014 Italy Partial Skin lesion [28]

LC333418 2013 Japan Partial Skin lesion [30]

OP321266 2019 Turkey Partial Skin lesion Unpublished

HM130736 1997 USA Partial Skin lesion [31]

Felis catus papillomavirus 4
(FcaPV 4)/Taupapillomavirus

3/Taupapillomavirus

Domestic cat
(Felis catus)

KF147892 2011 New Zealand Complete Oral lesion [12]

LC333412 2013 Japan Complete Skin lesion [30]

EF447284 2007 USA Partial Skin lesion [15]

LC333413 2014 Japan Complete Skin lesion [30]

MZ357115 2020 China Partial Oral swab [32]

HM802139 2010 New Zealand Partial Skin lesion [33]

Felis catus papillomavirus 5
(FcaPV 5)/unclassified Taupapil-

lomavirus/Taupapillomavirus

Domestic cat
(Felis catus)

KY853656 2016 New Zealand Complete Skin lesion [10]

LC432492,
LC432493 2017 Japan Partial Skin lesion [34]

Felis catus papillomavirus 6
(FcaPV 6)/unclassified Taupapillo-

mavirus/Taupapillomavirus

Domestic cat
(Felis catus) MN857145 2020 Australia Complete Skin lesion [13]

Felis catus papillomavirus 7
(FcaPV 7)/unclassified

Dyothetapapillo-
mavirus/Dyothetapapillomavirus

Human skin of
domestic cat

owner
OL310516 N/A USA Complete N/A [16]

Felis catus papillomavirus
unclassi-

fied/unclassified/Taupapillomavirus

Domestic cat
(Felis catus)

OQ836188 2022 New Zealand Complete Skin lesion [17]

OP762604 2022 New Zealand Partial Skin lesion [35]

Felis catus papillomavirus
unclassified

Domestic cat
(Felis catus) FJ222327 2008 New Zealand Partial Skin lesion [36]

Felis catus papillomavirus
unclassified

Domestic cat
(Felis catus) KX345934 2016 New Zealand Partial Skin lesion [35]

Felis catus papillomavirus
unclassified

Domestic cat
(Felis catus) ON017788 2022 New Zealand Partial Skin lesion [35]

Felis catus papillomavirus
unclassified

Domestic cat
(Felis catus) GU724683 2009 New Zealand Partial Oral lesion [37]

Human papillomavirus 182
(HPV182)/Betapapillomavirus

2/Betapapillomavirus

Domestic cat
(Felis catus) GQ916646 2001 USA Partial N/A [38]

Human papillomavirus 9
(HPV9)/Betapapillomavirus

2/Betapapillomavirus

Domestic cat
(Felis catus) EF608232 N/A New Zealand Partial Skin lesion [39]
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The monophyletic nature of the PVs identified from wild felid species contrasts with
those from domestic cats which are polyphyletic [9,10,12,13,31]. This could be a result of
several factors, such as the sampling bias of domestic cats, and/or to areas where obvious
lesions are observed, as well as the geographic or region endemicity of the different wild fe-
lid species versus the broad global distribution and free ranging capability of domestic cats,
exposing them to a higher cross-species transmission potential. The Lambdapapillomavirus
feline lineage appears to be slow-evolving, at a rate of 1.95 × 10−8 nucleotide substitutions
per site per year, and shows evidence of a long coevolutionary history with their feline
host species [20]. Further, these viruses appear to have a unique second non-coding region
between the early and late protein region [20].

Here, we identify ten complete PV genomes from five caracals (Caracal caracal) in-
habiting the greater Cape Town area, Western Cape, South Africa. These are the first
documented PVs from caracals and they belong to two genera, Lambdapapillomavirus and
Treisetapapillomavirus, thus expanding our current knowledge on PVs in wild felids.

2. Materials and Methods
2.1. Study Site and Sample Collection

As part of a long-term study undertaken by the Urban Caracal Project (www.urbancaracal.org;
accessed 12 February 2024) to monitor the health and well-being of caracals in the greater
Cape Town area, rectal swab samples were collected during post-mortem of deceased
animals (n = 26) between 2021 and 2023 using PurFlock ultra 6′′ sterile flock swabs (Puritan
Medical Products, Guilford, ME, USA). Cause of death for these caracals was determined to
be motor vehicle impact when crossing urban roads, disease and/or poisoning, or poaching.
The swabs were stored at −20 ◦C in Puritan UniTranz-RT media (Puritan Medical Products,
Guilford, ME, USA) for downstream nucleic acid extraction.

