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Abstract: Anticipating the demand for professional job market skills needs to consider trends
such as automation, offshoring, and the emerging Gig economy, as they significantly impact the
future readiness of skills. This article draws on the scientific literature, expert assessments, and deep
learning to estimate two indicators of high relevance for a skill’s future readiness: its automatability
and offshorability. Based on gold standard data, we evaluate the performance of Support Vector
Machines (SVMs), Transformers, Large Language Models (LLMs), and a deep learning ensemble
classifier for propagating expert and literature assessments on these indicators of yet unseen skills.
The presented approach uses short bipartite skill labels that contain a skill topic (e.g., “Java”) and a
corresponding verb (e.g., “programming”) to describe the skill. Classifiers thus need to base their
judgments solely on these two input terms. Comprehensive experiments on skewed and balanced
datasets show that, in this low-token setting, classifiers benefit from pre-training and fine-tuning and
that increased classifier complexity does not yield further improvements.

Keywords: skill classification; deep learning; large language models; bipartite skill labels

1. Introduction

Automation, offshoring, and the emerging Gig economy instigate and intensify labor
market disruptions. The ongoing trends of automating repetitive tasks and offshoring con-
tinue to reshape traditional job roles and workforce dynamics, changing skill requirements
in the labor market. Research by Bick et al. [1] indicates that 60% of occupations have at
least 30% work activities that could be automated.

Automation has triggered a growing demand for technical skills such as data analysis,
artificial intelligence, and machine learning, while offshoring amplifies the relevance of
intercultural communication and global collaboration skills. The rise of the Gig economy
accentuates the significance of adaptability, self-management, and entrepreneurship, partic-
ularly as individuals navigate short-term projects and roles. Gig economy platforms like
Fiverr, UpWork, and Freelancer, compel both employers and employees to adapt to more
flexible working structures. However, as certain tasks become automated or outsourced,
routine skills for repetitive operations witness declining demand. This underscores the
need for continuous upskilling and reskilling in increasingly competitive job markets.

This article aims to provide decision-makers with insights into the future readiness
of professional skills. The presented approach resonates with the objectives outlined in
the United Nations Sustainable Development Goals (SDGs) (https://sdgs.un.org/goals,
accessed on 1 March 2024) by (i) providing information on a skill’s future readiness to
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guide educational activities and increasing the number of people with relevant skills (SDG
4: Equitable Quality Education) and (ii) helping to better align skill supply and demand to
promote sustainable economic growth and productive employment (SDG 8: Decent Work
and Economic Growth; see Section 7).

Evaluating a skill’s future readiness in terms of its resilience to automation and
outsourcing requires the development of classifiers capable of automatically assessing
the skill across these two dimensions. The presented work draws upon a skill ontology
that characterizes skills with bipartite skill labels consisting of skill topic and skill verb
(e.g., Java[topic] Programming[verb]). These labels, more detailed than topic-only labels, still
lack additional context and challenge classifiers due to their reliance on just two topics for
predictions. This impacts the design and effectiveness of classifiers, as ensemble models
might fail to improve the outcome with such limited input.

Building on previous model comparisons for assessing the future readiness of
skills [2], the presented research has been conducted within the Future of Work project
(https://semanticlab.net/future-of-work, accessed on 1 March 2024), which investigates
the performance of multiple classification approaches (Support Vector Machines (SVMs),
Transformers, Large Language Models (LLMs), and a deep learning ensemble classifier)
toward reliably propagating expert and literature assessments on automatability and
offshorability to yet unseen skills.

The remainder of this paper is structured as follows: Section 2 provides an overview
of related work which is followed by a description of the methods applied in this study
(Section 4). Section 5 presents the gold standard datasets, evaluation settings, and evalua-
tion results, followed by the conclusion and outlook in Section 7.

2. State of the Art

The literature discussed in this section is focused on (i) anticipating job market de-
mands; (ii) skill classification systems with a focus on skill bases such as taxonomies and
ontologies, custom skill bases for automation and custom skill bases for offshorability; and
(iii) a brief overview of recent deep learning models for classification, such as Transformer
models and LLMs.

2.1. Anticipating Job Market Demands

Anticipating job market demands is a difficult proposition. The lockdown measures
imposed during the COVID-19 pandemic, for instance, triggered declines in labor demand
of up to 30% [3]. A 2023 study estimates that only 30.7% of current jobs are likely to remain
unaffected by disruptions caused by generative artificial intelligence (AI) such as ChatGPT.
The study’s authors expect that a majority of jobs will either be fully or partially impacted
by generative AI [4]. Another 2023 study states that Industry 5.0 requires highly skilled
individuals with various soft skills (e.g., communication, teamwork, emotional intelligence)
capable of collaborating with both humans and machines [5]. Such economic megatrends
tend to disrupt and reshape job markets, often acting together (e.g., the twin impact of
COVID-19 and AI [6]) and requiring both employers and workers to adapt.

A recent survey that used data mining techniques to predict student employability [7]
identifies the following challenges: (i) focus on gender instead of psychometric attributes;
(ii) unbalanced and incomplete datasets; (iii) studies based on heuristics; (iv) scalability is
an issue as participants usually come from the same environment (e.g., universities); and
(v) reproducibility since data and source code are not publicly available. Most of the studies
investigated in the survey center on students and lack integration of online data sources,
such as job advertisements or CVs. This tendency could potentially be attributed to the
nature of the study cohort. For instance, there might be fewer online job opportunities
directly targeting students. Notably, studies focusing on workers, as exemplified by [8],
predominantly draw from online sources.

