
pharmaceutics

Article

Ferulic Acid-Loaded Polymeric Nanoparticles for Potential
Ocular Delivery

Alessia Romeo 1, Teresa Musumeci 1,2,* , Claudia Carbone 1,2 , Angela Bonaccorso 1 , Simona Corvo 1,
Gabriella Lupo 3,*, Carmelina Daniela Anfuso 3, Giovanni Puglisi 1 and Rosario Pignatello 1,2

����������
�������

Citation: Romeo, A.; Musumeci, T.;

Carbone, C.; Bonaccorso, A.; Corvo,

S.; Lupo, G.; Anfuso, C.D.; Puglisi, G.;

Pignatello, R. Ferulic Acid-Loaded

Polymeric Nanoparticles for Potential

Ocular Delivery. Pharmaceutics 2021,

13, 687. https://doi.org/10.3390/

pharmaceutics13050687

Academic Editor: Charles M. Heard

Received: 6 April 2021

Accepted: 6 May 2021

Published: 11 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 PhD in Nurosciences, Department of Drug and Health Sciences, University of Catania, viale A. Doria 6,
95125 Catania, Italy; alessia.romeo@phd.unict.it (A.R.); ccarbone@unict.it (C.C.); abonaccorso@unict.it (A.B.);
simona.corvo09@gmail.com (S.C.); puglisig@unict.it (G.P.); r.pignatello@unict.it (R.P.)

2 NANO-i, Research Centre for Ocular Nanotechnology, University of Catania, viale A. Doria 6,
95125 Catania, Italy

3 Department of Biomedical and Biotechnological Sciences, University of Catania, 95127 Catania, Italy;
daniela.anfuso@unict.it

* Correspondence: teresa.musumeci@unict.it (T.M.); gabriella.lupo@unict.it (G.L.)

Abstract: Ferulic acid (FA) is an antioxidant compound that can prevent ROS-related diseases, but
due to its poor solubility, therapeutic efficacy is limited. One strategy to improve the bioavailability is
nanomedicine. In the following study, FA delivery through polymeric nanoparticles (NPs) consisting
of polylactic acid (NPA) and poly(lactic-co-glycolic acid) (NPB) is proposed. To verify the absence of
cytotoxicity of blank carriers, a preliminary in vitro assay was performed on retinal pericytes and
endothelial cells. FA-loaded NPs were subjected to purification studies and the physico-hemical
properties were analyzed by photon correlation spectroscopy. Encapsulation efficiency and in vitro
release studies were assessed through high performance liquid chromatography. To maintain the
integrity of the systems, nanoformulations were cryoprotected and freeze-dried. Morphology was
evaluated by a scanning electron microscope. Physico-chemical stability of resuspended nanosystems
was monitored during 28 days of storage at 5 ◦C. Thermal analysis and Fourier-transform infrared
spectroscopy were performed to characterize drug state in the systems. Results showed homogeneous
particle populations, a suitable mean size for ocular delivery, drug loading ranging from 64.86 to
75.16%, and a controlled release profile. The obtained systems could be promising carriers for ocular
drug delivery, legitimating further studies on FA-loaded NPs to confirm efficacy and safety in vitro.

Keywords: antioxidant; PLA; PLGA; retinal pericytes; endothelial cell; controlled release

1. Introduction

Oxidative stress is able to involve morphological and functional alterations to retinal
tissues, playing a key role in the onset and progression of retinal diseases, such as age-
related macular degeneration (AMD), glaucoma, diabetic retinopathy (DR), and retinal
vein occlusion (RVO) [1]. Recent clinical studies have demonstrated the potential health
benefits obtained with the consumption of fruit and vegetables rich in phytochemicals,
such as polyphenols, on visual function. Thanks to the pluri-pharmacological effects, these
molecules might be able to slow down and prevent the progression of the aforementioned
pathologies [2,3].

The most attractive polyphenol effects in these diseases are wielded on oxidative stress
pathways, where they are able to suppress the harmful effect of the reactive oxygen species
(ROS) [4]. For this reason, antioxidant molecules are gaining importance as a promising
therapeutic strategy in treatment/prevention of eye chronic disease. A comparative study
regarding the properties of various antioxidants including ascorbic acid, ferulic acid (FA),
α-tocopherol and β-carotene, has shown that FA is the most efficient among the tested
antioxidants [5,6]. Thanks to its phenolic nucleus and an extended side chain conjugation,
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this substance can act as a potent antioxidant in both isolated membranes and intact cells,
because it is able to form a resonance-stabilized phenoxy radical, thereby inhibiting lipid
peroxidation and ROS production.

FA (4-hydroxy-3-methoxycinnamic acid) is a phenolic compound and a notable bio-
logical and structural component of the plant cells. It is one of the most abundant phenolic
acids in plants and might be found in high concentration in food such as whole grains
(1–3 mg/100 g), fruits, and vegetables (800 mg/100 g) [7]. FA exhibits a wide spectrum of
beneficial activity for human health, it was tested in vitro for its potential anti-inflammatory,
anticancer, neuroprotective, anti-angiogenesis effects and was tested in vivo on mice for its
antidiabetic, anticancer, antiapoptotic, and antioxidant properties [8]. Despite this, poor sol-
ubility of FA in aqueous solution remains a major limit for its bioavailability. In recent years,
in order to overcome this problem and to improve the drug dissolution rate, many strate-
gies were developed such as the drug complexation with hydroxypropyl-β-cyclodextrin
(HP-β-CD), the inclusion in platforms composed of cocrystal, micelles, and nanogels, and
the encapsulation in nanostructured lipid carriers (NLC) or chitosan NPs [9–16].