2.2. Sample Processing and Papillomavirus Genome Identification

High Pure Viral Nucleic Acid Kit (Roche Diagnostics, Indianapolis, IN, USA) was
used to isolate viral nucleic acid from 200 µL of the UTM buffer in which the swabs
were stored. Then, 1 µL of the viral nucleic acid was enriched for circular molecules by
rolling circle amplification (RCA) using the Illustra TempliPhi Kit (Cytiva Lifesciences,
Marlborough, MA, USA). An aliquot of viral nucleic acid was combined with the RCA
product and high-throughput sequencing (HTS) libraries were generated using an Illumina
DNA prep (M) tagmentation kit (Illumina, San Diego, CA, USA). Libraries were sequenced
on Illumina NovaSeq X plus sequencer at Psomagen Inc. (Rockville, MD, USA). The raw
paired-end reads (2 × 150 bp) were trimmed using Trimmomatic −0.39 [40] and de novo
assembled with MEGAHIT v1.2.9 [41]. The de novo assembled contigs of >1000 nts were
screened against a viral RefSeq protein sequence database (release 220) using DIAMOND
BLASTx [42]. We also screened the contigs for host mitochondrial genomes using Diamond
BLASTx [42] with a mitochondrial RefSeq database (release 220). Contigs were determined
as circular based on terminal redundancy. Read mapping to confirm adequate depth and
coverage of full genomes was performed using BBmap [43].

The complete papillomavirus and mitochondrial genome sequences are deposited in
GenBank with accession # OR915584-OR915593 and PP566117-PP566121, respectively. The
SRA data are deposited under BioProject #PRJNA1045660, BioSample # SAMN38451862-
SAMN38451866 and SRA # SRR26982246-SRR26982250 for the PV sequences. For the caracal
mitochondrial genomes under BioProject # PRJNA1033669-PRJNA1033673, BioSample #
SAMN38451862-SAMN38451866, and SRA # SRR28492289-SRR28492293.

2.3. Genome Characterization, Pairwise Comparison, and Phylogenetic Analyses

The PV genomes were annotated with Cenote-Taker2 [44], and then manually checked
with annotation of PVs from PAVE [4]. The mitochondrial genomes of the hosts were
annotated with the MITOS server [45,46], and then manually checked.

www.urbancaracal.org
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Pairwise similarity identities were determined for the full genome, and the E1, E2, E3,
E6, E7, L1, and L2 genes and protein sequences of the PVs from this study and of those
most closely related using SDT v1.2 [47].

Dataset of L1, E1, and E2 protein sequences of all PV types referenced at PAVE [4],
as well as those from this study, were assembled. We opted to use the protein sequences
of L1, E1, and E2 as these are the most conserved amongst the papillomaviruses and
can be more credibly aligned than the corresponding nucleotide sequences. These were
aligned using MAFFT [48] and trimmed using TrimAL [49] with the 0.2 gap option and
concatenated (L1 + E1 + E2). The best-fit amino acid substitution models LG + I+G for
the E1, LG + I + G + F for the E2, and LG + I + G + F for the L1 were determined using
ProtTest3 [50]. A partitioned phylogenetic tree was inferred using IQ-TREE2 [51] with aLRT
branch support and rooted with the L1 + E1 + E2 of avian papillomaviruses. The phyloge-
netic tree was visualized in iTOLv6 [52]. Mitochondrial genomes from caracals together
with those available from other members of the Caracal genus available in GenBank were
aligned using MAFFT [48] and a neighbor-joining tree was constructed using FastTree [53],
implemented in Geneious Prime 2024.0.4.

The motif discovery and comparison tools MEME [54] and Tomtom [55] were used
to identify conserved motifs in the non-coding regions of the genomes of feline-infecting
Lambdapapillomaviruses.

3. Results and Discussion
3.1. Identification of Papillomavirus Genomes in Wild Caracal

As part of an ongoing effort to monitor caracal health and survival in the greater Cape
Town area (Western Cape, South Africa), rectal swabs were collected from deceased caracals
as a result of being hit by motor vehicles, and/or suspected disease or pesticide poisoning
between the period 2021–2023 (Table 2). Ten novel PV genomes were determined from the
rectal swabs of five caracals (Figure 1, Table 2). No obvious lesions or papillomas were
observed during post-mortem sample collection.

