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Abstract: Wounds result from different causes (e.g., trauma, surgeries, and diabetic ulcers), requiring
even extended periods of intensive care for healing, according to the patient’s organism and treatment.
Currently, wound dressings generated by polymeric fibers at micro and nanometric scales are
promising for healing the injured area. They offer great surface area and porosity, mimicking the
fibrous extracellular matrix structure, facilitating cell adhesion, migration, and proliferation, and
accelerating the wound healing process. Such properties resulted in countless applications of these
materials in biomedical and tissue engineering, also as drug delivery systems for bioactive molecules
to help tissue regeneration. The techniques used to engineer these fibers include spinning methods
(electro-, rotary jet-), airbrushing, and 3D printing. These techniques have important advantages,
such as easy-handle procedure and process parameters variability (type of polymer), but encounter
some scalability problems. RJS is described as a simple and low-cost technique resulting in high
efficiency and yield for fiber production, also capable of bioactive agents’ incorporation to improve the
healing potential of RJS wound dressings. This review addresses the use of RJS to produce polymeric
fibers, describing the concept, type of configuration, comparison to other spinning techniques, most
commonly used polymers, and the relevant parameters that influence the manufacture of the fibers,
for the ultimate use in the development of wound dressings.

Keywords: drug delivery; healing; medical applications; nanofibers; polymers; processing; rotary jet
spinning (RJS); wound dressings

1. Introduction

Chronic wounds affect patients suffering from different diseases and injuries (e.g.,
burns, trauma, or diabetes), becoming a major public and economic health problem world-
wide due to high morbidity, risk of amputation, and severe socioeconomic burden [1–3].
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When not treated properly, they negatively impact the patient’s quality of life. Besides an
extended period for healing, they can lead to amputations and, in some cases, even death,
depending on the injury [4]. In the United States alone, for example, more than 6.5 million
suffer from chronic injuries, with treatment costs exceeding USD 25 billion a year [5].

Treatment of these lesions is currently accomplished through the use of autologous
skin grafts applied onto the affected area to prevent pathogen invasion [6], which, in some
cases, can even result in the amputation of the affected limb, as in the case of diabetic foot
and severe infection. Such tissue injuries heal slowly, implying prolonged suffering for
the patient and their families, requiring frequent wound management (cleaning, dressing
replacement), in addition to high expenses for intensive hospital treatments and increasing
risks of complications [1,7,8]. In consonance with this, more accessible solutions have been
sought to find efficient and easy-to-manage therapeutic actions that reduce, prevent, and/or
minimize wound aggravation, offering rapid healing in a functional and aesthetically
satisfactory way. To meet this global need, several new materials and techniques are being
proposed for the manufacture of wound dressings [9].

The demand for dressings that can be used to treat wounds has been growing and
represents a significant impact on the global market (above USD 7 billion in 2020) with
a forecasted growth at a compound annual growth rate (CAGR) of 9.7% by the year
2025 [10]. According to the National Wound Care Strategy Program (NWCSP, 2021), for each
2.2 million people who have a wound, 29% of them have acute wounds related to trauma,
surgery, abscess, or burns requiring the use of wound dressings. These numbers drive the
development of devices that can accelerate tissue regeneration in wounds, promoting rapid
recovery of patients affected by chronic injuries, which are capable of restoring their life
quality [11,12].

Rotary jet spinning (RJS) is a process for making membranes from a polymeric solution
with scales ranging from micro to nanometric [13]. It uses a high rotational speed provided
by an electric motor, dispersing the polymeric solution as a jet, quickly evaporating it, and
depositing polymer fibers in a cylindrical collector [14,15]. This technique has advantages
over other fiber methods, it is easy to operate and has high efficiency, requiring a low
amount of solution to produce an extensive amount of fibers (high fiber yielding). Addi-
tionally, it does not require polymeric conducting solutions or a high voltage source, a fact
that reduces the cost and enables the processing of various polymeric solutions without
the need for a conductive solution [16–19]. Characteristics, such as flexibility, large surface
area, and easy design modification, are being described for nanofibers obtained by RJS.
The rotary-jet-spun fibers application field of the nanofibers obtained from rotary-jet-spun
fibers can thus be used as filters, protective clothing, energy storage, sensors, and battery
separators [20–25].