The use of biodegradable polymeric particles has been extensively studied to in-
crease bioavailability, prolong controlled drug release, and avoid repeated ocular ad-
ministration [17]. The use of polymeric NPs include many advantages, such as good
control on size and size distribution, reduce clearance time, and protection and reten-
tion of the drug that improves bioavailability in intraocular or extraocular tissues [18].
Polymers frequently used to develop NPs for ocular delivery include poly(lactic acid)
(PLA), poly(lactic acid)/poly(lactic-co-glycolic acid) (PLGA), polycaprolactone (PCL), and
hyaluronic acid [19]. Despite this, to date, no study has been conducted on PLA or PLGA
NPs for ocular delivery of FA. The use of PLA/PLGA carriers for ocular drug delivery
(ODD) is sustained by their biocompatibility and biodegradability [18,20,21]. In a work by
Gupta et al., sparfloxacin loaded in PLGA-NPs was administered to rabbits, showing to
improve the residence time at the corneal surface with respect to conventional eye drops.
In vivo studies of this formulation signalized that PLGA-NPs have a good stability and
ocular tolerance. Moreover, in vivo degradation of PLGA mainly happens by hydroly-
sis, resulting in nontoxic lactic and glycolic acids, which enter to the tricarboxylic acid
cycle to be metabolized in water, carbon dioxide, and energy [22]. A study conducted
by Bourges et al. on PLA NPs showed that a single intravitreal injection in rats allows
the system in retinal pigment epithelium (RPE) cells to be found, even after 4 months.
Histology demonstrated the anatomical integrity of the injected eyes and the absence of
toxic effects [17]. Administration by intravitreal injection has also been shown to be safe
with PLA/PLGA microspheres, so the systems can be considered suitable for the treatment
of diseases affecting the posterior segment of the eye [23]. In addition, several studies on
polymeric nanoparticles (NPs) have used intravitreal injection as a route of administration,
so the nanocarriers designed and discussed here could be used for this purpose [24–27].

The aim of this study was to prepare and characterize FA-PLA and PLGA NPs for
potential ocular delivery, evaluating their physico-chemical, technological properties suit-
able for the selected site of administration, and a preliminary in vitro study was performed.
The two unloaded nanocarriers were subjected to in vitro cell viability studies on primary
endothelial cells and primary retinal pericytes to assess the absence of cytotoxicity. The two
nanoformulations were loaded with the drug and investigated to determine the mean size,
polydispersity index (PDI), zeta potential (ZP), pH, osmolarity, encapsulation efficiency
(EE), and release profile until 48 h. Centrifugation and dialysis were carried out to eliminate
both surfactant and the unloaded drug, and to select the most efficient purification method.
The final formulations were cryoprotected and freeze-dried both to prevent premature
drug release and to avoid hydrolysis of the polymeric material from the aqueous sus-
pension. NPs morphology was assessed by SEM analysis. To evaluate the stability after
resuspension, physico-chemical parameters were monitored during 28 days of storage at
5 ◦C. Freeze-dried samples were subjected to thermal analysis through differential scanning
calorimetry (DSC) and FT-IR spectroscopy.
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2. Materials and Methods
2.1. Materials

Trans-Ferulic acid, Resomer® R 202 H, acid terminated, Mw 10.000–18.000 (PLA),
Resomer® RG 752 H, acid terminated, lactide:glycolide 75:25, Mw 4.000–15.000 (PLGA),
and Tween® 80 were supplied by Merck (Milan, Italy). Ethanol (96% purity) was obtained
from J.T.Baker (Deventer, The Netherlands). Acetone and dialysis membrane (molecular
weight cut off (Mwco) 3000 Da, diameter 11.5 mm; Spectra/Por®) were purchased from
VWR International PBI Srl (Milan, Italy). Hydroxypropyl-β-cyclodextrin was obtained
from Roquette Freres (Lestrem, France). Deionized water was used for all the preparations.

2.2. Preparation of Unloaded Nanoparticles

Nanoprecipitation technique was applied to prepare PLA (NPA) and PLGA (NPB)
NPs with slight modification of a previously reported process [28]. PLA or PLGA polymer
(3.6 mg/mL) was dissolved in acetone. The organic phase (5 mL) was poured, drop by
drop, into 10 mL of water/ethanol mixture (1:1), containing 0.05% (w/v) Tween® 80, under
magnetic stirring (500 rpm) at room temperature, thus forming a milky colloidal suspension.
The organic solvents were removed under vacuum by a rotavapor (Buchi) at 40 ◦C.

2.3. Physico-Chemical Characterization

The particle size (Z-ave) and the polydispersity index (PDI) were determined by
photon correlation spectroscopy (PCS). PCS was performed using a Zetasizer Nano ZS90
(Malvern Instruments Ltd., Malvern, England) and the experiments were carried out using
a 4 mW He-Na laser beam with a 633 nm wavelength. The following parameters were
used for these experiments: temperature 25 ◦C, medium refractive index 1.330, medium
viscosity 1.0 mPa s, and dielectric constant value 80.4. The analysis of a sample consisted
of 3 sets of measurements, and the results are expressed as mean size ± standard deviation
(SD). Each sample was analyzed into disposable sizing cuvettes (DTS 0012).

Zeta potential (mV) was measured using the same instrument. Electrophoretic mobil-
ity for each sample was revealed at 25 ◦C, using the Smoluchowski constant with a value
of 1.5 to obtain the corresponding ZP values.

2.4. Osmolarity and pH

The osmolarity of NPs was analyzed by freezing point depression (FPD) using a
digital osmometer (Osmomat 030, Gonotec, Berlin, Germany) and as calibration solutions
distilled water and sodium chloride 0.9%. The value reported for each sample is the mean
of 3 different measurements. The determination of pH was carried out using a pH-meter
at 25 ◦C (Checket, Hanna Instrument, Woonsocket, RI, USA) which was calibrated before
each use with 3 buffer solutions at pH 4.01 ± 0.02; 7.00 ± 0.02 and 10.00 ± 0.02. Three
measurements were made for each sample.