Table 2. Sample information for PV-positive caracals from this study.

Animal ID Sampling
Date Age Class Sex Cause of

Mortality Latitude Longitude Caracal Caracal Papillomavirus
(CcarPV) [Accession Number]

CM93 23 April 2022 Adult Female Hit by car −34.009083 18.348333 CcarPV1 [OR915585]
CcarPV2 [OR915587]

CM108 18 May 2023 Kitten Female Disease or
pesticides −34.1066937 18.3710802

CcarPV1 [OR915586]
CcarPV2 [OR915588]
CcarPV3 [OR915589]

CM75 1 March 2021 Subadult Male Hit by car −34.083054 18.427006 CcarPV5 [OR915591]

CM91 10 April 2022 Adult Female Hit by car −34.101580 18.417405
CcarPV1 [OR915584]
CcarPV5 [OR915592]
CcarPV6 [OR915593]

CM111 2 June 2023 Adult Male Poached −34.002037 18.445959 CcarPV4 [OR915590]

Ten PV genomes were de novo assembled from high-throughput sequencing data
with an average read depth ranging from 21- to 108,899-fold. All ten PV genomes have
identifiable E1, E2, E6, E7, L1, and L2 genes and range in genome size from 7566 to 8176 bp
(Figure 2A). Based on the papillomavirus ICTV species demarcation determination of
<70% pairwise identity for the L1 gene sequences and <10% pairwise identity for PV
types, these ten PV represent six novel types; Caracal caracal papillomavirus (CcarPV) 1–6,
(Figure 2, Table 2). CcarPV1, -2, -3, and -4 share >70% L1 gene sequence identity with other
felid PVs, i.e., LwiePV1 [22], LrPV1, PlpPV1, UuPV1 and PcPV1 [20,21], and FcaPV1 [11],
and, therefore, these all belong to the same species. CcarPV5 and -6 share <70% L1 gene
nucleotide sequence identity with other PVs and each other, and, therefore, will represent
two new species. All CcarPV isolates belonging to the same type share 100% L1 gene
nucleotide sequence pairwise identity.
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locations of caracals that were found to be positive for papillomavirus.

Caracals CM93 and CM91, both adult females, were found to have multiple PVs,
with CM93 harboring two PVs, CcarPV1 (OR915585) and CcarPV2 (OR915587), and
CM91 three PVs, CcarPV1 (OR915584), CcarPV5 (OR915592), and CcarPV6 (OR915593)
(Figures 1 and 2). Caracal CM108, a female kitten, harbored three PVs: CcarPV1 (OR915586),
CcarPV2 (OR915588), and CcarPV3 (OR915589). Lastly, Caracal CM75 and CM111, both
males, a subadult and an adult, both harbored one PV, CcarPV5 (OR915591) and CCarPV4
(OR915590), respectively. CM93, CM108, and CM91 were all infected with CcarPV1 and
one or two other PV types, showing a high rate of PV coinfection which is commonly seen
in mammals [6,56]. Further, CcarPV1 and -2 were present in both CM93 and CM108. Taking
into consideration the fact that these three individuals share at least one PV type and were
found deceased within a 10 km radius from each other, this may indicate these cats were
related, and/or interacted with other caracal(s) not sampled infected with these PV types.



Viruses 2024, 16, 701 7 of 17Viruses 2024, 16, x FOR PEER REVIEW 8 of 18 
 

 

 
Figure 2. (A) Genome organization of CcarPV genomes described in this study. (B) L1 gene nucleo-
tide pairwise comparisons of the CcarPVs with those of PVs that are members of Dyothetapapillo-
mavirus, Lambdapapillomavirus, Taupapillomavirus (felid PVs only), and Treisetapapillomaviruss 
genera. PVs from caracals are shown in red. Abbreviations are as follows: Caracal caracal papillo-
mavirus (CcarPV), Felis catus papillomavirus (FCaPV), Canis familiaris papillomavirus (CPV) Lep-
tonychotes weddellii papillomavirus (LwPV), Crocuta crocuta papillomavirus (CcrPV), Vulpes vul-
pes papillomavirus (VvPV), Lynx rufus papillomavirus (LrPV), Puma concolor papillomavirus 
(PcPV), Panthera leo persica papillomavirus (PlpPV), Panthera uncia papillomavirus (UuPV), 
Leopardus wiedii papillomavirus (LwiePV), Ailuropoda melanoleuca papillomavirus (AmPV), Pro-
cyon lotor papillomavirus (PlPV), and Enhydra lutris papillomavirus (ElPV). 