Khaouja and his group [8] survey skill identification technology [8], one of the pillars
of predicting job market demands. They define the following objects: (i) online data
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sources (e.g., job ads, academic curricula, CVs); (ii) skill bases developed by experts
(e.g., public ontologies and taxonomies) and customized skill bases (e.g., manually built
or based on embeddings); (iii) skill identification methodologies (e.g., skill count, topic
modeling, embeddings, ML-based); (iv) evaluation metrics (e.g., precision, recall, f1 for
binary classification tasks or MRR for multi-label classification tasks); (v) skill identification
granularity (e.g., sentences, n-grams, sentences and n-grams); and (vi) industry sectors (e.g.,
IT, engineering, healthcare, multiple sectors). The second part of the survey focuses on the
various applications of this technology, such as market analysis, curricula development,
job recommendation engines, talent search, skill demand prediction and gender bias
identification. The article ends with an overview of future work, which includes deep
learning, graph embeddings, or generation of skill bases.

Most of the articles present global trends, but job demand forecasting is typically
local. Some recent studies, for example, focused on analyzing the Norwegian IT market to
improve the computing curriculum [9] or assessing skill demand in the Lithuanian market
by analyzing the job ads with clustering and NLP techniques [10].

2.2. Skill Classification

Skill bases appeared due to the necessity of classifying jobs listed in statistical reports.
The first classification schema focused on occupations, whereas the most recent ones are
developed around skills.

Custom-built skill bases allow assessing skills regarding specific use cases, such as
assessing their susceptibility to automation. They can be manually built (e.g., lists of
predefined terms), extracted from word embeddings, or even generated from existing
knowledge bases. The remainder of the section discusses popular skill bases as well as two
types of customized skill bases that focus on automatability and offshorability.

2.2.1. Skill Bases

Public skill classifications and skill bases developed by experts are good starting points
for the discussion of skill classification [8]. Well-known classification schemes include:

• ESCO (European Skills, Competences, qualifications, and Occupations; https://esco.
ec.europa.eu/en/classification, accessed on 1 March 2024), a fine-grained classifica-
tion scheme that covers 14,295 skills in all the languages of the EU. It is the main
classification scheme used in the European labor market.

• O*NET (https://www.onetonline.org, accessed on 1 March 2024), a coarse-grained
classification schema which covers over 900 skills and also includes generic skills and
is mainly used in the United States.

• ROME (https://www.francetravail.fr/employeur/vos-recrutements/le-rome-et-les-
fiches-metiers.html, accessed on 1 March 2024), a coarse-grained classification devel-
oped by France Travail. It is available in French and only covers French territories.

• ISCO-08 (https://www.ilo.org/public/english/bureau/stat/isco/index.htm, accessed
on 1 March 2024) is the latest version (December 2007) of a job classification scheme
which was adopted as early as 1957.

These skill bases are built around ontologies and supported by organizations which
are publicly funded by the US (e.g., O*NET), the European Union (e.g., ESCO), or national
governments (e.g., ROME is supported by the French government).

Skill identification technology [8] has been a foundational technology for building
these widely used skill bases. Nevertheless, special use cases such as forecasting and pre-
dicting the impact of trends such as automation and offshoring may require custom classifi-
cation systems, such as the one discussed in the remainder of this section.

2.2.2. Customized Skill Bases for Automation

Autor and Dorn [11] argue that jobs containing repetitive tasks are more likely to
be automated. Josten and Lordan [12] identify a set of indicators that might impact
automation, namely people (e.g., if the job requires daily interaction with people), brains
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(e.g., if abstract reasoning is required), and brawn (e.g., if physical interaction with certain
objects is needed). Josten and Lordan [13] classified O*NET professions based on their
degree of automatability (e.g., full, non-, or partial). The main goal of their work was
better alignment with the European labor force survey (https://ec.europa.eu/eurostat/
web/microdata/european-union-labour-force-survey, accessed on 1 March 2024), which
covers the period between 2013 and 2016. Based on a regression analysis, they established
that occupations that require brains (e.g., abstract reasoning) are better protected from
automation, especially when compared to occupations that require daily interaction (e.g.,
people skills) and physical interaction (e.g., brawn). Combining these factors can also
decrease the likelihood of automation.

Eloundou et al. [14] investigated the impact of LLMs such as GPT and BLOOM [15] on
the labor market. They note that routine and repetitive tasks have a high risk of technology-
driven displacement. Brynjolfsson et al. [16] distinguish between the labor-augmenting and
labor-displacing effects of automation. Eloundou et al. [14] use exposure as the main factor
in their automation risk classification. They consider three cases: no exposure (e.g., minimal
or no time reduction for completing a task using an LLM or software agent), direct exposure
(e.g., LLMs reduce task completion times by 50 percent), and indirect exposure (e.g., if
productivity rises and can be doubled with the help of a software agent). Routine tasks
in automatable domains such as data processing, data science, or information processing
exhibit a high chance of being displaced in contrast to agriculture, manufacturing, or mining
tasks. ChatGPT shows promising results in a wide variety of programming tasks [17],
supporting the hypothesis that programming and technology-related jobs will be disrupted
by automation. However, the idea that people need domain knowledge to author software
is also gaining traction, suggesting professional reconversion may be a solution to averting
job losses [18].

Nevertheless, considering previous technological breakthroughs in areas such as
agriculture and the industrial revolution leads to the conclusion that the overall impact
of AI is difficult to assess at this point since it might take several decades to unfold, as it
requires the development of new processes and business models [19,20].

2.2.3. Customized Skill Bases for Offshorability

Wagner’s work [21] on digital talent platforms (e.g., Freelancer, Upwork and Fiveer)
provided important insights towards preparing the offshorable task gold standard. Digital
talent platforms help employers meet unplanned needs for knowledge work services [22];
lower the need for permanent positions by hiring specialized workers for specific con-
tracts [23]; and fill hiring gaps that are not addressed by traditional hiring strategies [24].