These RJS polymeric fibers are indicated for medical applications, especially in tissue
engineering, drug delivery systems, and regenerative wound dressings [26–29]. Currently,
polymeric membranes are used as dressings due to their high porosity (for oxygen per-
meation) and their large surface area (cell culture). It must maintain the humidity at the
wound site and prevent the damaged tissue from particles and contaminants. The poly-
meric membrane should be non-toxic or allergenic, able to protect the wound from any
trauma, impermeable to any bactericidal activity. It should have adequate thermal insula-
tion, be comfortable, and be adaptable to the wound region, auxiliating the healing process
(Figure 1) [30]. In addition, targeted drugs can be incorporated into the polymeric matrix,
offering a therapeutic activity that collaborates in the healing process [31]. Some examples
of RJS polymeric fibers used as potential wound dressings are made of natural poly-
mers, usually with some pharmaceutical bioactive, such as the combination of poly (lactic
acid)/gelatin/ciprofloxacin [32], carboxylated chitosan/polyethylene oxide/ibuprofen [33],
and soy protein hydrolysate/cellulose [34], both presenting antibacterial activities, similar
to the native extracellular matrix, potentially accelerating the skin regeneration.
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There is currently a growing interest in rotary jet spinning studies because of its
promising outcomes, especially in the use of RJS fibers for biomedical applications. In this
review, we provide an in-depth discussion about the rotary jet spinning process regarding
its technology and comparison to fiber methods, the influence of its operational parameters
on the produced nanofibers, and how its products are applied in different areas, with a
special focus on wound dressings, with some remarkable applications.

2. Spinning Techniques

Polymeric fibers can be produced by different techniques, e.g., electrospinning (so-
lution and melt), melt blowing, drawing, and rotary jet spinning, among others. Indeed,
some fiber production techniques have limitations regarding the produced fibers’ char-
acteristics, equipment requirements, repeatability, productivity, and scaling. However,
the RJS technique outstands itself as it produces high-quality fibers, is efficient and has
easy scaling, has low energy consumption, and does not require conductive polymeric
solutions [35–37]. However, a specific requirement for RJS is the use of a low boiling point
solvent to evaporate at the operating conditions when the process occurs with a polymeric
solution [38–40].

RJS is a technique that presents a simpler mechanism of operation and greater capacity
for production concerning electrospinning [33,41]. In addition, the technique makes use
of a smaller amount of solvents in the composition of the polymeric solution since the
electrospinning the solution must be conducive as a prerequisite [13,19]. When compared
to airbrushing, a technique that uses pressure difference for the film’s development, the
production capacity of the RJS remains larger by the area of its collector, and also it does
not require a high-pressure gas flow to promote the formation of polymeric fibers ranging
from micro to nanometer scales [42,43].

To establish a general view of the fiber techniques, a comparison between the main
techniques used for fiber production is presented in Table 1, summarizing the advantages,
disadvantages, and applications of each mentioned technique.



Pharmaceutics 2022, 14, 2500 4 of 22

Table 1. Spinning techniques, their main advantages, disadvantages, and applications.

Techniques Advantages Disadvantages Applications References

Electrospinning

Nanometric fiber diameters
(100–1100 nm), large surface area,
uniform and aligned fibers, high

porosity, simple fabrication, superior
mechanical properties, and

ECM-like structure.

Requires a high voltage source and
conductivity solution, uses toxic solvents,

has low productivity, has difficulties in
scaling and equipment handling.

Biomedical: regenerative medicine and drug
delivery systems.

Others: electrochemistry (Li-air battery
separator), catalysis (sensors), photocatalysis

(organic solar cells), and environmental (filters).

[44–50]

Melt Blowing Long and continuous fibers, high
productivity, solvent-free.

High temperatures, thermal degradation,
larger fiber diameters, and polymers

limitation due to viscosity control.
Textile area and filters. [51–56]

Drawing
Simple process, high repeatability,
produces unique, continuous, and

long nanofibers.

It uses viscoelastic materials. Limited to
laboratory scale, it is a
discontinuous process.

Agriculture packaging. [14,51,55,57]

Rotary Jet Spinning

Process easy to scale, good
repeatability, fiber dimension control,

free from high voltage, low cost,
simple operation, eco-friendly.

Numerous polymers can be processed,
besides polymeric emulsions and

suspensions, with high productivity.

Might require high temperatures. Larger
diameter fibers. Fiber properties can be
affected by the material’s characteristics

and quality/configuration of
RJS equipment.

Controlled drug release, wound dressings, tissue
engineering, aerosol filtration, energy storage,

edible films, nutraceuticals, food encapsulation,
and packaging.

[14,31,51,53,58–60]

Air Brushing

Uncharged solution, fibers diameter
controlled by air pressure and nozzle
diameter, coating various shapes, fast

deposition rates.

Highly viscous polymer solutions are
difficult to produce fibers, require

compressed air, and solvent evaporation
depends on the solvent itself.

Scaffolds, tissue engineering, filtration. [61–63]
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3. Fundamentals of the Rotary Jet Spinning (RJS)

Rotary jet spinning (RJS) was first developed in 1924, with a USA patent, which
proposed the generation of fibers using centrifugal force. In 2010, Badrossamay created
the RJS machine as we know it today. Over the years, the technique has been improved
according to numerous patents published, both in the USA and Europe [23,38].