Caracals CM93 and CM91, both adult females, were found to have multiple PVs, with 
CM93 harboring two PVs, CcarPV1 (OR915585) and CcarPV2 (OR915587), and CM91 
three PVs, CcarPV1 (OR915584), CcarPV5 (OR915592), and CcarPV6 (OR915593) (Figures 
1 and 2). Caracal CM108, a female kitten, harbored three PVs: CcarPV1 (OR915586), 
CcarPV2 (OR915588), and CcarPV3 (OR915589). Lastly, Caracal CM75 and CM111, both 
males, a subadult and an adult, both harbored one PV, CcarPV5 (OR915591) and CCarPV4 
(OR915590), respectively. CM93, CM108, and CM91 were all infected with CcarPV1 and 

Figure 2. (A) Genome organization of CcarPV genomes described in this study. (B) L1 gene nucleotide
pairwise comparisons of the CcarPVs with those of PVs that are members of Dyothetapapillomavirus,
Lambdapapillomavirus, Taupapillomavirus (felid PVs only), and Treisetapapillomaviruss genera.
PVs from caracals are shown in red. Abbreviations are as follows: Caracal caracal papillomavirus
(CcarPV), Felis catus papillomavirus (FCaPV), Canis familiaris papillomavirus (CPV) Leptonychotes
weddellii papillomavirus (LwPV), Crocuta crocuta papillomavirus (CcrPV), Vulpes vulpes papillo-
mavirus (VvPV), Lynx rufus papillomavirus (LrPV), Puma concolor papillomavirus (PcPV), Panthera
leo persica papillomavirus (PlpPV), Panthera uncia papillomavirus (UuPV), Leopardus wiedii papil-
lomavirus (LwiePV), Ailuropoda melanoleuca papillomavirus (AmPV), Procyon lotor papillomavirus
(PlPV), and Enhydra lutris papillomavirus (ElPV).
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3.2. Caracal Mitochondrial Genomes

An advantage to using rolling circle amplification for the enrichment of circular
DNA molecules is that this enables the simultaneous identification of host mitochondrial
genomes that are also circular. From the PV-positive caracal samples, we were able to
determine the full mitochondrial genomes. Phylogenetically (based on the mitochondrial
sequences), all five caracals are closely related and sit within the Caracal clade, forming
a sister lineage to the caracal mitochondrial genome (KP202272) available in GenBank
(Figure 3). The mitochondrial genomes of caracals CM75, CM91, CM93, CM108, and CM111
share 99.9–100% pairwise nucleotide identity with each other and 99.8–99.9% pairwise
nucleotide identity with a caracal mitochondrial genome (KP202272) [57] (Figure 3). This
high level of similarity is not surprising given the recent study which showed that the
Caracal population in Cape Town have elevated levels of inbreeding [58]. A comparison
with mitochondrial genomes of two other members of the caracal lineage, an African golden
cat (Caracal aurata) (KP202255) and a serval (Leptailurus serval) (KP202286) [57], showed
they share 91.1–93% pairwise nucleotide identity.
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3.3. Sequence Comparison of Caracal PVs

For the six CcarPV types, their genomes share 59.4–71.1% pairwise identity (Supple-
mentary Data S1), showing a significant diversity amongst these genomes. For CcarPV1,
CcarPV2, and CcarPV5, however, multiple isolates were identified from more than one
individual, and, within each type, the isolate sequences are identical. PVs can be very
slow-evolving, and, therefore, it is not uncommon to find identical sequences in samples
from different individuals, even for PVs sampled decades apart [59,60]. A full-genome
pairwise comparison of the CcarPVs with the PVs most closely related reveals that they
share 58.8–72.6% pairwise identity, with CcarPV3 and PcPV1 (AY904723) from a puma [20]
sharing the highest pairwise identity of 72.6%. A pairwise comparison of the protein
sequences of E1, E2, E3, E6, E7, L1, and L2 for CcarPVs with those of PVs most closely
related show that the L1 and E1 proteins share the highest pairwise identities ranging from
47.2–87.1% and 45.1–76.8%, respectively. Overall, the E6 protein has the lowest pairwise
identity (23.1–59.1%) for the CcarPVs and those of the most closely related PVs.
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3.4. Caracal PV L1 + E1 + E2 Phylogeny

