
Citation: Aref, Y.; Ouda, A. HSM4SSL:

Leveraging HSMs for Enhanced

Intra-Domain Security. Future Internet

2024, 16, 148. https://doi.org/

10.3390/fi16050148

Academic Editors: Christoph Stach,

Clémentine Gritti and Iouliana Litou

Received: 23 March 2024

Revised: 20 April 2024

Accepted: 23 April 2024

Published: 26 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

HSM4SSL: Leveraging HSMs for Enhanced Intra-Domain
Security †

Yazan Aref and Abdelkader Ouda *

Department of Electrical and Computer Engineering, Western University, London, ON N6A 5B9, Canada;
yaref@uwo.ca
* Correspondence: aouda@uwo.ca
† This paper is an extended version of our paper published in the International Symposium on Networks,

Computers and Communications (ISNCC), Still Computers Networking is Less Secure Than It should be,
Causes and Solution, Doha, Qatar, 23–26 October 2023.

Abstract: In a world where digitization is rapidly advancing, the security and privacy of intra-domain
communication within organizations are of critical concern. The imperative to secure communication
channels among physical systems has led to the deployment of various security approaches aimed
at fortifying networking protocols. However, these approaches have typically been designed to
secure protocols individually, lacking a holistic perspective on the broader challenge of intra-domain
communication security. This omission raises fundamental concerns about the safety and integrity
of intra-domain environments, where all communication occurs within a single domain. As a
result, this paper introduces HSM4SSL, a comprehensive solution designed to address the evolving
challenges of secure data transmission in intra-domain environments. By leveraging hardware
security modules (HSMs), HSM4SSL aims to utilize the Secure Socket Layer (SSL) protocol within
intra-domain environments to ensure data confidentiality, authentication, and integrity. In addition,
solutions proposed by academic researchers and in the industry have not addressed the issue in
a holistic and integrative manner, as they only apply to specific types of environments or servers
and do not utilize all cryptographic operations for robust security. Thus, HSM4SSL bridges this
gap by offering a unified and comprehensive solution that includes certificate management, key
management practices, and various security services. HSM4SSL comprises three layers to provide a
standardized interaction between software applications and HSMs. A performance evaluation was
conducted comparing HSM4SSL with a benchmark tool for cryptographic operations. The results
indicate that HSM4SSL achieved 33% higher requests per second (RPS) compared to OpenSSL, along
with a 13% lower latency rate. Additionally, HSM4SSL efficiently utilizes CPU and network resources,
outperforming OpenSSL in various aspects. These findings highlight the effectiveness and reliability
of HSM4SSL in providing secure communication within intra-domain environments, thus addressing
the pressing need for enhanced security mechanisms.

Keywords: intra-domain; secure socket layer; transport layer security; public-key certificates;
hardware security modules

1. Introduction

In an era defined by rapid technological advancement and increasing digitization,
security and privacy have emerged as paramount concerns for individuals, businesses, and
organizations worldwide. The seamless exchange of sensitive information across networks
and the internet has necessitated the development of robust mechanisms to protect data
integrity, confidentiality, and authenticity. Consequently, a great deal of work has gone
into making internet communication channels secure. However, as the digital landscape
evolves and networks expand to encompass a multitude of devices, a new dimension of

Future Internet 2024, 16, 148. https://doi.org/10.3390/fi16050148 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi16050148
https://doi.org/10.3390/fi16050148
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0003-3882-1763
https://doi.org/10.3390/fi16050148
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi16050148?type=check_update&version=1


Future Internet 2024, 16, 148 2 of 22

security challenges arises. This is particularly evident in intra-domain environments, where
organizations face a growing need to secure communication within their own networks.

In an intra-domain environment, all communications are confined within the parame-
ters of a single autonomous system (AS). This term refers to a collection of interconnected
physical network components, such as servers, data centers, and other network devices,
that are administered and overseen by one organizational domain. Such an environment
is characterized by the internal exchange of information and services, like email and web
browsing, without extending beyond the organization’s network boundaries to other
domains [1].

Expanding the network capacity within a domain to accommodate numerous devices
with networking capabilities underscores the importance of enhancing security measures in
these settings. Notably, in 2020, insider employees, frequently using compromised devices,
were responsible for 68% of organizations’ security incidents and malicious activities [2].
This highlights the critical need to focus on security issues not just in the public internet
but also within internal networks. Moreover, organizations that manage a multitude of
servers to manage multiple requests commonly deploy load balancers or reverse proxies to
intercept traffic originating from multiple hosts or endpoints. These tools effectively sort
out incoming requests and distribute them among the back-end servers. The significance
of the load balancing process extends across all cloud environments, offering reliability
and availability through continuous monitoring of server statuses and directing requests
exclusively to servers that are available [3]. Furthermore, it alleviates the workload on back-
end servers by avoiding the need for decrypting traffic, achieved through the utilization of
Secure Socket Layer (SSL) termination. SSL termination not only assists in intrusion detection
by identifying anomaly packets but also ensures that these packets are detected before
reaching the servers [4]. Despite these advantages, it is important to note that this approach
introduces security vulnerabilities by establishing insecure channels between the reverse
proxy and the back-end servers, exposing communication to various potential attacks.
Furthermore, since 2016, the Certificate Authority (CA)/Browser Forum, responsible for
setting standards in the issuance and management of SSL certificates, has ceased issuing
SSL certificates for servers with private IP addresses [5]. Plus, following the CA/Browser
Forum meeting in March 2023, Google declared its intention to limit SSL certificate validity
to 90 days instead of 398 days. Managing SSL certificates with a 90-day validity period not
only adds complications to the management of certificates, particularly in scenarios where
organizations operate many servers, but it also introduces increased costs associated with
frequent renewals and administrative overhead [6].