From a bibliographic analysis carried out using the Scopus database (31 August 2022),
searching the keywords “rotary jet spinning” or “centrifugal spinning” or “rotor spinning”
or “pressure gyration”, which are common names for the RJS technique, 2651 documents
were found. After this first screening, the keyword “wound dressing” was added, which
is the focus of this review, and 25 occurrences were found between 2012 and 2022. Once
the search was carried out in Scopus, the Vosviewer (version 1.6.18) software was used
to build up the bibliometric map [64]. This software helps to visualize the bibliometric
landscape of this theme, grouping the keywords related to the RJS technique into three
clusters (Figure 2). The red group has the majority of the keywords (wound dressing,
nanofibers, membranes, biocompatibility, bandage, and chitosan), followed by the green
cluster (humans, tissue regeneration, electrospinning, and wound healing) and the blue
cluster (centrifugal spinning, centrifugal, spinning (fibers), biomedical applications, and
drug delivery). From Figure 2, we confirm the great demand for the nanofibers produced
via the RJS technique, also showing its notorious research in the biomedical field, and
wound dressing fabrication.
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Figure 2. Publications about the RJS technology and the areas related to it in a bibliometric analysis
performed by the free software VosViewer [65] with Scopus data.

The process involved in the RJS technique is considered simple, however, some
knowledge of polymer chemistry, processing, and fluid mechanics is the basis for a proper
understanding of this technology. Despite the operating conditions, the polymers’ intrinsic
properties (viscosity, concentration, molecular structure, molar mass, and surface tension)
also affect the fibers’ properties [39,40,66–68].

A simplified scheme of the RJS technique is presented in Figure 3, in which the main
components that form the configuration of the RJS system are illustrated.
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Figure 3. RJS apparatus: (A) collector, (B) reservoir, (C) motor, (D) feeding zone (modified with
permission from [69], Copyright 2015 American Chemical Society).

The RJS equipment is composed of a reservoir, a spinning head, that can have two
opposing orifices (syringes) in the body (nozzle-type) or just have a cylindrical shape
(nozzle-less type), and is connected to the shaft with a controllable rotation speed motor [23].
In the RJS technique, the structures obtained (nanofibers) depend on the action of centrifugal
force, just like in a cotton candy machine [70,71]. Due to the centrifugal force generated
by the motor action, a polymeric jet is ejected from the reservoir orifices. This occurs
when the centrifugal force and hydrostatic pressure surpass the capillary resistance of the
solution/polymer (related to surface tension and viscosity), with the polymer extrusion
elongating and thickening with the rotation speed [72]. In the centrifugal spinning process,
nanofibers can be obtained from a polymer solution or melted polymer, and the diameter
and morphology of the fibers depend on the diameter and length of the ejector nozzle [73].

The polymer jet behavior is depicted in Figure 4, where it is possible to observe that
the fluid is a jet from the spinneret as the minimum angular velocity is achieved, forming
a spherical front end due to surface tension. As the rotating disk velocity increases, the
polymer fluid forms a conical droplet, which is stretched if the centrifugal force surpasses
the capillarity acting in the polymer (viscous force), forming the micro/nanofibers [20,74,75].
The solvent evaporation is enhanced according to the polymer jet traveling in a spiral,
forming fibers of extremely small diameters, implying greater surface areas; at the same
time, the solidification process also occurs [14,21,36,39,76]. Finally, the polymer fibers settle
in the collector’s base due to the action of gravity.
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Figure 4. Polymer molten jet formation in the RJS apparatus (modified with permission from [74],
Copyright 2018, IOP Publishing Ltd.).

3.1. Melt RJS

Melt RJS uses molten polymer in the RJS apparatus to form micro and nanofibers
without using solvents, which is important for special polymers that are hard to dissolve in
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common organic solvents [73]. Under this condition, it usually employs high temperatures
to melt the polymer, thus, the molten polymer drives into the orifices of the rotating spin-
neret [72]. Additional components that help the processability rely on viscosity-reducing
additives or plasticizers which improve the fluidity and allow the production of fibers with
reduced diameters [77]. The polymer jet is then elongated according to the centrifugal force
and solidifies at room temperature, yielding micro/nanofibers at the collector (Figure 5).
Some drawbacks here include the polymer fluidity because the fibers of the high viscous
molten polymer need to elongate without bearing and breakage during the spinneret
extrusion to produce quality fibers.
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3.2. Immersion RJS