A maximum-likelihood phylogenetic tree was constructed from the concatenated
L1 + E1 + E2 protein sequences of the caracal PVs and those of representative PV sequences
from GenBank. This analysis showed these six CcarPV types are part of two genera,
Treisetapapillomavirus and Lambdapapillomavirus (Figure 4). Treisetapapillomavirus currently
comprises two PVs; one identified from a Weddel seal (Leptonychotes weddellii) [5] and one
from a red fox (Vulpes vulpes) [61]. Lambdapapillomavirus comprises PVs from felid species
(wild and domestic) [20,22], Weddel seal [5], giant panda (Ailuropoda melanoleuca) [32], sea
otter (Enhydra lutris) [62], raccoon (Procyon lotor) [63], spotted hyena (Crocuta crocuta) [64],
and domestic dog (Canis familiaris) [65,66]. Previously identified PVs from wild felids, puma
and bobcat [20,22], all cluster with members of the Lambdapapillomavirus genus, whereas
those from domestic cats are distributed across three genera, i.e., Lambdapapillomavirus, Tau-
papillomavirus, and Dyothetapapillomavirus. The CcarPVs from this study that are part of the
Lambdapapillomavirus genus are CcarPV1, -2, -3, and -4, all grouped in a felid-PV-dominant
subclade with one non-felid PV, CcrPV1 (HQ585856) from a spotted hyena [64]. CcarPV1 is
basal in this clade, whereas CcarPV3 is most closely related to LwiePV1 (MH910493) [22]
from a margay and CcrPV1 (HQ585856) from a spotted hyena [64]. CcarPV2 and -4 cluster
in a clade that is basal to the other felid PVs in the genus Lambdapapillomavirus [11,20,22].
It should be noted that some of these subclades do not have strong branch support, and,
therefore, as more PVs are identified and added to this group, it will likely help resolve
these phylogenetic relationships more robustly. CcarPV5 and -6 group with the PVs in the
genus Treisetapapillomavirus as a sister clade to Leptonychotes weddellii papillomavirus 2
(MG571089) [5] from a Weddell seal and Vulpes vulpes papillomavirus 1 (KF857586) [61]
from a red fox. The polyphylogenetic distribution of the CcarPVs is similar to that noted for
the domestic cat PVs, and, therefore, with the increased sampling of wild felids, a similar
pattern may emerge. This is significant as it indicates a more complex evolutionary history
than what was previously thought.

3.5. Large Non-Coding Region in the Genomes of Lambdapapillomaviruses

Treisetapapillomavirus genomes are up to 1215 bp smaller (7392–7598 bp; [5,61] than
those of lambdapapillomaviruses (7944–8607 bp) [11,20,64]. This difference in genome size
appears to be due, at least in part, to a stretch of a non-coding region between the E2 and
the L2 coding open reading frames (ORFs) in lambdapapillomaviruses, with the exception
of Leptonychotes weddellii papillomavirus 1 (MG571090) from a Weddell seal [5]. This non-
coding region has previously been noted and discussed in Rector et al. (2007). They noted
there are several conserved regions that are likely to be of regulatory or other functional
importance. To investigate this further, we used the motif discovery tool MEME [54] to scan
this region, revealing four conserved motifs that were present in all the felid PVs and the
CcrPV1 from spotted hyena (HQ585856) [64] in the Lambdapapillomavirus genus (Figure 5).
A comparison of these regions with motif analyses tools such as Tomtom [55] indicates
that these are possibly single-stranded DNA-binding motifs sharing the highest similarities
to those associated with transcription factors in humans [67]. Although these findings
support that this region has conserved motifs that may be involved in the DNA binding of
transcription factors, in vitro molecular studies are needed to investigate this further.