Dunn [25] classifies Gig economy platforms into: (i) low-skill (e.g., Uber, Bold, TaskRab-
bit) or high-skill location-dependent (e.g., Outschool or Tutoroo for private lessons) and
(ii) low-skill (e.g., Amazon Mechanical Turk) or high-skill (e.g., Fiverr and Upwork) location-
independent services. These services can be used as starting points for assessing offshora-
bility, as all the tasks listed in their catalogs have already been offshored successfully.

While this article focuses on the effects of automation on offshoring (relocating manu-
facturing to other countries), the opposite strategy, reshoring (relocating manufacturing
back home) is equally relevant. Pinheiro et al. [26] conducted a meta-regression analysis
of the published research. They analyze four major automation trends (cost advantage,
increased productivity, robots, and Industry 4.0) and their influence on offshoring and
reshoring. After the pandemic, companies seem to favor reshoring, but they do use off-
shoring in cases where automation plays a central role (e.g., information technology). They
argue that the offshoring vs. reshoring decision depends on internal decision-making
chains rather than global trends.

2.3. Deep Learning for Text Classification

The Transformer architecture [27] has changed the landscape of NLP, as almost all
the classic NLP tasks (e.g., classification, dependency parsing, sentiment analysis, named

https://ec.europa.eu/eurostat/web/microdata/european-union-labour-force-survey
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entity recognition, or question answering) can be implemented with it. Transformer-based
language models (e.g., BERT [28], DistilBERT [29], or RoBERTa [30]) employ a self-attention
mechanism to capture the context and relationships among words. This self-attention
mechanism enables them to assess the significance of individual words within a sentence,
prioritizing semantically meaningful tokens while filtering out irrelevant noise [31]. Bom-
masani [32] even names pre-trained Transformer foundation models because most NLP
tasks can be designed around them. Still, they also require adaptation to domain-specific
tasks (e.g., text classification, sentiment analysis, etc.).

A large-scale survey by Minaee et al. [33] presents most of the deep learning archi-
tectures widely used for text classification, from LSTMs to Transformers. A taxonomy
of Transformers can be found in [27] and includes most models used for classification
until late 2021. Some specialized surveys are also available. One survey [34] examines
the role of embeddings in text classification. The last few years have also seen the rise of
hybrid architectures that combine sequence-to-sequence or graph neural networks with
Transformers, as described in Pham et al. [35]. Another recent survey [36] examines text
classification models in the context of designing spam filters.

Large Language Models (LLMs) exceed Transformers in size (i.e., over 10 billion
parameters [37]) and apply training strategies such as instruction tuning and adaptation
tuning to enable instruction following and zero-shot capabilities. The GPT 3/4 models
(https://chat.openai.com, accessed on 1 March 2024) [38] inhibit so-called emerging capa-
bilities which further improve their capability to correctly interpret human language and,
therefore, pave the way for even more advanced text classification systems [37].

Using AI tools for classification or related generative processes requires considering
issues such as transparency and accountability. Since generative tools can easily reuse or
remix text, code, or images on demand, it is important to know more details about the
training process so that the generated artifacts can be traced back to the training corpora.
An early review of LLM transparency and accountability can be found in [39].

3. Problem Statement

The recent literature highlights the absence of a unified skill framework that includes
technical and soft skills and of a clear structure that covers skill gaps, shortages, and mis-
matches as gaps reported in the state of the art [40]. The presented work aims to address
this gap with a method capable of assessing the future readiness of professional skills, con-
sidering the following two dimensions: (i) automatability (i.e., the extent to which tasks can
be performed by automated systems) and offshorability (i.e., the feasibility of performing
tasks off-site, often for cost-saving purposes). We therefore develop automatic classifiers
that assess a skill’s automatability and offshorability based on its label. The classifier then
complements and significantly extends manual classifications provided in a gold standard
dataset that has been assembled by domain experts based on their assessments and the
scientific literature (Section 5.1.1). Automatic classification techniques provide significant
cost and time savings compared to manual annotation processes.

Khaouja et al. [8] distinguish three different levels of skill label granularity: words
(e.g., “Java”), multi-word phrases (e.g., “Java Programming”), and sentences (e.g., “Experi-
ence in software development, particularly the development of Java Web applications.”).
The presented approach draws upon German bipartite skill labels that are part of a propri-
etary occupation knowledge base which formalizes domain knowledge [41] in the human
resources domain. These labels are multi-word but limited to skill topic and verb (e.g.,
Java[topic] Programming[verb]) and do not convey any additional context information. Nev-
ertheless, bipartite skill labels are still considerably more expressive than standard skill
specifications which operate on word granularity, only comprise a topic, and therefore
cannot distinguish nuances such as the difference between Java[topic] Programming[verb] and
Java[topic] Teaching[verb]. Table 1 lists example skills classified by their automatability and
offshorability, taken from the customized skill bases.

https://chat.openai.com
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Table 1. Bipartite skill labels, translations, and classification of their automatability and offshorability.

Skill Label (German) Skill Label (English Translation) Automatable

Vorsorgestrategie erstellen Develop pension strategy Yes
Reden anpassen Adapt speeches Yes
Marketingkonzept planen Plan marketing concept Yes

Gebäude instandhalten Maintain building No
Audit beaufsichtigen Supervise audit No
Musicalproduction anleiten Direct musical production No

Skill Label (German) Skill Label (English Translation) Offshorable

Ausbildungsplan erstellen Develop training plan Yes
Marketingkonzept planen Plan marketing concept Yes
Sendung überwachen Monitor broadcast Yes

Blutentnahme vorbereiten Prepare blood extraction No
Gebäude instandhalten Maintain building No
Elektromotor montieren Assemble electric motor No

The absence of supplemental context information presents a significant challenge since
classifiers solely rely on the two terms used in the bipartite skill labels for predictions.
This limitation directly impacts classifier design and performance (Section 5). Standard
approaches for improving classification performance, such as ensemble models, cannot
yield better results since their enhanced generalization capabilities do not translate into
better outcomes if the model input is restricted to two terms.