The immersion RJS (Figure 6) consists of dropping the polymer extruded into a
solution where the fiber solidification and/or crosslinking occurs, which is advantageous
since it minimizes extrusion breakage and bearing in the fibers due to reducing the surface
tension [78]. As the polymer fibers are deposited in a liquid, it does not need a volatile
solvent in the process since the fibers solidify in this liquid, or crosslinker agents can be
present in this bath. Thus, some precautions need to be taken in this process, for example,
the immersion liquid cannot be water for hygroscopic polyesters or polyamides since
they can suffer hydrolysis, affecting their properties. Various polymers and solvents were
studied by Gonzalez et al. (2017) to demonstrate the immersion RJS viability for processing
different polymeric systems. The crosslink effectiveness of the immersion RJS to produce
fibrous gelatin employing a bio-crosslinker (enzyme) resulted in promising 3D aligned
fibers for cell support, useful for food processing (future meat) [79].
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3.3. Nozzle-Less RJS

Nozzle-less RJS does not use a needle for the polymer extrusion; instead, it pulls out of
a lid-disk gap in the center of a rotating disk collector, thus the jet liquid polymer produces
“fingers” due to Rayleigh–Taylor instability (Figure 7). Such a method is an alternative to
nozzle RJS systems that are susceptible to high viscous polymer clogging of the needle
orifice [37].
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4. Parameters and Factors Influencing Rotary Jet Spinning

RJS technology is a prospective method to manufacture high-performance three-
dimensional nanofibers with uniform morphology, high efficiency, and productivity. In this
process, there are key parameters that control the fiber properties (diameter, mechanical
strength, morphology, porosity, etc.), including polymer concentration, rotational speed,
nozzle diameter, orifice-to-collector distance, and solvent volatility [23,40,71,80–82].

Besides the attractiveness and advantages of the RJS technique, defects might occur in
the polymer fiber during its processing, usually caused by Rayleigh instability (driven by
surface tension), forming beads, and defects that diminish the fiber’s superficial area [83].
Solvent rate evaporation and rotational speed might control the polymer fiber solidifica-
tion, driving the smoothness and/or fibers’ porosity, besides the airflow resistance also
influencing the fiber elongation [75].

Depending on the RJS type, certain intrinsic properties and operating conditions
directly influence the fibers’ production (Table 2). For this reason, the RJS parameters
must be studied and optimized to ensure that the resulting fibers have all the required
properties for their targeted application, especially in the biomedical area, which needs
restricted characteristics.
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Table 2. Parameters that affect the properties of the RJS resulting fibers.

RJS Type Sub-Type Characteristics References

Traditional RJS

Melt Spinning • Polymers are melted and extruded
• Melt viscosity, temperature, rotational speed, and orifice sizes impact this process

[84]
[85,86]

Polymer Solution Spinning

• ↑ polymer molar mass→ ↑ jet diameter
• ↑ solvent vapor pressure→ ↑ uniform and ↓ porous fibers
• ↑ surface tension→ ↑ beads formation
• ↑ polymer concentration→ ↑ fiber diameter
• ↓ polymer concentration→ ↑ fiber diameter
• Polymer concentration must be optimized to ensure uniform and thin fibers
• Rotational speed highly impacts the ideal concentration
• ↓ solution viscosity→ ↑ beads formation
• To produce ideal fibers, viscosity must be low (1–10 Pa.s), presenting Newtonian behavior
• ↑ rotational speed→ ↓ fiber diameter
• ↓ nozzle diameter→ longer fibers
• Straight nozzle angle→ ↓ fiber diameter
• Distance spinneret—collector→ depends on solvent evaporation and fiber formation

[87]
[75,83,87–91]
[75,83,88,92]
[74,88,92–94]

[74,88]
[91]

[74,88]
[75,83,90,91]

[27]

[83,94,95]
[92]
[94]

[75,91]

Hybrid RJS

Electrostatic-Centrifugal Spinning
• Centrifugal and electrical forces are combined to improve the fibers
• This association enhances the fibers’ rheology because it removes “whipping instability” [96]

Photo-Centrifugal Spinning
• Involves the use of photoinitiators and UV lights to produce fibers
• Depends on a high effective light intensity, polymer concentration, and time exposure to

develop uniform fibers
[97]
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Additionally, the RJS process might have new variants in the production system. It is a
hybrid RJS process that combines other acting forces besides the rotary ones to improve the
manufacturing of the fibers. According to this concept, electrostatic-centrifugal spinning
and photo-centrifugal spinning additionally use electrical force [98] and photoinitiators
with the incidence of UV lights [97], respectively.

5. Biomedical Applications of RJS-Nanofibers

RJS nanofibers are widely used in the biomedicine field since these fibers have inter-
esting characteristics that are required in this area [13,66]. Therefore, caring for skin lesions
(wounds) is not a simple treatment since it requires the protection of the injury from the
action of external physical, mechanical, or biological agents, to reduce, prevent, and/or
minimize the risks of resulting complications (e.g., secondary infections).