3.6. E6 and E7 Protein Motifs

The E6 and E7 are two early proteins that are encoded in most mammalian PVs. These
oncoproteins have largely been studied in human PVs and play an important role in regulat-
ing the cell cycle in order to sustain cellular replication activity and viral proliferation [68].
Further, it is the ability of E6 and E7 proteins to bind tumor suppressors p53 and pRB, re-
spectively, which is thought to drive tumor production [69]. The E6 of the CcarPVs contains
two zinc-binding domains which show conservation with other felid PVs as well as other
Carnivora species that are most closely related (Figure 6). The C-X-F-C-X29-C-X2-C motif is
the conserved for the first domain; however, the second domain has one less amino acid in
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the lambdapapillomavirus E6 proteins compared with those of treisetapapillomaviruses
C-X2-C-X3-L-X21/23-R-X3-R-X2C-X2-C. The E7 protein L-X-C/S-X-E motif which binds the
pRB in the lambdapapillomaviruses has a conserved L-X-C-X-E, unlike the treisetapapillo-
maviruses where it is L-X-S-X-E (Figure 6). The zinc-binding domain in the E7 for members
of these two genera varies in the number of residues from 34–37 nts (C-X2-C-X26/28/29-C-X2-
C). This domain, for all of those in the E7 proteins of PVs in the Treisetapapillomavirus genus,
and that of LwiePV1 (MH910493) [22] and CcrPV1 (HQ585856) [64] from the Lambdapapil-
lomavirus genus, has a 37 residue zinc-binding motif. On the other hand, the E7 of other
members of the lambdapapillomaviruses have 36 residues, except for UuPV1 (DQ180494)
from snow leopard [20] which has 35 residues.

Viruses 2024, 16, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 4. Maximum-likelihood phylogenetic tree of concatenated L1 + E1 + E2 protein sequences of 
the CcarPVs and representative PVs. PVs from caracals are shown in red font, those from domestic 
cats in purple, other wild felids in blue, and other Carnivora species in grey. 

3.5. Large Non-Coding Region in the Genomes of Lambdapapillomaviruses 
Treisetapapillomavirus genomes are up to 1215 bp smaller (7392–7598 bp; [5,61] than 

those of lambdapapillomaviruses (7944–8607 bp) [11,20,64]. This difference in genome size 
appears to be due, at least in part, to a stretch of a non-coding region between the E2 and 
the L2 coding open reading frames (ORFs) in lambdapapillomaviruses, with the exception 
of Leptonychotes weddellii papillomavirus 1 (MG571090) from a Weddell seal [5]. This 

Figure 4. Maximum-likelihood phylogenetic tree of concatenated L1 + E1 + E2 protein sequences of
the CcarPVs and representative PVs. PVs from caracals are shown in red font, those from domestic
cats in purple, other wild felids in blue, and other Carnivora species in grey.



Viruses 2024, 16, 701 11 of 17

Viruses 2024, 16, x FOR PEER REVIEW 12 of 18 
 

 

non-coding region has previously been noted and discussed in Rector et al. (2007). They 
noted there are several conserved regions that are likely to be of regulatory or other func-
tional importance. To investigate this further, we used the motif discovery tool MEME 
[54] to scan this region, revealing four conserved motifs that were present in all the felid 
PVs and the CcrPV1 from spotted hyena (HQ585856) [64] in the Lambdapapillomavirus ge-
nus (Figure 5). A comparison of these regions with motif analyses tools such as Tomtom 
[55] indicates that these are possibly single-stranded DNA-binding motifs sharing the 
highest similarities to those associated with transcription factors in humans [67]. Although 
these findings support that this region has conserved motifs that may be involved in the 
DNA binding of transcription factors, in vitro molecular studies are needed to investigate 
this further. 

 
Figure 5. Conserved motifs identified in the non-coding region between the E2 and the L2 of the
felid PVs and CcrPV1 from spotted hyena in the Lambdapapillomavirus genus. p-value indicates
motif confidence.



Viruses 2024, 16, 701 12 of 17Viruses 2024, 16, x FOR PEER REVIEW 14 of 18 
 

 

 
Figure 6. Zinc-binding motifs identified in the E6 proteins of treisetapapillomaviruses and lamb-
dapapillomaviruses, and the pRB-binding motif (Lx[C/S]xE) and zinc-binding motif in E7 protein 
of the CcarPVs (red font) and those of the most closely related PVs. Hydrophobicity of amino acids 
is shown as follows: blue (hydrophilic), black (hydrophobic), and green (neutral). 