2.5. In Vitro Cytotoxicity Test of Unloaded Nanoparticles
2.5.1. Cell Cultures

Primary cultures of microvascular pericytes were obtained from bovine retinas as al-
ready described [29]. Briefly, the cells were homogenized and filtered through a nylon filter
(80 µm). Phosphate-buffered saline (PBS) at pH 7.4 was supplemented with collagenase-
dispase and bovine serum albumin, at concentrations of 1 mg/mL and 0.5%, respectively.
The micro-vessels were immersed in the PBS solution for 20 min and maintained at 37 ◦C.
The homogenate was centrifuged for 10 min at 1000× g. The isolated cells were plated
in Dulbecco’s Modified Essential Medium (DMEM) supplemented with 20% fetal bovine
serum (FBS), 2 mM glutamine, 100 U/mL penicillin and 100 µg/mL streptomycin. Culture
plates were previously covered with a thin layer of gelatin. At confluence, the cells were
trypsinized and seeded in new petri dishes in DMEM at 10% fetal bovine serum.

Bovine microvascular endothelial cells (BMVEC) were purchased from Sigma (Milan,
Italy) and fed with Ham’s F10 medium supplemented with 10% FBS, 80 µg/mL heparin,
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2 mM glutamine, 100 U/mL penicillin, and 100 µg/mL streptomycin. All experiments
were carried out using cells at passage 3–4.

2.5.2. MTT Assay

Pericyte and endothelial cells were seeded in 96-well plates at a cell density of
1.5 × 104 per well. 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrasodium bromide (MTT)
(Chemicon, Temecula, CA, USA) was used to perform the cell viability assays. Prior to
treatment, cells were incubated at a temperature of 37 ◦C overnight and then treated for
24 h and 48 h in the absence (control) or the presence of NPA and NPB (0.25–5 mg/mL).
After incubation periods, 10 µL of MTT reagent (5 mg/mL) was added to each well and
the cells were incubated at 37 ◦C for a further 3 h. Formazan crystals were solubilized
under constant agitation with 100 µL of DMSO for 10 min. The absorbance was detected
at a wavelength of 570 nm with plate reader (Synergy 2-bioTek). All experiments were
performed at least 6 times in triplicate.

2.6. FA-Loaded Nanoparticles

FA-loaded NPs were obtained with the same procedure described in Section 2.2. The
active compound (1% wt/wt, drug/polymer) was added to the organic phase and the
preparation proceeded as described above [30,31].

2.7. Purification Steps

Nanosystems were subjected to purification by two methods: dialysis and centrifuga-
tion, with the aim of removing any residual surfactant or unloaded drugs. The removal of
unstructured polymer chains in the nanocarriers was not considered, as their molecular
weight is higher than the cut-off of that the dialysis membrane used. In order to observe any
physico-chemical properties variation due to purification processes, the NPs suspensions
were monitored in terms of mean size, PDI, and surface charge, before and after the purifi-
cation phases. Centrifugation was performed with a Thermo-scientific SL 16R Centrifuge
(Thermo Scientific Scientific Inc., Waltham, MA, USA) at 15,777× g for 1 h at 8 ◦C. The
obtained supernatants were collected for high performance liquid chromatography (HPLC)
analysis, pellets were resuspended in water and characterized through PCS analysis. For
dialysis, previously hydrated cellulose membranes (Mwco 3000 Da, diameter 11.5 mm;
Spectra/Por®) were used. Membranes containing the colloidal suspensions were immersed
in 500 mL of distilled water. Dialysis of each sample (NPA-FA and NPB-FA) was performed
with different frequencies of water changes per hour (L/h). In the first case equal to 0.5 L/h
(2.5 L in 5 h with 5 water changes) and in the second equal to 1 L/h (3 L in 3 h with 6 water
changes). Dialyzed samples were collected and centrifuged at 15,777× g for 1 h at 8 ◦C;
the obtained supernatants were then analyzed by HPLC, pellets were resuspended and
subjected to PCS analysis.

2.8. Encapsulation Efficiency

The percentage of the encapsulated FA into the polymeric matrix of NPs was de-
termined both after centrifugation and after dialysis performed with frequency of water
changes of 0.5 and 1 L/h. Samples, including those purified by dialysis, were centrifuged
in order to obtain separation of pellet from supernatant. The obtained supernatants were
analyzed by HPLC to evaluate the drug concentration; each amount of the sample was
quantified by measuring the UV absorbance at 320 nm. The EE was calculated by the
difference between the amount of drug entrapped inside the NPs and the total quantity of
drug employed to prepare the nanosystems, according the following equation [32]:

EE =
µg FAtot − µg FA in supernatant

µg FAtot
× 100
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2.9. Yield of Purification Process

The dialysis purification yield was calculated to select the most efficient method
to remove unencapsulated FA from the systems. Purification efficiency was expressed
as the percentage amount of dialyzed FA compared with the unencapsulated amount.
Dialyzed samples were collected and centrifuged. The concentration of FA in the obtained
supernatants was quantified by HPLC analysis, by measuring UV absorbance at 320 nm.
The percentage of purification was calculated using the following equation:

Purification efficacy (%) =
µg FA in supernatant(

µg FAtot − µg encapsulated FA
) × 100

Each experiment was performed in triplicate and the results represent the mean ± SD.

2.10. Stability Study of Resuspended Cryoprotected Freeze-Dried Formulations

The suspensions of purified NPs were mixed in a 1:1 ratio with 10% (w/v) of HP-β-
Cyd to achieve a final cryoprotectant concentration of 5% (w/v). The resulting formulations
were frozen and freeze-dried for 24 h (Freeze Dryer Edwards Modulyo, Akribis Scientific
Limited, Knutsford, Cheshire, UK). The resuspended cryoprotected freeze-dried NPs
were analyzed to evaluate potential changes over time of Z-Ave, PDI, ZP, osmolarity, and
pH. The analyses were conducted on the NPs lyophilized powder, resuspended with the
same volume of water lost during the drying phase [33]. After reconstitution, the above
parameters were analyzed (zero time), after that, all of the formulations were stored in the
refrigerator (5 ◦C) and tests were run again after 7, 14, 21, and 28 days.