The main requirement for a polymeric wound dressing is biocompatibility. This means
that interactions between biomaterials, cells, and the host must not be potentially harm-
ful to induce cytotoxicity, generate adverse immune responses, or activate coagulation
pathways [99]. Concerning the use of biomaterials for cutaneous wound healing, some
characteristics are essential: ease of handling and application to the wound site; to be
readily adherent; exhibit adequate physical and mechanical properties; have a controlled
degradation; to be sterile, non-toxic, and non-antigenic; exhibit minimal or no inflammatory
reactivity; to be incorporated into the host with minimal scarring and in a painless manner;
and to facilitate angiogenesis [2]. In the case of using dressings, these must have a highly
porous structure and at the same time act as a water barrier to keep the wound moist, accel-
erate healing, and prevent bacterial invasion, which can be caused by a fluid accumulation
between the wound and the dressing [100]. RJS nanofibers have high surface areas (porous
films), promoting conditions for cell growth and wound repair [36,101]. Additionally, their
structure imitates the natural skin interface, allowing the recovery of biological functions
of damaged tissues and selectively interacting with specific cell lines.

The mechanical properties (strength, modulus, toughness, and ductility) and architec-
tural properties of the wound dressings are also extremely important so that they are not
compromised during their use. Therefore, the dressing cannot be completely solid, because,
in addition to porosity and interconnectedness, permeability is also an important material
characteristic, as it is a measure of liquid fluidity in the structure. Thus, high permeability
produces greater diffusion within the membrane, facilitating the entry of nutrients and
removal of degradation products and metabolic wastes [100].

Some biomedical applications of RJS nanofibers are presented in Table 3.
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Table 3. Recent developments in polymeric nanofibers produced by RJS in the biomedical area.

Polymers Used Applications Characteristics References

Biological ECM 1/HA 2 Tissue engineering
These scaffolds of porous nanofibers produced by iRJS 3 have tunable properties, as they are composed of
biological molecules (HA, fibrinogen, collagen, gelatin, and chondroitin sulfate) that biomimics the ECM

to speed up tissue regeneration
[102]

CS 4/PEO 5 Tissue engineering Fabrication of continuous, ultrafine, and uniform beads-free nanofibers with high CS content for
enhanced antimicrobial and biocompatibility [103]

OCS 6/TOB 7 Tissue engineering OCS grafted with an antibiotic (TOB) was processed with PEO in a RJS equipment, such polymer
improved the spinnability, with the formulation 1:3 OCS-TOB/PEO showing the best antibacterial activity [104]

PCL 8 Bone regeneration PCL scaffolds combined with nHAp 9 produced via RJS were used in bone structures. The results showed
that the PCL/nHAp scaffolds had a positive influence on the flexural mode of the newformed bone

[105]

PCL Tissue engineering
This study demonstrates that RJS-spun fibers have a unique morphology compared to electrospun fibers,
are non-cytotoxic when in contact with mammalian cells, and reduce bacterial colonization without the

need for further incorporation of antibiotics or prior chemical treatment
[39]

PCL/Gelatin Tendon tissue engineering Dual-phase fibers have been developed involving RJS and WES 10 techniques. The fiber core is formed by
gelatin, presenting adequate mechanical strength, and also helping the tendon osteogeneses

[106]

PCL/Gelatin Tissue engineering RJS proved to be effective to produce non-toxic PCL-gelatin fibers that possibly allow their use as scaffolds [107]

PCL/nHAp Orthopedic applications Scaffolds with PCL/nHAp showed reduced bacterial proliferation in bones (in vitro and in vivo) since
the structures obtained presented superhydrophobic behavior [108]

PCL/β-TCP 11 Bone grafting PCL and β-TCP were solubilized in chloroform, and further spun at 3500 rpm, where formulations M5
and M10% promoted better collagen and osteoclasts production [59]

P4HB 12/Gelatin Scaffolds for heart valve replacement The hybrid fibers (core—gelatin, exterior—P4HB) produced a biomimetic fibrous matrix, such as heart
valves, improving the regeneration of the fibrous tissue [109]

PLA 13 Bone tissue engineering PLA/SBA 14-15fiber improved polymer matrix biocompatibility and osteoblast cells’ adhesion [110]

PLA Tissue engineering Polymeric roughened microfibers (PRM 15), with high porosity, produced by RJS, improved the
mesenchymal stem cells’ adhesion and tissue incorporation, reducing the stroke lesion area

[111]

PLLA 16 Tissue engineering
Fibrous PLLA membranes produced by the RJS technique had non-toxic behavior, presenting

biocompatibility and bioadhesion, which makes them adequate support for fibroblastic and osteoblastic
cells’ proliferation

[15]

PU 17 Tissue engineering The PU fibrous structures produced by RJS, both aligned and random, showed compatibility with the
cultured osteoblastic cell line, which allows its application in tissue engineering [112]
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Table 3. Cont.