4. Method

The presented research involves developing, fine-tuning, and evaluating four methods
for classifying skills represented by bipartite skill labels in regard to their offshorability
and automatability. The evaluation aims to find the optimal trade-off between method
complexity and performance and considers the following methods:

• A Support Vector Machine (SVM; Section 4.1) serves as a competitive baseline approach;
• The more complex Transformer-based classifier (Section 4.2), which is expected to

considerably benefit from pre-training;
• An approach that builds upon a Large Language Model (Section 4.3) by leveraging

ChatGPT. This method draws upon few-shot learning and has the advantage of
requiring a considerably lower number of training examples;

• An ensemble model (Section 4.4) which combines a Transformer with multiple fully
connected neural networks. The ensemble then employs majority voting for overall
skill assessment. This is the most complex model considered in the evaluation.

4.1. Baseline Classifier

A Support Vector Machine in conjunction with FastText word embeddings, the fasttext-
wiki-news-subwords-300 model from Gensim, (https://pypi.org/project/gensim, accessed
on 1 March 2024) acts as a baseline classifier. The input is tokenized with the Natural
Language Toolkit (NLTK) library and converted to FastText embeddings to obtain the SVM
input representation. The resulting NumPy arrays train the SVM (https://scikit-learn.
org/stable/modules/svm.html, accessed on 1 March 2024). A four-fold cross-validation
strategy is then used for training and evaluation.

4.2. Transformers

We used three Transformer models (BERT, DistilBERT, and XLM-RoBERTa) from the
Hugging Face library (https://huggingface.co, accessed on 1 March 2024) in the experi-
mental section. The following section describes the pre-tests that have been conducted
on a randomly selected subset of 434 bipartite labels from the random selection gold

https://pypi.org/project/gensim
https://scikit-learn.org/stable/modules/svm.html
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standard dataset (Section 5.1.1) to obtain the optimal hyperparameter settings for the
Transformer classifier.

The models were trained on a large-scale multilingual corpus to improve multilingual
performance and are capable of handling complex German vocabulary, idioms, and syntac-
tic structures. The final models are implemented in PyTorch, which seamlessly integrates
with the Hugging Face library and optimizes through (i) domain adaptation, (ii) model-fine
tuning, and (iii) automated hyperparameter optimization.

Adapting Transformers to a target domain can lead to increased robustness to noise or
better feature alignment [42]. Exposure to domain-specific documents, before fine-tuning,
enables the model to closely align itself with the target text corpus. This alignment usually
improves the model’s understanding of vocabulary, phrasing, and linguistic nuances
and reduces the likelihood of semantic misinterpretations or mismatches. A dataset of
150,366 Swiss job postings was used for domain adaptation. The dataset covered diverse
industries and job roles which have been converted to text with the Inscriptis library [43].

Assessing the performance of the fine-tuned models with and without domain adapta-
tion allows evaluating the effectiveness of the adaptation process. Table 2 summarizes the
effectiveness of domain adaptation for the offshorable classification task. Table 3 presents
the corresponding results for classifying a skill’s automatability.

Table 2. Classification performance for the “offshorable” indicator with/without domain adaptation
(DA) and layer freeze (LF). The best results are indicated in bold.

Model DA B f1 Precision Recall Accuracy

bert-base-multilingual-cased 0.83 0.80 0.87 0.76
bert-base-multilingual-cased ✓ 0.83 0.76 0.91 0.73
bert-base-multilingual-cased ✓ 0.83 0.80 0.87 0.76
bert-base-multilingual-cased ✓ ✓ 0.84 0.78 0.91 0.76
distilbert-base-multilingual-cased 0.84 0.81 0.88 0.77
distilbert-base-multilingual-cased ✓ 0.80 0.76 0.86 0.70
distilbert-base-multilingual-cased ✓ 0.82 0.77 0.88 0.84
distilbert-base-multilingual-cased ✓ ✓ 0.80 0.73 0.88 0.81
xlm-roberta-large 0.83 0.81 0.86 0.76
xlm-roberta-large ✓ 0.81 0.78 0.84 0.72
xlm-roberta-large ✓ 0.77 0.69 0.88 0.79
xlm-roberta-large ✓ ✓ 0.75 0.69 0.83 0.82

Table 3. Classification performance for the “automatable” indicator with/without domain adaptation
(DA) and layer freeze (LF). The best results are indicated in bold.

Model DA LF f1 Precision Recall Accuracy

bert-base-multilingual-cased 0.71 0.73 0.69 0.69
bert-base-multilingual-cased ✓ 0.73 0.72 0.79 0.68
bert-base-multilingual-cased ✓ 0.75 0.76 0.74 0.73
bert-base-multilingual-cased ✓ ✓ 0.73 0.72 0.74 0.69
distilbert-base-multilingual-cased 0.69 0.70 0.69 0.66
distilbert-base-multilingual-cased ✓ 0.69 0.68 0.72 0.65
distilbert-base-multilingual-cased ✓ 0.67 0.58 0.78 0.75
distilbert-base-multilingual-cased ✓ ✓ 0.68 0.60 0.79 0.76
xlm-roberta-large 0.74 0.75 0.75 0.72
xlm-roberta-large ✓ 0.69 0.66 0.74 0.65
xlm-roberta-large ✓ 0.67 0.62 0.74 0.73
xlm-roberta-large ✓ ✓ 0.67 0.64 0.71 0.71

Model fine-tuning followed the common approach of freezing certain layers [44] while
the remaining layers were updated with task data. Tables 2 and 3 summarize the impact of
layer freezing on the model performance.
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For hyperparameter optimization, we used Optuna framework [45], one of the ear-
liest tools that offered streamlined sampling and pruning algorithms. Adding Optuna
improves the efficiency of our pipeline. Table 4 provides a summary of the Transformer
hyperparameters used in the experimental section.