2.11. In Vitro Release Profile of FA-Loaded NPs

The in vitro drug diffusion profiles of non-encapsulated FA solution (in PBS, pH
7.4) and the release profiles of drug-loaded NPs (NPA-FA and NPB-FA) were evaluated.
The amount of FA released from NPs was measured after centrifugation of the samples,
performed at 15,777× g rpm at 8 ◦C for 1 h; the obtained supernatants were subjected
to HPLC analysis, the pellets were resuspended in a 5% (w/v) of HP-β-Cyd solution
and freeze-dried. Lyophilized NPs were resuspended in 1 mL of PBS pH 7.4 [34]. The
suspensions were placed into a cellulose membrane dialysis tubing (Mwco 3.5 kDa, flat
width 18 mm, diameter 11.5 mm; Spectra/Por® Dialysis Membrane) and incubated in
19 mL of medium (PBS, pH 7.4), which was maintained under magnetic stirring at 37 ◦C,
up to 48 h. Release medium (500 µL) was sampled at predetermined time points (0, 1, 2, 3,
4, 5, 6, 7, 8, 24, and 48 h) and immediately replaced with the same volume of fresh medium,
to maintain the sink condition. FA concentration in the collected samples was quantified
by HPLC analysis. Release study was performed in triplicate for each formulation. The
release curve was drawn according to the average and SD of 3 values at each moment.

2.12. HPLC Analysis

HPLC analysis was performed at room temperature using a 1050 Hewlett-Packard
instrument (Hewlett-Packard, Milan, Italy) equipped with a 20 µL injection valve Rheodyne
7125 (Rheodyne Inc., Cotati, CA, USA) and a UV-VIS detector (Hewlett-Packard, Milan,
Italy). Mobile phase consisted of a mixture of 81:19 (v/v) acetonitrile: acetic acid (2%
v/v). Stationary phase was a 4.6 × 15 cm C 18 column (Waters, Milan, Italy). Effluent
was monitored at a wavelength of 320 nm, with a flow rate of 1 mL/min. The standard
calibration curves were prepared at different dilutions of FA in methanol. The linear
regression coefficient determined in the range 0.05–10 µg/mL was 0.9997. No interference
resulting from other components was observed.

2.13. Scanning Electron Microscopy (SEM)

NPs morphology was assessed by SEM study. The samples were prepared for the
electron microscope with a spin-coating procedure at 500 rpm for 1 min with a Suss
Microtech instrument and left to dry in air for a few hours. To ensure good conductivity, all
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of the samples were then coated with 5 nm of gold sputtering at a pressure of 10−3 mbar
with an Emitech K500X equipment. The SEM were acquired at a low voltage of 3 KV with
an InLens detector by using a Field Gemini microscope from Zeiss.

2.14. Thermal Analysis of Unloaded and FA-Loaded Cryoprotected Freeze-Dried Nanosuspensions

A DSC1 Star System apparatus (Mettler Toledo, Schwerzenbach, Switzerland) was
used to perform calorimetric analyses. The DSC detection system consisted of a Mettler
Full Range ceramic sensor (FRS5) with 56 thermocouples and a high sensitivity sensor
(HSS8) with 120 thermocouples. The signal time constants were respectively equal to
1.8 and 3.1 s, while the digital resolution of the measurement signal was 16.8 million points.
The sampling rate was maximum 50 values/s. Calorimetric resolution and sensitivity of
FRS5 and HSS8 sensors, determined through the TAWN test, were respectively between
0.12–0.20 and 11.9–56.0. Each DSC scan had an accuracy of ±0.2 K, a precision of ±0.02 K,
and a resolution of ±0.00006 K. Optiplex 3020 software at Mettler Star® Dell was used for
the data acquisition. DSC aluminum pans (40 µL) were filled with pure FA, pure polymers,
cryoprotectant, cryoprotected freeze-dried empty NPs (NPA and NPB), as well as loaded
with FA (NPA-FA and NPB-FA) before sealing. All samples were submitted to heating and
cooling cycles in the temperature range 20–200 ◦C at a scanning rate of 5 ◦C/min (heating)
and 10 ◦C/min (cooling).

2.15. FT-IR Spectroscopy Measurements

Pure FA, pure polymers, cryoprotectant, cryoprotected freeze-dried empty NPs (NPA
and NPB) and loaded with FA (NPA-FA and NPB-FA) were analyzed using FT-IR spec-
trophotometer (Perkin-Elmer Spectrum RX I, Waltham, MA, USA). The instrument was
equipped with an attenuated total reflectance (ATR) accessory and a diamond window
and zinc selenide crystal (diamond/ZnSe). The dried samples were mixed with potassium
bromide (KBr anhydrous of FT-IR grade) to obtain a homogeneous mixture, which was
compressed into 1 mm pellets. The background was acquired from pure KBr pellet. For
each sample, 20 scans were collected over the range of 400–4000 cm−1 at a resolution of
2 cm−1 at room temperature.

2.16. Statistical Analysis

All results are reported as mean ± SD. The results were analyzed using one-way
ANOVA followed by Tukey–Kramer multiple comparisons test; differences between groups
were considered significant for a p-value <0.05. The t-test was used to calculate the statistical
significance in the MTT assay; the percentages obtained relative to the control group were
considered not significant for p > 0.05, significant for p < 0.05, very significant for p < 0.01
and extremely significant for p < 0.001.

3. Results and Discussion

In the present study, NPs have been produced by a solvent displacement technique.
Tween 80, a non-ionic surfactant, was added in order to reduce the dynamic interfacial
tension and to increase the steric repulsion between NPs [28]. Its non-ionic nature allows
it to be included in the ophthalmic formulations, but this is acceptable since it does not
induce strong eye irritation [35]. The concentration chosen for the emulsifier (0.05% w/v)
was selected because it is considered a suitable amount both for obtaining small diameter
particles and for the demonstrated ocular safety and tolerability [28,36].