With these aforementioned issues, along with our previous work’s observations [7],
both academia and implemented systems are currently inadequate in representing the
progress in secure intra-domain communication. The reasons for this underrepresentation
remain obscure. Consequently, this situation is consistently leading to numerous security
breaches and attacks within organizations. The majority of intra-domain attacks stem
from the prevailing lack of encryption and authentication in intra-domain communication,
especially between servers [8,9]. However, certificate usage for SSL establishment between
the load balancer and the servers and also between all endpoints was suggested by Boisrond
in [10] as the optimum solution to address the insecure communication issue.

Having said the above, we believe that there is a significant opportunity to develop
an innovative architecture that addresses these challenges. Such an architecture would
streamline the process of securing communication within intra-domain environments. Our
architecture would not only enhance operational efficiency and security but also reduce the
complexity currently associated with securing intra-domain communication.

This paper is focused on proposing a standard, comprehensive framework aimed at
enhancing security within intra-domain environments. In response to the challenges posed
by the inadequacies of existing security mechanisms, our framework aims to provide a
holistic solution that covers all aspects of secure communication within organizational
networks. The remaining sections of this paper are organized as follows: Section 2 will



Future Internet 2024, 16, 148 3 of 22

present a summary of the current security mechanisms and solutions deployed within
intra-domain networks to highlight the need for our work, while Section 3 will discuss our
findings and present the proposed HSM4SSL architecture along with its layers, components,
and provided services. In Section 4, we will examine the performance evaluation of
HSM4SSL and discuss our findings, and finally, the concluding remarks will be discussed
in Section 5.

2. Current Security Mechanisms and Implementations

In the realm of securing communication within and across ASs, considerable efforts
have been invested in strengthening the security of individual networking protocols. The
concept of SSL for intra-domain networks is well documented, with initial implementations
dating back to the 1990s. These early adaptations provided the basis for secure internal
communications, yet the literature has largely overlooked the need for a comprehensive and
holistic approach [9]. What follows is a brief exploration of various security mechanisms
and solutions designed for specific networking protocols and environments. This explo-
ration involves a comparative analysis, shedding light on the weaknesses of intra-domain
communication.

• HTTP : Initially, HTTP did not prioritize encryption, which became problematic as
sensitive data increased. This led to the creation of HTTPS, which uses TLS/SSL
to encrypt and authenticate exchanged communication, making most domains and
servers prefer HTTPS connections [11]. In 2022, over 79% of websites defaulted to
HTTPS [12]. Web browsers enforce HTTPS usage through two main methods. The
former is HTTPS redirection, which is utilized when a website undergoes updates
or transitions to a new URL or when a server forcefully redirects communication
from HTTP to HTTPS. All browsers inform users about secure channel establishment
issues, allowing users to decide whether to continue interacting with the server despite
potential security concerns [13]. However, depending solely on user decisions, using
“Click Through” security measures introduces security vulnerabilities [14,15]. The
latter is HTTP Strict Transport Security (HSTS); HSTS acts as a mechanism for websites
to declare themselves accessible only via secure connections. It mitigates SSL stripping
attacks by enforcing the use of SSL/TLS in web browsers. Web servers declare HSTS
by using HTTP response headers [16,17].

• SMTP: Initially, SMTP communication was sent in clear text, posing security risks. To
address this, implicit TLS was introduced. However, it was deprecated for SMTP, and
STARTTLS emerged as an alternative protocol for initiating a TLS session. However, it
introduces potential vulnerabilities such as STARTTLS stripping attacks [18].

• TCPCrypt: Was developed to ensure end-to-end encrypted communication between
applications using TCP. TCPCrypt initiates a secure channel by starting a TCP con-
nection, similar to SSL. However, it lacks the guarantee of authenticity provided by
X.509 certificates or passwords, making it susceptible to opportunistic encryption if
one endpoint does not support TCPCrypt [19,20].

• DHCP: Despite being widely used, DHCP communication is sent in plain text and
lacks authentication mechanisms, creating security vulnerabilities. DHCP snooping is
a recognized defence mechanism against starvation attacks, but it does not achieve
confidentiality and authenticity [21,22].

• Kerberos: This is one of the most widely used software-based key distribution services.
However, it mainly relies on a KDC server that must be available and operating
appropriately for security services to succeed. This means that any point of failure will
disturb the availability of the whole process. Moreover, root-level access to the KDC
server provides the attacker with unrestricted access to the whole system, leading to
the compromise of the entire Kerberos database. Plus, Kerberos is not SSL-based, and
it does not achieve end-to-end encryption between two clients by itself, which is the
basis for secure intra-domain communication [23,24].



Future Internet 2024, 16, 148 4 of 22

Despite the mechanisms mentioned above, the encryption of backend communication
channels and the security of intra-domain communications demand further innovation.
Novel approaches aim to rectify these gaps by introducing more robust encryption and
authentication methods. One novel approach, proposed by Shue et al. in [9], tackles
the issue of intra-domain communication by introducing an SSL-based framework to en-
hance the authenticity of DHCP communication. This framework involves configuring a
public-key pair for the local organization’s domain and servers. Server certificates, signed
with the domain’s private key to ensure authenticity, are issued by the DHCP server after
verifying users’ credentials through a captive portal. Although this approach effectively
addresses endpoint authenticity to mitigate DHCP spoofing attacks, it lacks specifications
for key exchange algorithms for subsequent communication encryption and fails to im-
plement crucial certificate management practices like revocation, validation, and renewal.
In contrast, Microsoft has introduced a recent approach for SharePoint server-to-server
authentication within a SharePoint farm [25]. This method involves creating certificates
for each SharePoint server, submitting them to a third-party certificate authority for sign-
ing, and then importing them back into the Windows Certificate Store on each server.
This ensures that whenever a SharePoint server requests information from its peer, the
request must be accompanied by the sender’s certificate to initiate an SSL handshake and
encrypt further communication. Unlike the previous approach, this method includes SSL
handshake and key exchange algorithms, and it properly manages certificates through an
external certificate authority. The issue with their approach arises from their dependence
on an external CA. This dependency introduces higher costs associated with the limited
validity period of certificates and the complexities of managing certificates across multiple
servers. Furthermore, this approach lacks standardization, as it is specifically tailored
to work only with SharePoint servers, limiting its applicability and flexibility in diverse
server environments. Another strategy involves the use of “Module-OT”, a hardware
security module (HSM) developed by the National Renewable Energy Laboratory (NREL)
to secure communication between distributed energy resource systems [26]. HSMs are
tamper-resistant hardware devices that facilitate end-to-end encryption, authentication,
and authorization by generating cryptographic keys and X.509 certificates and performing
various cryptographic and certificate management operations. “Module-OT” complies
with the Federal Information Processing Standard (FIPS) 140-2, ensuring strict security
measures, including preventing unauthorized access, employing up-to-date cryptographic
algorithms, and undergoing rigorous testing and evaluation. While this model demon-
strates effective data encryption and decryption using symmetric key cryptography, it
neglects authentication and SSL encryption, leaving potential security gaps [27].