Polymers Used Applications Characteristics References

PU Tissue engineering
PU scaffolds combined with collagen and elastin showed an absence of solvent in the fibers, besides
hydrophilic behavior, which possibly allows their application as tubular scaffolds for regeneration of

vascular systems
[113]

PVP 18 Biomedical The compact equipment easily controlled the operating parameters, producing aligned and homogeneous
PVP fibers suitable for drug delivery systems [22]

PCL Tissue engineering Fabrication of scaffolds with micro and nanofibers of polycaprolactone and gelatin for the cultivation of
cardiomyocytes for a biofabrication of ventricles [114]

PLA/PCL Biomedical Dressing fibers produced by RJS containing polymeric fibers incorporating VANC 19 were developed in
order to evaluate the antimicrobial potential against Staphylococcus aureus

[115]

1 ECM—extracellular matrix; 2 HA—hyaluronic acid; 3 i-RJS—immersion rotary jet spinning; 4 CS—chitosan; 5 PEO—polyethylene oxide; 6 OCS—oxidized chitosan; 7 TOB—tobramycin;
8 PCL—polycaprolactone; 9 nHAp—nanohydroxyapatite; 10 WES—wet electrospinning; 11 β-TCP—tricalcium phosphate; 12 P4HB—poly-4-hydroxybutyrate; 13 PLA—polylactic acid;
14 SBA—silica mesoporous; 15 PRM—polymeric roughened microfibers; 16 PLLA—poly(L-lactic acid); 17 PU—polyurethane; 18 PVP—polyvinylpyrrolidone; VANC—Vancomycin 19.
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There are several advantages to using nanofibers to make drug-releasing wound
dressings, mainly because these materials can protect the wound, absorb exudates, provide
better penetration of the drug into the wound bed, increase intracellular uptake, reduce
toxicity, reduce the frequency of topical application and increase patient compliance, and
accelerate the healing process [116–118]. In addition to drug delivery, nanofibers can be
a promising tool for the incorporation of macromolecules, antibiotics, anti-inflammatory,
growth factors, enzymes, or nucleic acids due to their specific delivery capacity allowing
high bioactivity due to controlled release [119,120].

Factors such as geometrical properties, diameter, specific surface area, and total pore
volume affect the convection and diffusion of the liquid in which the nanofibers are im-
mersed, thereby affecting the drug release properties, which in turn affects the understand-
ing of the solid state of the drug and the effect of polymers incorporated into the nanofibers
on drug release. The study of kinetics and its mechanism is extremely important for drug
delivery systems, as is the nanofiber design (Figure 8). In nanofibers with a homogeneous
structure, the drug is distributed in a polymer matrix, unlike what occurs in core-shell
nanofibers, where the drug-carrying matrix is covered by a polymer shell, or nanofibers
can be developed, on which the drug can be immobilized on its surface [121–123].
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A poly(L-lactic acid) (PLLA) membrane incorporated with curcumin produced by
the RJS technique showed a controlled release profile justified by the low rate of fiber
degradation. In addition, it presented biocompatibility and non-toxicity against fibroblasts,
giving the membrane a potential material for the treatment of chronic wounds [31].

Core-shell nanofibers were designed to control the release rates of ibuprofen and
human epidermal growth factor (EGF) during the inflammatory and proliferative phases
of wound healing by coaxial centrifugal spinning technology [33]. To prepare core-shell
nanofibers, 10 mg/mL ibuprofen and 1 µg/mL EGF were mixed into a 1:1 solution of
carboxylated chitosan (CCS), polyethylene oxide (PEO). It was stirred on ice for 15 min.
The rotary spinning system had a 4500 rpm speed with a 30 cm collection distance. The
release results showed that the CCS/POA core-shell nanofibers containing EGF showed
a release rate of 75% in two hours and thereafter maintained a controlled release rate of
the remainder of the growth factor. It was also observed that the release of EGF in the
central layer of the core-shell nanofiber was moderate due to the active agent incorporation
in the central layer. The diameters of the core-shell nanofibers and uniaxial nanofibers
are 1154 nm and 418 nm, respectively, which means that the erosion rate of the core-shell

https://biorender.com/
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nanofiber polymer is lower compared with that of the uniaxial nanofibers, which directly
affects the EGF release. For ibuprofen-containing core-shell nanofibers, the release rate was
greater than 50%, but for the monoaxial nanofibers, the rate was only 30%. This result may
be related to the different initial positions of ibuprofen in the core-shell and monoaxial
nanofibers, leading to the polymer erosion mechanism. These outcomes demonstrate a
promising application of nanofibers in the delivery of drugs in wound dressings.