3.1. Influence of Unloaded NPs Concentration on Cell Viability of Primary Cultures of
Micro-Capillaries Pericytes and Endothelial Cells

An NPs system proposed for ocular administration must be able to deliver the active
agent without compromising the viability of the host cells. To assess if NPA or NPB could
induce cytotoxicity, MTT bioassay was performed on primary cultures of micro-capillaries
pericytes and endothelial cells. Unloaded NPs were studied at different concentrations
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(0.25–5 mg/mL) to evaluate the effect on cell viability and the potential application of these
systems as FA nanocarriers for ocular therapy.

Figure 1 shows cell viability vs NPs concentration (mg/mL). An important consid-
eration is that cell viability strictly depended on the type of cell line as well as on the
concentration tested. The results obtained from the analysis of NPA and NPB carriers on
BMVEC were plotted as a function of the incubation time, which is equal to 24 (Figure 1A)
and 48 h (Figure 1B). Regarding the data obtained at 24 h, the cells incubated with NPA and
NPB showed a high viability (>90%) in the concentration range 0.25–1 mg/mL. Viability at
48 h follows the same trend, with no significant reduction. The evidence of a more marked
reduction is observable for NPA at higher concentrations. From the statistical analysis
of the data, it emerged that the decrease in viability compared to the control recorded
for NPA at 2.5 mg/mL oscillates between significant (24 h) and very significant (48 h),
it is instead extremely significant at 5 mg/mL. For NPB, the amount of reduction was
significant at 2.5 mg/mL and very significant at 5 mg/mL. Therefore, although NPB in
the safe range 0.25–1 mg/mL have the lowest cell viability rates, at higher concentrations,
they show a less pronounced, although still toxic, reduction. Pursuant to ISO 10993-5,
percentages of cell viability above 70% are considered an absence of cytotoxicity [37]. The
results obtained showed that the highest concentrations (2.5–5 mg/mL), for both samples
and times examined were cytotoxic, resulting in a reduction in viability >30%.
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Figure 1. Cytotoxicity of NPA and NPB NPs on primary endothelial cells after (A) 24 h and (B) 48 h of incubation
and on primary retinal pericytes cells after (C) 24 h and (D) 48 h of incubation at different concentrations (5; 2.5; 1; 0.5;
0.25 mg/mL). Three independent experiments were performed in sixfold. Error bars depict the S.D. of the mean. t-test was
used to calculate statistical significance of the percentages obtained versus control group. [ns = not significant (p > 0.05);
* = significant (p < 0.05); ** = very significant (p < 0.01); *** = extremely significant (p < 0.001)].

The analysis of NPs on RMP incubated for 24 h showed the absence of toxicity in the
concentration range 0.25–2.5 mg/mL for both systems studied (Figure 1C). NPB showed
higher viability percentages on the concerned cell line with respect to the NPA. Similar data
with the same safety interval were obtained also for cells incubated for 48 h (Figure 1D).
Analysis revealed that both formulations at the highest concentration (5 mg/mL) were
cytotoxic, resulting in an extremely significant reduction in cell viability.
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From the results obtained, it was observed that NPA and NPB showed similar behavior
on both cell lines. In detail, absence of cytotoxicity was observed in pericyte cell lines with
a wider concentration range (0.25–2.5 mg/mL) than in endothelial cells (0.25–1 mg/mL).

Endothelial cells and pericytes are essential components of the microvessel wall. Peri-
cytes play several roles in the retinal vascular system, from controlling flow to maintaining
microcirculation integrity [38,39]. Pericytes work co-dependently with endothelial cells,
to which they also provide mechanical support. Among the activities that pericytes regu-
late are the proliferation and migration of endothelial cells, as well as the production of
cytokines for the immune response [40–42].

In vivo, therefore, contact and interactions between pericytes and endothelial cells
act on different levels of control. Similar results were reported in a study conducted on
human pericytes and endothelial cells, where differences in cell lines cultured solitary and
in co-culture were observed. The results showed that DNA synthesis of endothelial cells in
single culture was reduced by 30% compared to cells co-cultured with pericytes. Therefore,
in vitro co-culture studies should be more reliable and predictive in the evaluation of
biological cellular responses [43].

3.2. Influence of the Purification Process on Physico-Chemical Properties of Nanocarriers

As shown by the physico-chemical characterization of formulated systems (Table 1),
the particle size ranged between 158 and 219 nm, thus, NPs were obtained [44,45]. In
particular, the mean particle size of unloaded NPs was ~158–170 nm and of FA-loaded NPs
was ~178–219 nm. The particle size distribution was very narrow in all cases (PDI less than
0.3), corresponding to monodispersed systems [46].

Table 1. Mean size, PDI, zeta potential (ZP), osmolarity and pH of loaded (NPA-FA, NPB-FA) and
unloaded (NPA, NPB) nanoparticles. Data represent mean standard deviation (SD), n = 3.

Sample Mean Size
(nm) ± SD PDI ± SD ZP (mV) ± SD Osmolarity ± SD

(mOsm/kg) pH ± SD

NPA 170.400 ± 5.781 0.128 ± 0.028 −39.00 ± 1.40 - -
NPA-FA 178.600 ± 0.289 0.056 ± 0.035 −33.70 ± 1.31 258.3 ± 0.023 7.30 ± 0.533

NPB 158.700 ± 1.700 0.130 ± 0.023 −29.70 ± 0.90 - -
NPB-FA 219.300 ± 2.751 0.207 ± 0.028 −23.80 ± 2.22 265.6 ± 0.027 7.33 ± 0.495

The ZP of NPs was strongly negative, ranging between −23.8 ± 2.22 to −39.0 ± 1.40 mV.
The negative ZP values could be attributed to the presence of terminal carboxylic groups
of the polymers, which confer to the matrix of a negative surface charge [28,47,48].