To summarize the security mechanisms and implementations, Table 1 compares their
capability to support peer-to-peer communication, perform encryption, rely on SSL for
authentication and encryption, and enforce encryption or terminate communication when
configurations are mismatched. These innovative solutions not only address the short-
comings of existing security mechanisms but also underscore the importance of a compre-
hensive strategy that integrates encryption, authentication, and certificate management to
safeguard intra-domain and inter-domain communications effectively.

Table 1. Comparison of security mechanisms for networking protocols and industrial implementations.

Protocol Security Mechanism/Solution Peer-to-Peer Achieves Encryption SSL-Based Forces Encryption

HTTP HTTPS Yes Yes Yes No
HTTPS/HSTS No Yes Yes Yes

SMTP STARTTLS Yes Yes Yes No
TCP TCPCrypt Yes Yes No No

Kerberos Kerberos No No No No

DHCP DHCP snooping No No No No
Shue et al. [9] Yes No No No

- Microsoft [25] Yes Yes Yes Yes
- Module-OT [26] Yes Yes No No



Future Internet 2024, 16, 148 5 of 22

3. HSM4SSL Architecture
3.1. Inspiration from the Previous Work

After examining current networking protocols and their security structures, as outlined
in Table 1, and reviewing existing solutions developed by both academic researchers and
industry, it becomes apparent that no existing mechanism offers optimal security for
confidential and authenticated communication. Attempting to integrate these mechanisms
to secure communication often results in security gaps. Furthermore, existing solutions are
often tailored to specific environments or servers, neglecting to leverage all cryptographic
operations essential for robust security.

That being said, there is a pressing need for a unified security mechanism within
intra-domain environments that integrates SSL with all relevant networking protocols
to ensure the security of both web-based and non-web-based communication. However,
implementing SSL requires the use of numerous cryptographic keys and the adoption of
effective certificate management practices. A commonly employed approach to address
this challenge involves the utilization of key management service (KMS). Notably, cloud-
based KMS solutions, such as Amazon’s AWS KMS [28], facilitate the generation, storage,
management, and distribution of keys and also serve as a certificate authority to perform
all necessary certificate management practices. In contrast, HSMs are physical devices
installed to securely execute functions equivalent to those of KMS systems. The main
differences between HSMs and KMSs include the following:

• Security: HSMs provide a high level of security by adhering to the FIPS 140-2 standard,
thus making them more reliable. Conversely, a recent exploitation of a vulnerability
in Amazon’s KMS by Thai Duong [29] resulted in the leakage of clients’ private
information, among other risks.

• Flexibility: KMS systems are generally easily integrated with software programs and
services on servers. In contrast, HSMs necessitate the use of vendor-specific libraries
for operation, significantly limiting flexibility when substituting an HSM from one
vendor for another.

• Cost: KMS systems operate on a pay-as-you-go model, often proving to be a cost-
effective alternative compared to the deployment of HSMs, which typically entail
upfront costs or long-term commitments.

In contrast to software-based alternatives, the security offered by HSMs underscores
the necessity of incorporating HSM services in intra-domain environments. However, this
highlights a crucial cost-security trade-off, where HSMs offer a significantly higher level of
security but at a higher cost compared to cloud-based KMS models. Organizations that
manage highly sensitive or critical data are naturally inclined to prioritize investments
in robust security mechanisms. Thus, this requires a thorough cost–benefit analysis for
organizations considering protecting their sensitive data, taking into consideration the
direct costs of acquiring and managing HSMs against the benefits of enhanced security, a
reduced risk of data breaches, and compliance with regulatory standards. Moreover, HSMs
are available in various designs, each with its own set of features and pricing models, where
the selection of HSMs requires a detailed analysis of the organization’s specific needs, such
as the required cryptographic capabilities, performance specifications, and compliance
requirements. Nevertheless, the challenges associated with vendor-specific libraries can
pose deployment difficulties when transitioning between HSMs. To address the issues of
flexibility linked with HSMs, we propose the development of the HSM4SSL architecture.

3.2. HSM4SSL: High-Level Architecture

HSM4SSL is a software as a service (SaaS) architecture designed to revolutionize the
way organizations implement secure communication within intra-domain environments.
This innovative approach combines the power of HSMs with the flexibility and scalability
of cloud-based services. HSM4SSL provides a standardized way to manage and secure
intra-domain communication within organizations. By integrating industry-standard
cryptographic protocols, including SSL, and leveraging the capabilities of HSMs, HSM4SSL



Future Internet 2024, 16, 148 6 of 22

ensures the confidentiality, integrity, and authenticity of data exchanged between endpoints.
HSM4SSL stands out because it uses the advanced features of HSMs and combines them
with other cutting edge technologies to make SSL communications much safer within
intra-domain networks. This integration not only maintains the benefits of SSL (such as
encryption and data integrity) but also leverages the robust security features offered by
HSMs, including enhanced encryption algorithms, secure cryptographic key management,
and robust protections against physical threats.