Table 4. Model specification and hyperparameters

Base Language Model Bert Base
Multilingual DistilBERT Base XLM Roberta

Activation Gelu Gelu Gelu
Attention dropout 0.1 0.1 0.1
Dimension 768 3072 1024
Dropout 0.1 0.1 0.1
Hidden layer dimensions 12 (n.a.) 24
Initializer range 0.02 0.02 0.02
Max position embeddings 512 512 514
Learning rate AdamW AdamW AdamW

The final experiments drew upon the DistilBERT classifier (without domain adaptation
and layer freeze), which provided the best results for the offshorable indicator, a decent per-
formance for the automatable label, and required the least resources for training, therefore
making it the most efficient choice for our specific task.

4.3. Large Language Model with Heuristic Classifier

The LLM-based approach builds upon the GPT API to classify the automatability
and offshorability of skills (Figure 1). LLMs based on GPT models are considerably more
complex than Transformer models and harder to adapt to specific domains [38]. They are
useful for in-context learning from prompts, especially in few-shot settings, but they are
sometimes saddled with fairness issues (e.g., stereotypes, biases, errors) [46].

Figure 1. Obtaining details on skill automatability and offshorability via GPT and heuristics.

The LLM classifier described here queries a GPT model for assessments on a skill’s
basic characteristics as outlined by Josten and Lordan [12]: brawn (B): physical interaction
with objects is needed; people (P): interactions with humans are required; brain (T): abstract
reasoning is needed; location (L): the activity’s location matters (e.g., customer’s or own lo-
cation); digitalization (D): activity can be digitalized; routine (R): activity can be standardized
into subprocesses that are performed similarly around the world.

We use OpenAI’s gpt-3.5-turbo model and a prompt that provides few-shot examples to
contextualize the request—e.g., the next prompt helps us obtain a binary skill classification:
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Can the activity [experiment planning] necessarily only be carried out on-site at the
customer’s location? (answer only with Yes or No):

• Examples/Yes: [production order monitoring], [building maintenance], [object clean-
ing], [tunnel measuring].

• Examples/No: [customer file updating], [door producing], [ensure analysis quality],
[coordinate program area].

The example prompt requests an assessment of whether the task experiment planning
needs to be performed on-site and provides examples for skills with a positive (monitor
production order, maintain buildings, clean object, and measure tunnel) and a negative (update
customer file, produce door, ensure analysis quality, and coordinate program area) assessment.

Each prompt is built around a single indicator from Josten and Lordan’s list [12],
as combining the indicators was found to lead to worse results. The indicators were
extracted for each skill using the prompts and then used to calculate with a heuristic
whether the skill is automatable or offshorable.

We categorize a skill as automatable when the threshold value of 0.5 is surpassed for
automatable according to the equation below:

automatable = 1 − (0.4 · B + 0.3 · P + 0.2 · T + S − 0.4 · D) (1)

In this equation, all parameters (B, P, T, S, and D) are binary variables, taking values
of either 0 or 1. A value of 0 indicates the absence of the characteristic, while a value of
1 signifies its presence. B denotes the degree of physical interaction (brawn), P reflects
the degree of interaction with people, T represents the level of abstract thinking required
(brain), D indicates the extent to which the task can be performed digitally (digitalization),
and L signifies the necessity of on-site presence (location). The weights (0.4, 0.3, 0.2,
and −0.4) have been determined empirically.

As outlined in Equation (2), a task is considered offshorable if it does not have to
be performed on-site (location L = 0) and can either be digitalized (digitalization D = 1)
or standardized (routine R = 1). Tasks requiring physical presence (location L = 1) are
automatically categorized as not offshorable.

o f f shorable =

{
1 if L = 0 ∧ (D = 1 ∨ R = 1)
0 if L = 1

(2)

4.4. Deep Learning Ensemble

The deep learning ensemble aimed at further improving classification performance.
The presented approach has been inspired by the human brain, which uses multiple
interconnected neural networks that differ widely in anatomy and physiology [47] to
increase accuracy and robustness.

Figure 2 offers an overview of the selected approach. In this deep learning ensemble,
DistilBERT plays a central role in encoding the bipartite skill tuple into a contextual
embedding. Subsequently, the ensemble leverages four different fully connected neural
networks to assess different parts of DistilBERT outputs. Table 5 provides an overview of
the hyperparameters used within the ensemble classifier.

Each classifier used in the ensemble draws upon different portions of the DistilBERT
embeddings. Figure 3a,b illustrate how a tensor of three sequentially hidden layers (marked
in blue) is combined with a common ground layer (marked in orange) to form the ensemble
classifiers’ input. The network-specific hidden layers and the common ground layer are
concatenated and afterward transformed into a 1D vector for the fully connected neural
network, which is then trained on these data. A majority voting mechanism is used to
generate two crucial outputs: (i) an overarching assessment and (ii) a confidence score.
The confidence score serves as a metric to gauge the consensus among the various neural
networks regarding their evaluations.
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DistilBERT

FC Layers #4

FC Layers #1

FC Layers #2

FC Layers #3

Majority
voting

Skill tuple
+ metadata

Classification
result

input contextualized
embedding

overall
assessment

output

Confidence
score

Figure 2. Deep learning ensemble classifier. The fully connected layers (FC Layers) independently
assess the contextualized embeddings and provide their output to the majority voting component.