The ZP value showed a reduction of 6 mV in absolute value when the drug was
incorporated into the systems, probably due to its precipitation on the surface on NPs. The
selection of the organic solvent and its evaporation played a crucial role in this process.
Acetone can diffuse into the continuous phase and temporarily increase the drug solubility.
As a result, when the organic solvent was completely evaporated, FA could precipitate and
deposit onto the NP surface, masking their surface charge [49]. The results of osmolarity
values of the obtained formulations showed the achievement of isoosmolar systems with
the tear fluid and pH values of 7.3, which fall within the ocular tolerability range.

In order to evaluate the influence of purification methods on the physico-chemical
properties of the obtained systems and to select the appropriate process for these nanocar-
riers, we characterized NPA-FA and NPB-FA before and after the purification processes
(Figure 2). The results obtained showed that both formulations subjected to the centrifuga-
tion process endured an increase in mean size, passing from 178.6 to 325 nm for NPA-FA
and from 219.3 to 357.2 nm for NPB-FA. This increase should be attributed to the speed
used during the centrifugation, which is able to generate collision forces between NPs.
The mechanical induced stress leads to the formation of non-redispersible aggregates,
according to Sari et al. [50]. After centrifugation the samples showed an increase in PDI
reaching values of 0.649 and 0.769 respectively for NPA-FA and NPB-FA. The increase in
polydispersion confirmed that high speed used during the centrifugation process caused
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the formation of aggregates. ZP of both centrifuged NPs showed a reduction of about ten
mV. This decrease is a result of the aggregation phenomena that cannot keep the surface
properties of NPs unaltered, probably due to the reduction in the total surface area [51].
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No significant variation was highlighted in the average dimensions of NPs which
remained rather constant after the dialysis process. Systems obtained after dialysis main-
tained a low PDI value (<0.2).

For dialyzed samples, significant changes on ZP (p-value <0.05) were observed based
on the volumes of water exchanged per hour. As reported in Figure 2, a reduction in ZP
values can be observed for samples dialyzed against 1 L/h. This result could be due to the
further adsorption of the unloaded drug onto the surface of NPs. Moreover, the higher
frequency of water exchange avoids the formation of possible surfactant micelles that could
entrap the free drug and prevent its diffusion through the membrane. The ZP values of
the samples dialyzed against 0.5 L/h of water showed an increase in absolute value of this
parameter. The reason for this could be an increase in the osmotic pressure in the dialysis
solution. It has been shown that the osmotic pressure of a non-ionic aqueous surfactant
solution in the micellar region increases with increasing concentration of the surfactant [52].
In our case, lower frequency of water exchanges (0.5 L/h) may lead to increased surfactant
concentration in the dialysis medium forming micelle. The formation of micelle could
sequestrate a fraction of the unloaded drug. The difference in osmotic pressure that was
generated in the dialysis medium could hinder the progressive diffusion of the surfactant
molecules from the nanodispersion, preventing proper dialysis of the samples [53].

In fact, to support this hypothesis and to evaluate the influence of frequency of water
exchanges on dialysis efficacy, a comparison of obtained data was made (Table 2). The
results showed that the dialysis technique, which allows a better purification yield of
drug (>50%) and is able to remove the greater percentage of FA, is that performed with
a frequency of water changes equal to 1 L/h. Samples dialyzed against 0.5 L/h of water



Pharmaceutics 2021, 13, 687 10 of 19

showed lower purification efficiency. The reason for this could be a sequestration of the
drug from the surfactant micelles present in dialysis medium [54]. In regard to the reasons
for the major purification of NPB-FA, this could be attributed to the lipophilic nature
of drug. Consequently, the fact that FA is less related to the PLGA polymer, which has
hydrophilic groups in its structure, is retained less from NPB-FA [55]. The poor affinity of
drug for this type of polymer could reduce its solubilization inside the matrix, therefore
a higher amount of drug could remain adsorbed on the NPB-FA surface. Thanks to the
ease with which FA is removed from the surface of PLGA based NPs, a higher dialysis
percentage may have been obtained [56].

Table 2. Purification efficiency (%) of NPA-FA and NPB-FA referred to the purification processes
using the dialysis method performed with frequency of water exchanges of 0.5 and 1 L/h.

Sample Frequency of Water Changes (L/h) Purification Efficiency (%) ± SD

NPA-FA
1 28.60 ± 0.211

0.5 24.13 ± 0.015

NPB-FA
1 53.29 ± 2.258

0.5 30.00 ± 0.785

3.3. Encapsulation Efficiency and In Vitro Release Profile of FA-Loaded Nanocarriers

The entrapment efficiency of FA (1% wt/wt) in the NPs prepared by the nanoprecipi-
tation method was calculated for both purification methods investigated. The results are
shown in Table 3. The EE obtained for centrifuged systems ranged from 64.86 to 75.16%, re-
spectively for NPB-FA and NPA-FA. For dialyzed samples, the percentages showed higher
values ranging from 81 to 90% and it was observed that by subtracting the non-dialyzed
amounts of drug (Table 2), the results were identical to those obtained for the samples
purified by centrifugation. Therefore, the efficiency obtained for the dialyzed samples was
defined as ‘apparent EE’, consisting of the encapsulated drug, plus the amount of FA not
removed by dialysis.

Table 3. Encapsulation efficiency (%) of NPA-FA and NPB-FA and apparent encapsulation effi-
ciency (%) of NPA-FA and NPB-FA referred to the purification processes using the dialysis method
performed with frequency of water exchanges of 0.5 and 1 L/h.

Sample Encapsulation
Efficiency (%) ± SD

Frequency of Water
Changes (L/h)

Apparent Encapsulation
Efficiency (%) ± SD

NPA-FA 75.16 ± 5.148
1 89.36 ± 0.085

0.5 90.22 ± 0.007

NPB-FA 64.86 ± 6.357
1 81.27 ± 0.792

0.5 89.46 ± 0.276

It was demonstrated that the encapsulation yield depends on several factors, such as:
the solvent miscibility in the aqueous phase, the precipitation speed rate which leads to
polymer solidification, and the drug solubility into the polymer used [57].