Figure 1 shows an example of the deployment of the HSM4SSL service model pro-
vided by a service provider to deliver security services to external client companies. The
service provider manages cryptographic operations using HSMs. This secure service hub
is responsible for delivering SSL certificate management, encryption, and cryptographic
key services to client companies. Each of the three gateways represents a client company
connected to the central HSM4SSL service. These companies are subscribed to the ser-
vice provider’s security services to utilize a suite of security services provided in their
intra-domain networks. The scalability of this model is one of its key features, as when
more client companies subscribe to HSM4SSL services, the system can expand its capacity
without compromising the integrity and security of the architecture. This means that,
regardless of the number of client companies added or the volume of security transactions
processed, the HSM4SSL service maintains consistent security levels, ensuring that each
client company’s data remain protected.

Figure 1. HSM4SSL service model.

Moreover, this architecture offers a zero-touch deployment model, reducing the time
and effort required for implementation and allowing organizations to seamlessly integrate
HSM4SSL into their existing infrastructures with minimal configuration. HSM4SSL is
dedicated to securely generating, storing, and managing cryptographic keys and certificates,
as it offers a standardized and user-friendly command-line interpreter (CLI) tool.

The HSM4SSL general architecture, shown in Figure 2, is a three-layer architecture
designed to facilitate unified and uniform access from software applications to various
HSMs. At its foundation, the architecture features the physical layer, which includes spe-
cialized HSMs from multiple vendors, databases, and virtual HSMs, where communication
between the physical layer and the upper layers is facilitated by an adaptive driver commu-
nication protocol (ADCP). The middle layer of the architecture is the management layer,
which consists of several service functions and the hardware abstraction layer (HAL). The
service functions encompass multiple managers, each dedicated to a specific cryptographic
operation or the management of the HSM4SSL. Finally, the top layer is the application
layer, where the SSL protocol and software applications reside. This layer leverages the



Future Internet 2024, 16, 148 7 of 22

underlying software and hardware components through an application programming interface
(API) to use the various HSM4SSL security services. The security services provide a wide
range of cryptographic operations and HSM-related functions. Some of the key security
services offered by HSM4SSL include the following:

1. Secure storage initialization.
2. Key pair generation.
3. Digital certificate generation.
4. Data encryption/decryption.
5. Access control and authorization.

Moreover, HSM4SSL is a modular architecture designed to provide uniform integra-
tion across various network environments and configurations. This adaptability is essential
for addressing legacy and modern systems’ different security requirements and designs.
This is achieved by the usage of uniform CLI commands that provide a consistent interface
to eliminate overhead when using HSM4SSL’s services in pre-existing infrastructures. Plus,
the ADCP parameters can be dynamically adjusted to align with the exact requirements
of both advanced and legacy systems, and the HAL can also be effortlessly modified to
include HSMs’ drivers when more recent HSMs are introduced in the physical layer to
fulfill the organization’s security requirements.

Figure 2. HSM4SSL high-level architecture.

3.3. HSM4SSL: Low-Level Architecture

The low-level architecture of HSM4SSL, shown in Figure 3, offers an in-depth explo-
ration of the internal components and their intricate interactions within the system.



Future Internet 2024, 16, 148 8 of 22

Figure 3. HSM4SSL low-level architecture.

3.3.1. HSM4SSL Application Layer

The application layer of HSM4SSL includes software applications running on intra-
domain servers. These servers utilize the security services utilized by HSM4SSL by inter-
acting with the management layer via an API to provide unified and standard access to the
available HSMs.

HSM4SSL API: To establish a unified access point for software applications to the
architecture, we developed RESTful APIs that adhere to the REST architecture. These
APIs utilize HTTP requests to communicate with resources identified by URLs, enabling
the exchange of information through standard HTTP methods like GET, POST, PUT, and
DELETE. The API design process was complemented by conducting a comparative analysis
of the currently most-utilized API development tools, which are FastAPI, Flask, Spring,
and Django. Figure 4 presents a performance comparison of the aforementioned tools
based on the number of RPS that each framework can handle as the number of concurrent
users increases from 0 to 40. From the results, Django demonstrates the highest RPS rate
across the board. However, FastAPI preserves a consistent RPS rate, suggesting robust
performance under a concurrent user load. Further, the latency comparison shown in
Figure 5 depicts the latency measured in milliseconds as the number of concurrent users
increases from 0 to 40. As the user load rises, all frameworks exhibit an increase in latency.
FastAPI shows the lowest increase, suggesting it handles the additional load with minimal
latency impact.

After evaluating the performance of various web frameworks, we chose FastAPI for
its impressive balance of handling a high number of requests per second and its low latency.
FastAPI’s performance metrics indicate that it can handle a significant number of requests
with minimal delay, which is essential for ensuring a smooth user experience. Prioritizing a
lower latency is crucial for our application, as it directly impacts the responsiveness and
efficiency of the service.



Future Internet 2024, 16, 148 9 of 22

Figure 4. RPS comparison results.

Figure 5. Latency comparison results.

3.3.2. HSM4SSL Management Layer

Exposing the higher-level API to communicate with the underlying HSMs happens in
the management layer, where HSM4SSL’s centralized control and monitoring mechanisms
come into play. This is primarily made up of multiple service managers that can be classified
as follows:

1. Base Service Functions:
The base service functions are employed to provide the primary services required to
properly operate the HSM4SSL. The base service functions include the following:

• Topology Manager: Stores information about the HSMs and organizes HSMs
with their physical and logical connections in a hierarchical structure. The
topology manager monitors newly added and removed HSMs to construct this
structure dynamically.

• Statistics Manager: Collects statistical information from the underlying HSMs,
such as request counts and error rates. It stores and maintains this information
to comprehensively generate reports based on the collected statistics.