Table 5. Ensemble model configuration and parameters.

Ensemble Parameters

Pretrained Model DistilBERT Base Multilingual Cased
Optimizer AdamW
Learning rate 1 × 10−7

Task BertSequenceClassification
Input/Output Nodes 49,152/1
Hidden Layers 12
Hidden Activation Functions SELU
Loss Function Binary Cross Entropy
Output Activation Function Sigmoid
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Figure 3. Composition of the inputs for the ensemble model. (a) Tensor from DistilBERT Embeddings.
(b) Diverse input for each network.

4.4.1. Selection of Network Configurations for the Ensemble

To prevent potential ties in majority voting, we conducted a preliminary study that
evaluated the Area Under the Curve (AUC) scores for various ensemble configurations
(Table 6).

From this analysis, we identified the top three performing networks for the final
classifier. Plotting the averaged embeddings of the gold standard as a heatmap (Figure 4a)
illustrates that the values in the last hidden layer lean towards zero. This observation may
indicate why the fourth network is the least-performing one (Table 6), as it includes this
particular layer. As explained earlier, the input for each network involves slicing DistilBERT
embeddings, enabling different perspectives for the ensemble (Figure 4b). The input data
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for networks one and two appear more balanced than those for networks three and four.
This difference may explain why these networks outperform the others in the ensemble.

Table 6. AUC scores for each network/classification task (automatability, offshorability).

Architecture AUC (Offshorability) AUC (Automatability)

FC Layers #1 0.915 0.942
FC Layers #2 0.914 0.926
FC Layers #3 0.910 0.923
FC Layers #4 0.907 0.830
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Figure 4. Heatmaps of embeddings from DistilBERT. (a) Heatmap of the average gold standard
embeddings from DistilBERT. (b) Heatmap of gold standard embeddings for each network from Dis-
tilBERT.

Figure 5 shows the Shapley values [48] for the longest bipartite skill label extracted
from the gold standard. The Shapley values suggest that substantives tend to have negative
values, whereas verbs and denominatives tend to have positive values, as illustrated in
blue. This observation implies that although the classifier operates on bipartite skill labels,
subtokens still provide additional context due to their impact on each other’s meaning. We
therefore consider all DistilBERT tokens in the ensemble networks.

Figure 5. Shapley values of the longest bipartite skill label in the gold standard (English translation:
coordinate Sports Event Management Unit).

4.4.2. Determining the Optimal Voting Threshold

Subsequently, we used ROC curves to determine each network’s optimal voting thresh-
old (see Table 7). Given that our objective is to achieve a balance between true positives
(TPs) and false positives (FPs), we tailored our selection to address the importance parity
between “is_offshorability” and “is_not_offshorability” and the same for “is_automatable”
and “is_not_automatable”. This approach ensures a robust classification strategy that aligns
with the nuanced requirements of the target domain.
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Table 7. Assessment of the optimal threshold for the ROC Curves of the networks

Architecture Opt. Threshold (Offshorability) Opt. Threshold (Automatability)

FC Layers #1 0.58 0.56
FC Layers #2 0.60 0.56
FC Layers #3 0.58 0.55

5. Evaluation

This section introduces the evaluation datasets (Section 5.1), provides assessments of
the classifier performance on the random selection dataset (Section 5.2) and the skewed
rule-based dataset (Section 5.3), as well as presents a discussion of the obtained results.

5.1. Datasets

The evaluation builds upon two different gold standard datasets: (i) a dataset that
contains a random selection of skills annotated by human experts (Section 5.1.1) and
(ii) skills annotated based on expert-drafted heuristics (Section 5.1.2).

5.1.1. Random Selection Gold Standard Dataset

The data were collected by jobchannel AG (Thalwil, Switzerland) (https://www.
jobchannel.ch, accessed on 1 March 2024), a company focused on aggregating job data from
online sources (e.g., boards, websites, etc.). The jobchannel ontology describes the various
skills necessary for the Swiss job market. Each skill is split into a (predicate, topic) pair
representing the action and the context in which the skill is performed.

The skill “Marketingkonzept planen” (plan marketing concepts), for example, com-
prises the topic “marketing concepts” and the predicate “plan”.

Human annotators used the following guidelines based on Swiss practices for manu-
ally assessing skills with a binary value for offshorability and automatability:

1. Offshorability determines if a task can be performed regardless of the physical pres-
ence of the person performing it. Outsourcing issues may arise due to location de-
pendencies, human interaction (e.g., especially if cultural preferences are considered),
or even the need to move around large objects.

2. Automatability assesses whether technology (e.g., robots, drones, software, etc.) can
currently fully perform the task. Activities are non-automatable if they are not clearly
specified or need too much human interaction.

Table 8 summarizes the dataset statistics. The experts labeled 67.7% of the examined
skills as offshorable and 58.5% as automatable. Some examples of expert assessments can
be found in Table 9.

Table 8. Class distribution within the gold standard datasets. Please note that the rule-based dataset
frequently only provides labels for only one of the classes (i.e., only offshorable or automatable).

Corpus Offshorable Automatable Total
Yes No Yes No Annotations

Random selection 1526 728 1319 935 4508
Rule-based 5280 602 2577 5478 13,937

Table 9. Example expert annotations for both offshorability and automatability.