The values obtained could be related to the high solvent miscibility in the continuous
phase. It has been shown that if the solvent has a good miscibility, such as in acetone, a
very fast solidification of the polymer may occur during the evaporation step. Especially
for a hydrophobic drug, a rapid solidification is advantageous in order to obtain high EE,
because the dense polymeric shell that is obtained acts as a diffusion barrier for the drug [54].
Additionally, faster hardening can be observed when the volume ratio of continuous to
dispersed phase increased (as in our case where a 2:1 ratio is used), which could result in
fast solidification of the systems and so improve the effectiveness of encapsulation [58].

NPB-FA showed a lower drug loading than NPA-FA made up of PLA polymer. The
lower EE could be attributed to the lower ability of a drug interaction with the polymer.
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This capacity depends on the drug interaction with the matrix, therefore the more of the
drug that is akin to the polymer, the greater the amount of encapsulated FA will be [59].

PLA polymer has a greater hydrophobicity with respect to PLGA, which instead
contain a glycol portion in its structure, which provides hydrophilic properties to the
polymer [49].

Release curves of pure drug and FA-loaded NPs of are shown in Figure 3. More than
80% of FA powder released quickly in 2 h under PBS conditions (pH = 7.4). The release
rate was similar to a straight line between 0 and 2 h, then the slope tends to decrease. After
8 h, the drug concentration was almost unchanged, suggesting that FA was completely
released into the solution.
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As shown in the graph, the slope in the NPs release curves is reduced compared to
the pure drug, indicating that the encapsulation of the drug was able to provide a more
prolonged release over time. FA release from the NPs in the first 2 h was about 23% for
both systems. This premature release could be due to the amount of unloaded FA that was
not removed through dialysis. The release profile then increased gradually, reaching about
50% after 4 h from NPB-FA and 5 h from NPA-FA. The FA concentration increased to the
theoretical maximum concentration in 48 and 24 h for NPA-FA and NPB-FA, respectively.

Although both curves show similar trends, NPA-FA releases lower drug concentra-
tions over time than NPB-FA. The release profile of a drug is governed by its partitioning
between the polymer matrix and the aqueous release medium [60]. The difference in release
rates could therefore be attributed to the nature of the investigated matrices. NPA-FA,
which has demonstrated higher EE, showed a relatively lower drug release than NPB-
FA containing a hydrophilic portion in the matrix composition. A similar behavior was
observed in a study by Panyam et al., which demonstrated a close correlation between
drug release profiles and the degree of hydrophilia of the polymer matrix [49]. The release
process is controlled by the degradation rate of the polymer [61,62]. During this process
the drug diffuses through the hydrated polymer matrix to the release medium. The water
uptake into the systems relaxes the polymer chains and increases the rate of diffusion of
drug molecules [63]. Therefore, a higher release rate is justified for NPB-FA particles more
hydrophilic than NPA-FA.

3.4. Stability Studies on Resuspended Freeze-Dried FA-Loaded NPs

Liquid polymeric nanosuspensions have some limitations related to the integrity of
the formulations. Among these, a recurring phenomenon is the formation of undesirable
degradation products generated by hydrolysis of the polymeric material [64,65]. Another
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limitation of nanosuspensions has been reported about the possibility of premature release
of the encapsulated drug [66]. To exceed the above limits, samples were converted from
aqueous suspensions to dried powders through the freeze-drying process. However,
the freezing and drying steps for removing water from nanosystems subject them to
various stresses, so cryoprotective agents are usually added to the formulation with the
aim to preserve the structure and morphology of colloidal systems and increase their
stability during storage [67,68]. Carbohydrates are among the most commonly used
adjuvants able to prevents aggregation phenomena. A good quality lyophilized product
is characterized by quick and easy reconstitution, as well as by maintaining the particle
size [69]. In our previous studies it was demonstrated that an elegant cake appearance
and a short reconstitution time were achieved when 5% (w/v) of HP-β-Cyd was employed
as cryoprotectant, because, thanks to its cyclic structure, it is able to be easily absorbed
onto the NPs surface during the sublimation step, ensuring also an easy reconstitution of
the dried material [28,68]. Furthermore, the concentration of cryoprotectant used is able
to provide a dispersion of NPs with an adequate tonicity for ocular administration [70].
SEM scans of cryoprotected and freeze-dried empty and FA-loaded NPs are shown in
Figure 4. Results showed NPs with a spherical shape, smooth surface, and a reduced
average-diameter compared to pre-lyophilisation values, as reported in Table 1.
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The results obtained from the stability studies conducted on lyophilized systems
resuspended with distilled water and stored at refrigeration temperature have shown a
chemical-physical stability almost unchanged over time. The data collected are shown in
Figure 4. PCS analysis provided further confirmation of the reduction in the mean size of
the systems (Figure 5A), which remained stable during the storage time considered. In
addition, the PDI of all the analyzed formulations maintained constant values, always
below 0.2 (Figure 5B). From the analysis of the ZP (Figure 5C) it is possible to observe a slight
decrease in this parameter over the course of 28 days, despite the fact that the surface charge
of the systems always remains greater than −20.5 mV. In general, dispersions with high
absolute values of ZP are considered stable because the electrical repulsion between the
charges of the NPs is able to reduce the aggregation capacity of systems [61,71]. Therefore,
NP formulations were found to be physically stable, and aggregation of colloidal particles



Pharmaceutics 2021, 13, 687 13 of 19

was probably prevented due to adequate values of ZP. Figure 5D,E show respectively
measurements of osmolarity and pH values of the NPs suspensions, whose variations over
time have proved to be practically irrelevant.
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3.5. Thermal and Infrared Analyses of Cryoprotected and Freeze-Dried Nanoparticles

In order to investigate the polymorphic states and crystallinity of the materials used
during the preparation and of the cryoprotected and lyophilized formulations, we con-
ducted a DSC study. The NPs made of PLA are represented in Figure 6A, those produced
with PLGA are represented in Figure 7A.
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As shown in the curves (a) of both graphs, the melting point of FA is 172.3 ◦C,
which represents the characteristic endothermic peak of the drug [72]. The disappear-
ance of the characteristic endothermic FA peak in the thermograms of FA-loaded NPs
[Figures 6A and 7A(e)] demonstrates that the drug could be successfully entrapped in the
amorphous state within the formulated systems.