Future Internet 2024, 16, 148 10 of 22

• Flow Manager: Creates policy sets that guide the request routing process. These
policy sets define the rules and criteria for determining the appropriate destina-
tion for each incoming request. By configuring these policies, the flow manager
guides the HAL, enabling it to determine the specific HSM to which a request
should be sent. These policies can consider various factors, such as security
requirements, load balancing, the availability of HSM resources, and other rele-
vant considerations.

• Host Manager: Manages and stores connected endpoint hosts’ information. It
maintains a repository that stores crucial details about each host, including their
MAC addresses and IP addresses.

• HSM Manager: Manages and stores the underlying HSMs’ information. It
maintains a centralized repository of HSM-related data, including their statuses
and configurations. This information includes details about the available HSMs,
their connectivity, operational status, and any relevant configuration settings.

• Security Manager: Analyzes the HSMs’ states and incoming data to identify
anomalies. Maservice managerlearning-based anomaly detection systems can
be employed in the security manager to continuously scan incoming requests and
detect threats.

• Event Manager: Collaborates closely with the security manager. Its primary
role is to monitor critical events within the HSMs. By continuously monitoring
various aspects of the system, such as performance and security indicators, in
any critical event, such as a security breach or system failure, the event manager
generates reports and alerts. Moreover, in case of an HSM failure error generated
by the security manager, the event manager communicates with the flow manager
with a specific error code requiring it to update the policy set. This allows the
HAL to route incoming requests to available HSMs until the error is handled.

• Database Manager: Manages and backs up data storage and generates statistics
about saved data, such as certificates and audit logs.

2. Operation Service Functions: On the other hand, operation service functions contain
managers oriented to perform specific cryptographic and HSM-related tasks, such as
the following:

• Authorization Manager: Performs host authentication and authorization and
determines which hosts can access HSM resources. It is responsible for validating
the identity and credentials of connecting hosts and determining their level of
access to HSM resources. By enforcing access control policies and rules, the
authorization manager ensures that only authorized hosts can utilize the HSM
resources and perform cryptographic operations.

• Cryptography Manager: Performs cryptographic operations, such as encryp-
tion and decryption, and secure storage initialization within the HSMs to store
cryptographic objects.

• Keys Manager: Handles key generation and retrieves cryptographic keys for
hosts for encryption and decryption processes.

• Certificate Manager: Manages the validation and revocation of digital certificates
used for secure communication and authentication purposes. It maintains a
repository of trusted root certificates and intermediate certificates, enabling the
validation of certificates within the system. The certificate manager also handles
the revocation of certificates in case of compromised or expired certificates.

3.3.3. Hardware Abstraction Layer

The HAL, shown in Figure 6, is the heart of the HSM4SSL. It enables software appli-
cations to communicate with different HSMs by abstracting the low-level details of the
underlying HSMs. It contains a service manager and a driver manager. The service manager
acts as an intermediary between the controller managers and the underlying hardware,
while the driver manager handles the execution of hardware-specific commands.



Future Internet 2024, 16, 148 11 of 22

The HAL communicates with the flow manager to obtain the policy set. The policy
set provides instructions on various aspects, such as security measures, access control,
error handling, and resource utilization, based on analyzing the security requirements,
capabilities, and current utilization of each HSM. Additionally, the policy set may include
guidelines for access control, specifying which entities or users have permission to perform
certain operations on the HSMs.

Figure 6. The HSM4SSL hardware abstraction layer (HAL).

When a request is received from the controller managers, the service manager trans-
lates the request into a feature request. This translation process entails applying the policy
set to ensure the inclusion of the appropriate destination HSM parameter in the message. By
adhering to these policies, the service manager guarantees that the feature request contains
the necessary information to route it to the correct HSM. The driver manager maintains
a registry that maps each feature request to the appropriate HSM’s command and driver.
This registry serves as a lookup table, allowing the driver manager to identify the specific
hardware command and corresponding driver that can handle the requested feature.

3.3.4. Adaptive Driver Communication Protocol (ADCP)

Communication between different components is facilitated using the ADCP. The
ADCP is a JSON-based messaging protocol that forms the backbone of the communication
infrastructure within HSM4SSL. The standardized format, shown in Figure 7, provides a
structured approach to exchanging information and instructions. The message is organized
into two primary objects: the header and the body.



Future Internet 2024, 16, 148 12 of 22

{
"header":{

"message_direction": "request/response",
"message_id": "msg_id",
"message_type": "requested_operation",
"source_mac_address": "src_mac",
"source_ip_address": "src_ip",
"timestamp": "2023-11-14T16:00:36.937948",
"dest_hsm_module": "hsm_destination",

},
"body":{

"session_label": "session_identifier",
"credentials":{

"admin_pin": "admin_access_code",
"user_pin": "user_access_code"

},
"key_info":{

"type": "generated_key_type",
"length": "generated_key_length",
"label": "generated_key_label",
"id": "generated_key_id"

},
"csr_details"{

"csr": "csr_data",
"csr_file": "csr_path"

},
"cert_details": {

"hash_algorithm": "signing_algorithm",
"days": "certificate_validity"

}
}

}

Figure 7. The adaptive driver communication protocol (ADCP) standard JSON-based message.

The header object includes keys such as message_direction, which denotes if this mes-
sage is a request for a service or a response to the client. This key can also hold a value
to indicate that a message is for internal purposes, such as messages between managers
for information exchange. Another key is the “message_id”, which assigns a unique serial
number to each message, starting from “1” and incrementing with each new message. This
enables the tracking and referencing of messages within the system. The “message_type”
key indicates the specific HSM operation to be performed. The “source_mac_address” key
represents the MAC address of the device or entity sending the message, enabling internal
architecture usage and the association of cryptographic elements with their corresponding
hosts. Similarly, the “source_ip_address’’ key denotes the IP address of the source device,
providing additional internal architecture usage information. Further, the “timestamp” key
in the header serves to record the time at which the message is generated, providing a
temporal reference for tracking and synchronization purposes within the architecture. Ad-
ditionally, the header contains the “dest_hsm_module” key, which specifies the destination
HSM where the command should be executed. It identifies the path to the HSM library
file responsible for handling the requested operation. By incorporating these standard-
ized header objects, the message format ensures consistency, interoperability, and efficient
processing across different HSM-related operations and systems.