Predicate Topic Offshorability Automatability

create dossier 1 1
correct jaw malposition 0 0
program user interface 1 0
clean object 0 1

https://www.jobchannel.ch
https://www.jobchannel.ch
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5.1.2. Rule-Based Gold Standard Dataset

The creation of the rule-based gold standard dataset has been guided by a qualitative
analysis of misclassifications obtained from the skill classifier. An analysis of these clas-
sification errors revealed that, in many cases, humans could apply simple rules to assign
these skills to the correct class. Therefore, we asked domain experts to identify rules that
help classify these skills. These rules have been used to create a separate dataset that aims
to identify mistakes that are particularly obvious to humans. Tables 10 and 11 provide
examples of these expert-created classification rules.

Table 10. Example rules for identifying offshorable and non-offshorable skills. The asterisk in the
topic column indicates that the rule works across all skill topics.

Predicate Topic Is Offshorable Example

clean * no clean house
drive * no drive truck
program * yes program python
write * yes write article

Table 11. Example rules for identifying automatable and non-automatable skills. The asterisk in the
topic column indicates that the rule works across all skill topics.

Predicate Topic Automatable Example

moderate * no moderate meeting
negotiate * no negotiate contract
calculate * yes calculate production time
monitor * yes monitor process

Based on these rules, we created a corpus that covers 13,937 skills. In contrast to
the random selection gold standard, the rule-based gold standard only considers obvious
classifications that are covered by these heuristics. It therefore does not contain any
challenging cases in which expert assessments differed or required discussions and further
clarifications to decide on the skill’s correct class.

Table 8 provides dataset statistics for both gold standard datasets. Please note that
the manually annotated random selection corpus assigns offshorability and automatability
classifications to each skill. The rule-based corpus, in contrast, only covers the class outlined
in the rule for that particular skill (i.e., either offshorability, automatability, or both). It is
also important to note that class distribution differs significantly between both datasets.
Offshorable skills are even more frequent in the rule-based corpus, while the distribution
for automatability is reversed between the datasets.

5.2. Performance on the Random Selection Gold Standard

This evaluation assesses the classifiers’ performance on the random selection gold
standard introduced in Section 5.1.1 using a k-fold cross-validation with four folds. The
test data were divided into 80% training data and 20% evaluation data in each run. Once
all runs were executed, the results were summarized.

This procedure was not applied to the GPT/heuristic classifier because it only uses
few-shot training with examples that were not part of the evaluation dataset. As it can
easily be seen in Tables 12 and 13, the DistilBERT classifier is the best performer. The
Transformer model’s effective use of self-attention and pre-training mechanisms was key
to extracting meaningful semantics for classification, even from input data that are limited
to bipartite skill labels.

SVM results were as expected as they did not perform well in the presence of limited
training data. The low performance of the GPT-based heuristic is not entirely surprising as it
lacked domain knowledge and was not optimized for classifying human resources tasks.
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Although the ensemble model is considerably more complex than DistilBERT, it still
performs similarly to this Transformer model. This result indicates that the additional
generalization capabilities provided by this more sophisticated model did not translate
into better performance since the model has been constrained by the scarcity of input data,
which was limited to bipartite skill descriptions.

Table 12. The “offshorable” indicator’s classification performance on the randomly selected dataset.
The best results are indicated in bold.

Model f1 Precision Recall Accuracy

SVM baseline 0.60 0.64 0.68 0.68
distilbert-base-multilingual-cased 0.76 0.77 0.77 0.77
ChatGPT combined with Heuristic 0.69 0.69 0.68 0.68
Ensemble model 0.74 0.77 0.73 0.73

Table 13. The“automatable” indicator’s classification performance on the randomly selected dataset.
The best results are indicated in bold.

Model f1 Precision Recall Accuracy

SVM baseline 0.58 0.68 0.64 0.64
distilbert-base-multilingual-cased 0.75 0.75 0.74 0.74
ChatGPT combined with Heuristic 0.55 0.56 0.55 0.55
Ensemble model 0.73 0.74 0.73 0.73

5.3. Performance on the Rule-Based Dataset

We draw upon the skewed rule-based dataset for assessing model robustness. This
dataset only contains annotations that are (i) obvious to human experts and (ii) can be
derived from well-established heuristics (Section 5.1.2).

These experiments, therefore, aim at assessing the classifiers’ robustness against grave
mistakes, i.e., cases where automatic classifications clearly violate human intuition. They
have been designed to indicate the impact of mitigation strategies such as increasing model
complexity (i.e., large language models) and enhancing model diversity (ensemble method)
on the model’s robustness against these types of mistakes.

Table 14 summarizes the performance of all four methods on the offshorable indicator.
Both the Transformer and the ensemble model provide very good results for offshorability,
while the ChatGPT heuristic scored even below the SVM baseline.

Table 14. Performance for the “offshorable” indicator on the skewed rule-based dataset. The best
results are indicated in bold.

Model f1 Precision Recall Accuracy

SVM baseline 0.85 0.91 0.90 0.90
distilbert-base-multilingual-cased 0.93 0.94 0.93 0.93
ChatGPT combined with Heuristic 0.76 0.79 0.80 0.80
Ensemble model 0.94 0.95 0.94 0.94

Table 15 compares the systems’ performance on the automatable indicator. The en-
semble model provides the best results for the offshorable indicator and the DistilBERT
classifier excels for the automatable category. Both models are very similar in terms of
performance and clearly outperform the SVM baseline and the GPT heuristic.

These results provide the following insights:

• All models that have been fine-tuned on the random selection dataset have benefited
tremendously from training on task-specific data. Consequently, even the fine-tuned
SVM classifier outperforms the GPT heuristics.
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• Both DistilBERT, the ensemble, and GPT heuristics leverage background knowledge
from the base models, which improves model performance compared to the SVM
baseline but is insufficient to compensate for fine-tuning on domain data (compare
GPT’s performance). GPT heuristics, therefore, struggle with providing accurate
classifications based on the limited context available through prompt engineering.