As expected, the polymer thermograms show characteristic peaks between 40–50 ◦C [73].
Regarding the DSC thermograms of the cryoprotected freeze-dried NPs, no obvious melting
process occurred. This could be due to the presence of cryoprotectants. It has been shown
that cryoprotectant molecules act through water substitution. The stabilization of NPs
could be explained as the formation of hydrogen bonds between the polar groups on the
polymer surface and the cryoprotectant molecules, resulting in the loss of water [64]. HP-β-
CD has a relatively high glass transition temperature (Tg). When it is arranged around the
NPs, it changes the collapse temperature of the systems. This results in a shorter primary
drying phase during lyophilization. The obtained amorphous structures are characterized
by a low aggregation capacity which prevents the formation of agglomerates during the
freeze-drying process [74,75].

FT-IR spectroscopic analysis was performed to identify the functional groups of the ma-
terials used in the preparation and the chemical interactions that could have occurred in the
formulated carriers. The spectra of the raw materials and cryoprotected and freeze-dried
NPs, empty and loaded with FA, were scanned. The results are shown in Figures 5B and 6B.
The FA showed a peak at 3436 cm−1 typical for -OH stretching vibrations, the absorption
bands in the range 2968–3016 cm−1 corresponded to the presence of the alkane groups. The
band at 1690 cm−1 was observed for the C=O carbonyl group and the band at 1277 cm−1

for the C-O group. The signals at 1619 and 1517 cm−1 were related to the vibration of the
aromatic ring, while the peak at 1205 cm−1 is typical for C-OH stretching and finally, the
band at 1035 cm−1 for methoxide O-CH3 stretching. The polymer spectra also showed
characteristic absorption bands. The broad bands at 3400 cm−1 are typical for hydroxyl
groups, the bands at 2997 cm−1 corresponding to the vibration for C-H alkane groups, the
characteristic stretching peaks for C=O carbonyl group are shown at 1751 and 1761 cm−1

for PLA and PLGA, respectively. The bands between 1300 and 1400 cm−1 were charac-
teristic for C-H alkane groups bending vibration and the bands in the region between
1272 and 1048 cm−1 were characteristic for C-O vibration. Cryprotectant FT-IR spectrum
showed an absorption band at 3420 cm−1 for -OH stretching vibration, a peak at 2933 cm−1

for alkane group vibration, and a signal at 1157 cm−1 for C-O vibration. Cryoprotected
and freeze-dried NPs scans, empty and loaded with FA, confirmed the results obtained
from the thermal analysis, which showed a similar trend to cryoprotectant. In the infrared
spectra of PLA (Figure 5B) and PLGA (Figure 6B) NPs, all of the characteristic peaks of FA
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disappeared, while the cryoprotectant typical peaks were detected at 3400 cm−1 for -OH
group, at 2900 cm−1 for alkane group and the bands in the region between 1035–1157 cm−1

for C-O groups. In addition, a characteristic polymer peak at 1750 cm−1 for carbonyl group
was detected. An interesting feature of the NPs spectra was the appearance of a peak at
1650 cm−1, attributable to the H-O-H bending band, which suggested a possible chemical
interaction between the cryoprotectant and the polymer matrix.

Therefore, it could be stated that NPs consist of a polymeric matrix in which the drug
was present in a dispersed form and partially exposed on the surface, while the external
area of the matrix is covered by a cryoprotective layer capable of maintaining the integrity
of the nanosystems.

4. Conclusions

In this work, the synthesis of empty PLA (NPA), PLGA (NPB), and polymeric NPs
loaded with FA was developed for ophthalmic applications. The obtained systems were
characterized by PCS analysis, data show homogeneous particle populations with a PDI
<0.2, with adequate dimension for ophthalmic administration and a strongly negative ZP,
which reduces the probability of obtaining aggregates.

To obtain suitable formulations for in vitro or in vivo studies, different purification
techniques were analyzed. Centrifugation proved to be the least suitable method because
it involves heterogeneous and non-redispersible aggregate formation. Dialysis on the other
hand, did not affect the dimensional parameters or PDI values for both frequencies of
water changes tested. Purification efficacy was also evaluated in terms of drug removed.
Dialysis, which allows a high FA purification yield, was performed with a frequency of
water changes equal to 1 L/h. The formulations were characterized in terms of osmolarity
and pH, making them suitable for ocular administration with well tolerated pH (7.3) and
isotonic osmolarity values with the tear fluid between 258–265 mOsm/Kg. The tolerability
of the blank carriers was confirmed by cell viability assays. NPA and NPB showed no toxic
effect in the concentration range 0.25–1 mg/mL on endothelial cells, while on pericytes,
NPs were safe at a higher concentration range of 0.25–2.5 mg/mL. However, further studies
would be required to ascertain the toxicity of polymeric carriers in vivo. The encapsulation
effectiveness was also assessed for both loaded formulations (NPA-FA, NPB-FA) with drug
entrapment yields of 75.16 and 64.86%, respectively. The results of in vitro release studies
showed that obtained systems are able to provide a controlled FA release up to 48 h. Using
5% (w/v) HP-ß-cyclodextrin as cryoprotective agent, the polymeric carrier systems can be
freeze-dried, ensuring good physical-chemical properties upon reconstitution and over
28 days. From the results of morphological analysis, the nanoparticles showed a spherical
and smooth surface. Thermal and spectroscopic analyses confirmed that the drug was
encapsulated within the polymer matrix. Hypothesis made on the in vitro biological tests
must be confirmed with further studies which must also be conducted on FA-loaded NPs,
although the obtained results may not be correlated with results of the in vivo studies
where cellular homeostasis is governed by multiple factors.
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