Future Internet 2024, 16, 148 13 of 22

The body object of the message format, on the other hand, encapsulates the specific
keys and values related to the intended operation or task. Within the body section, addi-
tional keys and values that are specific to the operation defined in the header are included.
For instance, the “session_label” key represents the label or name assigned to the secure
session being initialized or an identification of where to store generated cryptographic
elements. This allows for the proper identification and management of different sessions
within the HSM. The “credentials” sub-object contains the “admin_pin” and “user_pin” keys.
These credentials are utilized for administrative and user-level operations, granting access
to the token’s cryptographic functions and enabling authentication and authorization.
Furthermore, the “key_info” sub-object encompasses keys related to the generation of cryp-
tographic key pairs. The “type” key specifies the type of cryptographic algorithm to be
used, such as RSA, AES, or EC. The “length” key denotes the desired length of the gener-
ated encryption key. Additionally, the “label” key assigns a unique name or label to the
generated public-key pair, facilitating identification and management. Finally, the “id” key
provides an ID number for the generated public-key pair, enabling easy referencing and
retrieval when needed. Moreover, for X.509 certificate generation requests, the “csr_details”
sub-object serves as a repository for storing critical CSR details. These details encompass
two key attributes: “csr”, which encapsulates the CSR data received from the client for
signing, and “csr_file”, which specifies the file path where the CSR is to be saved within
the HSM4SSL server. This approach of saving the CSR file before proceeding with the
signing process significantly streamlines the certificate generation process. Along with the

“csr_details”, the second sub-object, “cert_details”, is also involved in the certificate generation
security service. “cert_details” includes two important keys. First is the hash_algorithm,
which denotes the hashing algorithm to be used for signing the certificate. If not specified
by the user, the hash_algorithm is “sha256” by default. The second is “days”, which specifies
the certificate validity in days, which is hard-coded “365” days and can be changed by the
HSM4SSL administrators.

3.3.5. ADCP Assignment Policy Set

The effective operation of the HAL depends on a well-structured JSON-based assign-
ment policy set. The policy set design is a critical aspect of the HSM4SSL architecture, as it
determines the proper assignment of requests to the available HSMs based on predefined
policies. The policy set is designed to consider various factors, including the capabilities,
algorithms, hash functions, and utilization of each HSM, which ensures efficient resource
utilization and optimal performance. For example, the policy set shown in Figure 8 includes
the “hsm” key, which identifies the specific HSM to which the policy applies. For each
HSM, the "capabilities” key specifies the capabilities of the HSM, indicating the operations
or functions it can perform. For example, the policy set may specify that HSM1 is capable
of public-key pair generation, certificate generation, and encryption, while HSM2 can only
perform key pair generation and encryption. Plus, the “algorithms” key lists the supported
cryptographic algorithms for the specified HSM. It includes algorithms such as RSA, ECC,
AES, and RC4, which can be used for various cryptographic operations. The “hash_funcs”
key defines the supported hash functions for the HSM. Hash functions like MD5, SHA1,
SHA256, and SHA512 are commonly used for data integrity and verification purposes.
Finally, the “utilization” key reflects the current utilization level of the HSM. It can be catego-
rized into different levels, such as low, medium, or high, based on factors like the workload,
performance, and resource availability of the HSM, enabling efficient decision-making in
request routing.

By designing a comprehensive and well-defined assignment policy set, the HSM4SSL
architecture can effectively optimize resource allocation and ensure compatibility with
cryptographic operations.



Future Internet 2024, 16, 148 14 of 22

policies: [
{

"hsm": "HSM1",
"capabilities": ["initsession",
"keypairgen", "certificate_gen"],
"algorithms": ["rsa","ecc"],
"hash_funcs": ["md5","sha1","sha256"],
"utilization":["med"],

},
{

"hsm": "HSM2",
"capabilities": ["initsession",
"keypairgen", "encryption"],
"algorithms": ["rsa","aes","rc4"],
"hash_funcs": ["md5","sha256","sha512"],
"utilization": ["high"],

}
]

Figure 8. HSM4SSL JSON-based assignment policy set.

3.3.6. HSM4SSL Physical Layer

The physical layer includes the hardware components and infrastructure necessary
for the secure operation of the system, such as the following:

• HSMs: The physical layer includes tamper-resistant HSMs that provide cryptographic
services. HSM4SSL relies on the security of those HSMs as they adhere to strict se-
curity standards such as FIPS 140-2, which are engineered to protect sensitive data
and manage cryptographic keys with unmatched security, thereby strengthening the
SSL operations, which are crucial for secure intra-domain communication. Plus, to
accommodate various needs and requirements and to allow for greater flexibility,
HSM4SSL supports an array of HSMs from multiple vendors. This multi-vendor
approach ensures that organizations are not locked into a single provider, thereby
reducing the risk of vendor lock-in and allowing for a customized security fit. The in-
tegration process is streamlined, ensuring that adding a new HSM to the environment
is as simple as possible. Moreover, in light of the evolving landscape of cybersecurity
threats due to the arrival of quantum computers, HSM4SSL must evolve at a compara-
ble pace. Of note is that the National Institute of Standards and Technology (NIST) has
selected four cryptographic algorithms covering key exchange and digital signatures
that are pending standardization. However, the development of post-quantum safe
HSMs is considered a hot topic by leading HSM manufacturers, such as Thales and
Crypto4A [30,31], as building a post-quantum safe HSM requires completely differ-
ent cryptographic frameworks compared to those employed in contemporary HSMs.
Moreover, as HSM4SSL is designed for quick adaptability, we are certain that as these
post-quantum safe algorithms and HSMs are standardized and developed, HSM4SSL
will be able to incorporate these HSMs into the architecture.