4. Conclusions 
Through the sampling of deceased caracals in the greater Cape Town region of South 

Africa, we identified ten novel PV genomes from five individuals. These represent six di-
verse caracal PV types (CcarPV1–6) that belong to two genera, Treisetapapillomavirus and 
Lambdapapillomavirus. Lambdapapillomavirus comprises members of PVs from other felids 
[20,22] and the Carnivora species, whereas Treisetapapillomavirus previously only com-
prised Leptonychotes weddellii papillomavirus 2 (MG571089) [5] and Vulpes vulpes pap-
illomavirus 1 (KF857586) [61]. Although these were identified from rectal swabs of 

Figure 6. Zinc-binding motifs identified in the E6 proteins of treisetapapillomaviruses and lambda-
papillomaviruses, and the pRB-binding motif (Lx[C/S]xE) and zinc-binding motif in E7 protein of
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4. Conclusions

Through the sampling of deceased caracals in the greater Cape Town region of
South Africa, we identified ten novel PV genomes from five individuals. These represent
six diverse caracal PV types (CcarPV1–6) that belong to two genera, Treisetapapillomavirus
and Lambdapapillomavirus. Lambdapapillomavirus comprises members of PVs from other
felids [20,22] and the Carnivora species, whereas Treisetapapillomavirus previously only
comprised Leptonychotes weddellii papillomavirus 2 (MG571089) [5] and Vulpes vulpes
papillomavirus 1 (KF857586) [61]. Although these were identified from rectal swabs of
deceased caracals, no obvious pathology typical of PV infections were noted. Not all PVs
are associated with lesions or papillomas; for example, several of the human-infecting PV
types in the Betapapillomavirus genus are symptomless [70].

Three of the five caracals were identified to have mixed infections of 2–3 CcarPV
types. Additionally, four out of the five caracals harbored at least one CcarPV type whose
genome is identical to that from another caracal. Given that PV transmission requires close
direct contact, this may be representative of social interactions and family connections
between the four caracals (CM75, CM91, CM93, and CM108). Alternatively, given the
slow evolutionary rate of papillomaviruses, these types may have been circulating in this
population for some time and transmitted through intermediary interaction partners that
were not sampled in this study.

We were able to determine the host mitochondrial genomes for the five caracals which
all share a 99.9–100% genome-wide pairwise identity with each other. Although we were
unable to determine relatedness, a more extensive host genomic investigation of these
caracals would help to shed some light on any family relationships. A recent study has
shown that the Cape Peninsula caracal population has limited inward migration and
appears to have high levels of inbreeding [58] which is supported in the lack of diversity
seen in the mitochondrial genomes described here.

Sequence and phylogenetic analyses of these CcarPVs shows that, although these
do share similarities to other PVs at a nucleotide and protein level, they are still diverse
and distinct from other PVs. The identification of two lineages of the CcarPVs shows
that there are diverse PVs circulating within an individual as well as within this caracal
population. Notably, caracal CM91 from which CcarPV1, CcarPV5, and CcarPV6 were
recovered harbored PV types belonging to the two lineages (Lambdapapillomavirus and
Treisetapapillomavirus). This is similar to the pattern seen for the domestic cat PVs [18] as
well as some other mammal PVs [1,5,71,72].

A unique non-coding region between the E2 and L2 ORFs is present in CcarPV1–4,
other felid PV members, as well as CcrPV1 [64] from a spotted hyena (in the Lambda-
papillomavirus genus), likely resulting from an expansion event that may have occurred
in a shared ancestor. This region likely plays a regulatory or functional role, given the
conserved nucleotide motifs present across members of this PV lineage. Four conserved
motifs were identified in this region that are likely single-stranded DNA-binding domains;
however, more research is needed to elucidate the biological importance of these and
this insertion/expansion region. Since Rector et al. [20] demonstrated evidence of a long
co-speciation history for the feline PVs, several new lineages of domestic cat PVs have been
identified. It is, therefore, possible that several lineages have coevolved with their felid
hosts for some time. These findings, together with the diverse caracal PVs from this study,
also highlights possible host switching and/or recombination, leading to the emergence of
these polyphyletic lineages.

Overall, the findings in this study expand the known felid PV diversity, demonstrate
the utility of using rectal sampling for identifying PVs, as well as host mitochondrial
genomes, and provide broader insights into PV dynamics in wild felid populations.
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most closely related PV representative sequences.
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