An antimicrobial dressing formed by poly(lactic acid) (PLA)/gelatin/ciprofloxacin
(CPF) nanofibers manufactured by the RJS was developed [32]. At first, it was observed that
different concentrations of the prepared solutions influence the diameter of the nanofibers.
The results were shown for concentrations of 0–12% of ciprofloxacin, the nanofibers had
diameters ranging from 513–622 nm, respectively, and this result was associated with
the chain solution, increasing nanofibers. The release profiles showed that the PLA/GE
nanofibers released about 30% of ciprofloxacin in 1h; this result was attributed to the
CPF adsorbed on the nanofiber surface. After this time, all nanofibers with different
concentrations of CPF maintained a slow and sustained release due to the control mediated
by the PLA polymer chains. The release of nanofibers reached 87% at 144 h in particular for
formulations containing 10% and 12% CPF. With these results, it was possible to observe
that the process of developing the nanofibers was satisfactory mainly because it presents a
controlled drug release system, providing a promising dressing for treating wounds.

Odermatt et al. [124] patented the method that describes the creation of nanofibers
containing at least one synthetic and bioabsorbable polymer in the form of a dressing.
Despite the already existing healing devices on the market, some disadvantages such as
the occurrence of infections, irritation, and material degradation lead to the need for the
development of new dressings. Through the RJS technique, researchers seek a greater effec-
tiveness of this material in the healing process as well as to develop an environmentally
friendly product with low process energy. Different synthetic polymers such as polycapro-
lactone, polylactide-co-glycolide, polyvinyl alcohol, hyaluronic acid, acetylated distarch
phosphate, and starch were used for the development of these dressings in different con-
centration gradients. Thicknesses between 30 nm and 400 nm were obtained through the
different mixtures of polymers used to manufacture rotospun fibers. Despite recent studies
demonstrating the effectiveness and potential of manufacturing nano- and microfibers by
RJS in the development of new dressings, the need to advance new studies aims to bring to
the market a new product that has greater effectiveness, low cost, and easy production for
the treatment of wounds.

In comparison with other existing methods of producing nanofibers, the RJS technique
has an enormous potential to be explored, mainly because it provides high yield at a low
cost and can be used to carry drugs in nanofibers for the production of dressings that
provide the patient a product by maintaining a controlled release, protecting the active
agent, reducing antimicrobial resistance events, and consequently accelerating the healing
and restoration of the affected area.

6. Other Applications: Filters and Batteries

Filters are a remarkable industrial application of polymer nanofibers produced via
the RJS technique. Such a process is ideal for the production of continuous fibers since it
ensures a high surface/volume ratio of the fibers, which efficiency increases with this ratio.
Accordingly, polyamide 6 (PA6) presented smaller fiber diameters with RJS than the elec-
trospinning process, for a PA6 (22.5 wt.%) solution containing formic acid, confirming that
RJS quickly creates fibers at the nanoscale and proving that RJS is adequate for industrial
production of polymer nanofibers [19].

RJS air filters compete with typical high-performance filters (HEPA—high-efficiency
particulate air). Normally, an air filter must have 99.97% of minimum removal efficiency
for particles equal to or greater than 300 nm in diameter, according to the standardization
of the United States Department of Energy, or 85–99.9% particle removal, as Europe stan-
dardizes (European standard EN 1822: 2009). Additionally, it also requires an airflow rate
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between 3 and 10 m3·s−1, and approximately 300 Pa minimum filter pressure drop [36].
Fiber-based filters have a medium-low price range, but, with RJS, a scalable and high-
productivity technique, it is possible to maintain the market prices with the same efficiency
as HEPA filters.

The main function of air filters is to prevent the users from health problems that
particulates can offer [125]. As a consequence, studies have shown that nanofiber-based
filters present higher particle removal efficiency than filters built up with greater diameter
fibers. For example, a mining vehicle containing cellulose-based filters exhibited a dust
reduction from 86 to 93% when using nanofibers in the filter composition [126]. Likewise,
the quality factor (efficiency and pressure drop) is reported to increase at most 2.6 times in
nanofiber-based filters compared to those made with microfibers [127]. Additionally, the
COVID-19 pandemic boosted the use of the RJS technique for the production of filters for
facial masks to protect the population from the mutating virus [128].

Multilayer electrospun nanofibrous membranes formed by Polyvinylidene Fluo-
ride (PVDF)/Polyacrylonitrile (PAN) achieved high filtration efficiency and low pressure
drop [129]. This is because PVDF has a greater porosity, which is adequate for air pas-
saging, thus, reducing the pressure drop, while PAN has the characteristic of capturing
small particles. Additionally, poly [2-(N, N-dimethyl amino) ethyl cationic methacrylate]
(PDMAEMA) was added to the PVDF solution. Thus, it resulted in a composite air filtra-
tion system for biological protection, with excellent antibiotic removal, reaching a high
inhibition rate (≈90%).