• Databases: For supplementary storage capacity, the physical layer may include
databases that store cryptographic elements, such as keys, certificates, and audit
logs. These databases can be located either on the same server as the HSMs or on a
separate server.

• Virtual HSM: In addition to physical HSMs, the physical layer supports the virtual
HSM, also known as a HSM simulator. It is important to note that the HSM4SSL
architecture has been developed and thoroughly tested in the SoftHSM simulator
environment. SoftHSM provides a software-based emulation of an HSM and offers a
controlled environment for cryptographic operations and secure storage [32].



Future Internet 2024, 16, 148 15 of 22

The physical layer is designed with scalability in mind. As new cryptographic chal-
lenges arise and industrial needs change, HSM4SSL’s physical layer can easily incorporate
newer HSMs that meet these evolving standards. Plus, the HAL can be dynamically up-
dated to include the newly added HSM’s driver to facilitate communication. This process
allows HSM4SSL to leverage the latest HSM technology without requiring any modifica-
tions to the system’s core architecture and ensure long-term viability and effectiveness.

3.3.7. HSM4SSL CLI Tool

The developed “ssleverywhere” command-line interpreter (CLI) tool serves as a ver-
satile interface for interacting with the HSM4SSL architecture from the terminal. It offers
various commands to initiate secure sessions, generate certificates, and perform essential
cryptographic operations. The design of this tool prioritizes user-friendliness, enabling
users to effortlessly harness the capabilities of the HSM4SSL architecture.

Once installed and configured, the “ssleverywhere” tool generates several folders within
the system, namely “private”, “csr”, and “certs”. Within these folders, specific functionalities
are organized. The “private” folder serves as the repository for server key pairs. The “csr”
folder is designated for CSRs to be sent to the HSM4SSL, be signed, and create X.509
certificates. Finally, the “certs” folder stores the issued certificates obtained after successful
CSR submissions. The "ssleverywhere” tool accepts multiple parameters, each serving a
specific purpose and contributing to the customization of commands. For example, the
‘-gen_cert’ command is responsible for creating an X.509 certificate and saving it in the “certs”
folder. The process starts by providing the following parameters:

• -name: Specifies the name associated with the certificate; this name can either be
manually entered or can be modified by administrators to remain consistent for
repeated usage of the command.

• -default: An option that can be used with the “-gen_cert” command to indicate default
certificate generation settings. Default parameters include key type set to RSA, key
length set to 2048, encryption set to AES, and hash set to SHA256.

• -manual: An option that can be used with the “-gen_cert” command to enable manual
configuration of certificate generation settings.

• -key_type: Specifies the type of private key when manually configuring certificate
generation settings.

• -key_length: Specifies the desired length of the private key when manually configuring
certificate generation settings.

• -encryption: Specifies the encryption method to be used for private keys when manually
configuring certificate generation settings.

• -hash: Specifies the hashing algorithm for cryptographic operations when manually
configuring certificate generation settings.

Another command is “-keypair_gen”. This command is used to request HSM4SSL to
generate a cryptographic key pair and return it to the user. It accepts three parameters:

• -label: Specifies a label or name for the generated key pair, so the public key can be
saved in the HSM4SSL database.

• -key_type: Specifies the type of cryptographic key to be generated.
• -length: Specifies the desired length of the key.

The usage example of the ssleverywhere tool involves two machines on the same
network establishing secure communication. Machine A, the server, generates a certificate
named “SE” using the ssleverywhere command:

$ ssleverywhere -gen_cert -name SE -default
% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed
100 5978 100 4965 100 1013 108k 22678 --:--:-- --:--:-- --:--:-- 132k

Machine B, the client, follows a specific configuration to generate its certificate:



Future Internet 2024, 16, 148 16 of 22

$ ssleverywhere -gen_cert -name CL -manual -key_type rsa -key_length 4096
-encryption des3 -hash sha512

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed

100 7059 100 5331 100 1728 28048 9091 --:--:-- --:--:-- --:--:-- 37951

Machine B generates a certificate named “CL” with specific configurations: RSA key
type, 4096-bit key length, DES3 encryption, and SHA-512 hashing algorithm. After success-
ful generation, both machines have their certificates, enabling secure communication.

Both machines possess certificates from the HSM4SSL architecture, as per their specific
requirements. To utilize these certificates, Machine A acts as the server, employing a Python
socket programming code to listen for connections on a predetermined port. It loads its
SSL certificate and the root CA certificate into the SSL/TLS server context, awaiting client
connections. Machine B initiates a connection to Machine A’s server using its own SSL
certificate and the root CA certificate in its SSL/TLS client context. The SSL handshake
process occurs upon connection establishment, facilitating mutual authentication. Once
completed, a secure channel is established, allowing encrypted and integrity-protected
application data exchange between the client and server. With both programs running
and configurations in place, the SSL handshake process, as captured by Wireshark and
illustrated in Figure 9, unfolds when Machine B connects to Machine A. During this
handshake, the messages enclosed within the yellow rectangle depict the SSL handshake
process, which involves mutual authentication. After the handshake is completed, both the
client and server form a secure channel and can exchange application data securely, which
is encrypted and integrity-protected.

Figure 9. Captured handshake process.

4. HSM4SSL Performance

To perform a valid performance evaluation of the HSM4SSL architecture where three
HSM simulators are deployed, it was compared with OpenSSL version 3.0.11, a bench-
marking tool for performing cryptographic operations. OpenSSL is a comprehensive
cryptographic software and command-line tool that is well known for its open-source
implementation of the TLS protocol. Users and developers can use OpenSSL to perform a
wide range of cryptographic functions, such as generating key pairs, CSRs, and more [33].
Note that the sole usage of OpenSSL in sensitive intra-domain environments being to act as
a root of trust for certificate signing and generation introduces security risks, as there have
been 177 vulnerabilities reported in OpenSSL through the period of 2002 to 2019 [34].