• Additional ensemble complexity does not translate into better performance.

Table 15. Performance for the “automatable” indicator on the skewed rule-based dataset. The best
results are indicated in bold.

Model f1 Precision Recall Accuracy

SVM baseline 0.52 0.81 0.54 0.54
distilbert-base-multilingual-cased 0.91 0.91 0.90 0.90
ChatGPT combined with Heuristic 0.46 0.58 0.46 0.46
Ensemble model 0.90 0.90 0.90 0.90

6. Discussion

The evaluation demonstrates that the fine-tuned models provide good results, even
for the skewed rule-based dataset, which differs significantly from the random selection
dataset in terms of class distribution (Table 8). This is even true for the automatable
classification task, which is inherently more intricate and complex than assessing the
offshorable indicator. Unlike the offshorable label, which is primarily impacted by whether
a task needs to be performed on-site (e.g., particularly relevant for Gig economy platforms
like Uber), the automatable label encompasses a multitude of underlying factors. These
factors are considerably more nuanced and context-dependent and especially useful for
high-skill, location-independent services such as Fiverr and Upwork.

The relevance of multidimensional aspects makes automatability more difficult to
discern, which is also reflected in classification performance. The less complex models
(e.g., SVM baseline and GPT) struggle with the automatable indicator. The difference
in performance is less pronounced in the random selection gold standard dataset where
both classifiers yield similar results. In contrast, SVM and GPT-based heuristics provide
significantly worse classification performance for the automatable indicator on the skewed
rule-based dataset. The SVM model clearly lacks the complexity required to successfully
generalize its assessments, while the GPT classifier fails to correctly classify the label of
unseen bipartite skills based on the provided few-show examples.

DistilBERT and the ensemble classifier, in contrast, provide f1 metrics and accuracy
measures of 90% and above for both the automatable and offshorable labels, indicating that
these models are sufficiently complex to approximate the classification model based on the
available training data. The scarcity of the input data available in the job channel occupation
ontology, which is limited to bipartite skill labels (i.e., a topic and verb describing the skill),
poses a considerable challenge to the classification process. The evaluations in the previous
section suggest that techniques that increase model complexity (e.g., ensembling) do not
necessarily improve skill classification performance, indicating that the ensemble’s loss
function might be non-convex [49].

7. Conclusions and Outlook

This paper discussed machine learning models capable of classifying bipartite skill
labels in terms of their offshorability and automatability. Both indicators help assess a
skill’s future readiness, i.e., how likely there will be a future demand for it. Bipartite
skill labels describe a skill based on two terms—the skill topic (e.g., Python) and a verb
that provides additional context regarding the task or activity (e.g., programming). This
bipartite skill specification allows distinguishing the skill of Programming Python from
skills such as Teaching Python, Debugging Python, or Profiling Python but do not provide any
context beyond this information.
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Our primary contributions lie in the customization and fine-tuning of deep learning
methods tailored for the automatic classification of future readiness (in terms of automata-
bility and offshorability) within the framework of bipartite skill labels. We conducted
comprehensive evaluations of these methods to assess their performance and to investigate
whether increasing model complexity translates into classification performance under the
constraints imposed by the use of bipartite skill labels.

The paper compares the performance of four skill classifiers (SVM, Transformers,
GPT-based, and DistilBERT ensemble) which were trained using a gold standard dataset
of 2254 annotated bipartite skill specifications obtained from the scientific literature and
domain experts. A fourfold cross-evaluation assessed classification performance on the
gold standard dataset and was followed by a second set of experiments that evaluated the
robustness of the trained classifiers by applying them to a considerably larger dataset of
13,937 annotations created based on expert-defined annotation rules.

The evaluation results indicate that domain-specific fine-tuning is essential to improve
the accuracy of the classification algorithm. Once fine-tuned, even the SVM baseline outper-
formed the GPT classifier, which only benefited from few-shot learning through examples
integrated via prompt engineering. The Transformer classifiers also leveraged the knowl-
edge obtained during pre-training, easily outperforming models that did not benefit from
pre-training. Given the scarcity of input data (the two terms obtained from the bipartite
skill labels), increasing model complexity does not necessarily lead to improvements in
classification performance. This result is noteworthy since the ensemble models have not
outperformed the single DistilBERT model.

In conclusion, assessing a skill’s automatability and offshorability offers insights into
the future readiness of professional skills, therefore aiding in forecasting the likelihood
of future demand for specific skill sets. Through customization and fine-tuning of deep
learning methods, the research evaluates the performance of skill classifiers. It provides
valuable findings for improving the accuracy of classification algorithms that are limited to
bipartite skill labels in predicting job market demands.

Future work will integrate insights into a skill’s future readiness with systems such as
CareerCoach [41], which provides reskilling and upskilling suggestions. We also plan to
leverage additional background knowledge in the classification process. O*NET and ESCO
ontologies, for instance, encode knowledge on skills, competencies, and occupations that
might be helpful in better contextualizing the classification input. Contextualization is also
key to addressing the problem of scarce input data and, therefore, paving the way towards
successfully using more complex classifier setups. For this purpose, the authors also plan to
incorporate domain knowledge, e.g., a sustainability knowledge graph initially developed
in earlier work for UN Environment [50] and further extended in the SDG-HUB project
(https://www.weblyzard.com/sdg-hub, accessed on 1 March 2024) and Climateurope2
(https://www.climateurope2.eu, accessed on 1 March 2024), a Support Action funded by
the European Union with an interest in job creation in the climate services sector and in the
impact of the green transition on the European labor market [51].
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