Regarding water filtration, one of the main concerns is about the capture of heavy
metals in wastewater, since these metals are toxic, representing problems for human
health and the environment as well [130]. For this reason, some studies with cellulose
acetate membranes proved that this material is very efficient for nanofiltration due to
the regeneration of pure cellulose via deacetylation [131]. Cellulose acetate membranes
displayed decent adsorption and desorption after being washed five times with a sodium
hydroxide aqueous solution, and also presented an absorption capacity of 19.5 mg/g
according to the Langmuir isotherm [130]. Additionally, cellulose nanofibers embedded
with polyamide layers via interfacial polymerization resulted in a filtration membrane
with Mg2+ rejection (MgCl2 and MgSO4), depending on the extension of the interfacial
polymerization [132].

Besides the filtration area, fibers produced by the RJS technique have also been applied
as photovoltaic fibers [36,133]. Polymeric materials such as inorganic semiconductors
contributed to this application since it combines ease of processability, compatibility, and
low-temperature manufacturing processes. Such materials also enable large-scale produc-
tion, allowing the development of lighter and more flexible devices [134,135].

In the field of photovoltaics, power conversion efficiency (PCE) can be improved with
the heterojunction of materials [136]. Likewise, high-performance cells are directly related
to the morphology of the active layer [134], thus adding a rich-concentrated nanofibers
solution to photovoltaic cells still increases PCE [137]. Additionally, with a solution con-
taining nanofibers and a molecular acceptor, such as [6,6]-phenyl C61-butyric acid methyl
ester (PCBM), it is possible to obtain a high-efficiency active layer for organic solar cells
with a PCE up to 3.6% [133]. The study by Burson et al. (2007) concluded that the pho-
tovoltaic effect may require disorganized polymer portions to fill the gaps present in the
nanostructured layers and ensure contact between the donor fibers and the PCBM accep-
tor domains [133]. Other interesting applications for RJS fibrous membranes and their
composites are Li-ion battery separators and proton exchange membrane (PEMs) fuel
cells [138]. An example is polyvinylidene fluoride (PVDF) nanofibers semi-interpenetrated
with perfluorosulfonic acid (Nafion®) to develop PEMs [139], in which the PVDF crystalline
structure, specifically its β-phase, increases the PEM’s piezoelectric performance [140,141].
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7. Conclusions and Future Prospects

Recent developments in nanofiber fabrication technology have led to controlled manip-
ulation of nanofiber properties, such as high surface area/volume ratio and their ability to
encapsulate bioactive molecules for controlled release. Factors such as increasing awareness
of advanced wound healing techniques and increasing incidence of ulcers due to obesity, di-
abetes, cardiovascular, and degenerative diseases are driving the growth of the wound care
market. RJS technology is a relatively new process for producing polymer fiber material
systems for biomedical applications, which can be used to rapidly produce large quantities
of final products. It can also create biomimetic porous extracellular matrix structures
(scaffolds) that allow for biocompatibility, cell adhesion, and proliferation. Additionally,
biopolymeric nanofibers from the RJS process have the versatility to provide materials with
tunable mechanical (tensile modulus, peak load, and break strain) and biological properties
(biodegradability, air diffusion), aiding tissue regeneration technologies. Their high poros-
ity provides better diffusion of oxygen and pharmaceutics, which is greatly advantageous
for epidermal applications, especially for wound dressings. These characteristics turn the
biopolymeric nanofibers into a powerful building block for designing more comprehensive
pro-regenerative solutions. The production of RJS polymer scaffolds results in materials
with excellent properties, combining processability, strength, elasticity, and biocompatibil-
ity. Besides the advantages of the RJS technique, it is expected that the advancement of this
technique will lead to customizable healing formulations, as there are several skin injuries
(burn, trauma, surgery, diabetic ulcer, infection, etc.) that require targeted treatments for
wound healing. RJS wound dressings are still in progress in the market, but their promising
features for fast healing, drug delivery, and improvement in the quality of patients’ lives
with less invasive procedures are attracting attention and popularity for the RJS technique.
With the RJS technique, it is possible to produce dressings using a smaller feed of raw
material in comparison to other known production techniques, however, the dressings
are customized without a unitary standard for each clinical case, so it is still necessary to
explore such conditions and invest in inputs to serve this niche uniformly. One obstacle that
must be overcome in the use of RJS for wound dressing production involves its production
capacity, as there is no record of industrial-scale RJS equipment.
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