The experimental setup involved testing on two separate PCs within the same net-
work environment to ensure a consistent and controlled testing framework. The primary
machine, acting as the server and used for hosting the HSM4SSL architecture, had the
specifications detailed in Table 2. The secondary machine, responsible for generating
certificate requests and performing benchmarks, was equipped to emulate realistic opera-
tional conditions. The simulated environment used SoftHSM version 2.6.1, an open-source
software implementation of a cryptographic store accessible through a PKCS#11 interface.
This setup allowed for the testing of the HSM4SSL architecture’s integration with HSM
capabilities and without the need for physical hardware. SoftHSM was configured with the
default settings, such as its support for ECC, AES, and RSA for cryptographic algorithms,



Future Internet 2024, 16, 148 17 of 22

and non-paged memory was maintained in its enabled state to prioritize security over
performance, ensuring that sensitive data were kept out of disk-based swap spaces, thus
minimizing the risk of data leakage. Plus, P11-kit integration was enabled, facilitating the
interaction of SoftHSM with PKCS#11 modules installed on the system to specify how to
allow the user to communicate with the cryptographic tokens. Moreover, SoftHSM uses
the Botan cryptographic library by default for its cryptographic operations.

The network connecting these devices was configured with a bandwidth of 127 MB/s
and a latency of 5 ms between the two devices, mimicking intra-domain network conditions
that might impact performance metrics.

Table 2. Hardware specifications.

Specification Details
Operating System Ubuntu 22.04
Processor AMD Ryzen 7
Memory 16 GB
Hard Drive 1 TB SSD

As for the software tools, we used the loadtest command line and Node.js module
version 8.0.3, which simulates high volumes of traffic to web applications to assess their
performance, identify bottlenecks, and understand how they handle various levels of
load [35]. It operates in various modes, such as by specifying the requested RPS, the total
number of requests to be processed, the total time to send as many requests as the API
can handle, or the number of concurrent users. In addition, it provides detailed metrics
and reporting, including RPS, mean latency, and error rates. The loadtest tool was used to
simulate real-world high traffic levels and interaction with the HSM4SSL architecture to
understand how it scales under stress. Additional tools, such as the top (table of processes),
which provides real-time insight into active processes and presents a system information
view that includes resource utilization data, and nload, which monitors real-time network
traffic, were employed to monitor performance metrics beyond what loadtest offers.

4.1. Testing Scenarios and Metrics

To ensure precise evaluation, a separate PC was used to carry out all test scenarios
using loadtest. These scenarios mainly involved varying two parameters, which are the
number of concurrent users, which refers to the number of virtual users that are actively
making requests to the target application or API at the same time, and the number of
requests, which indicates the total number of HTTP requests that will be generated and
sent to the API. Moreover, the key evaluation metrics used are the effective RPS, which
measures the rate at which the system can handle incoming certificate generation requests;
latency, which refers to the time delay or the elapsed time between the initiation of a
request and the moment when a response is received; CPU usage, to measure the amount of
resources consumed by the CPU during the test; and network bandwidth, which measures
the amount of data transmitted over the network during the load test.

4.2. Results and Discussion

Figure 10 shows that both HSM4SSL and OpenSSL have a roughly steady and con-
sistent RPS rate as the number of concurrent users increased from 1 to 100, suggesting
that both systems demonstrated an ability to handle an increasing workload without a
significant drop in RPS, emphasizing their scalability under the test conditions. However,
HSM4SSL consistently exhibits a higher RPS compared to OpenSSL at various user load
levels. This indicates the remarkable efficiency and scalability of HSM4SSL in process-
ing a greater number of requests in parallel. Plus, Figure 11 reveals that, as the number
of concurrent users increases in the same range, both HSM4SSL and OpenSSL exhibit a
gradual increase in latency, which is expected as system loads intensify. However, on



Future Internet 2024, 16, 148 18 of 22

average, the latency for each request served by OpenSSL tends to be 13.08% higher than
that of HSM4SSL.

Figure 10. RPS comparison results.

Figure 11. Latency comparison results.

Another evaluation criterion is the evaluation of resource and network utilization,
where CPU usage was determined by closely monitoring essential components, namely
Python, Google Chrome, and the MySQL database, for the HSM4SSL architecture. An
interesting observation from the results shown in Figure 12 is the clear and consistent
logarithmic growth exhibited by HSM4SSL and OpenSSL. However, HSM4SSL’s growth
in CPU usage is more pronounced compared to OpenSSL since HSM4SSL includes more
complex backend processes, such as generating the ADCP message, forwarding the message
to multiple managers, generating the policy set, and accessing databases to save or retrieve
information. Throughout the tests, HSM4SSL showcases an ability to efficiently utilize CPU
resources, as evidenced by the substantial growth in CPU usage. This growth, although
higher, eventually stabilizes at a maximum of 15.6%. This is because the application or



Future Internet 2024, 16, 148 19 of 22

processes included in HSM4SSL may be configured with resource allocation limits that
restrict its ability to consume more than a certain percentage of the CPU’s total capacity.

The network utilization concentrates on understanding the influence of certificate
generation on network resources, specifically focusing on HSM4SSL. Notably, OpenSSL
operates and is utilized locally within each server, making the monitoring of network
utilization primarily relevant to HSM4SSL. Figure 13 shows a consistent upward trajectory
in network bandwidth consumption by HSM4SSL. However, it is noteworthy that the net-
work bandwidth utilization eventually stabilizes at approximately 690–700 KB/s. This cap
indicates that HSM4SSL, while efficiently scaling to meet growing demands, has an upper
limit in terms of network resource utilization. This stability underscores the architecture’s
ability to effectively allocate and manage network resources without excessive saturation.

Figure 12. CPU usage comparison results.

Figure 13. Network bandwidth comparison results.

Based on the evaluation outlined, multiple methods can be involved to enhance the
performance of HSM4SSL. The evaluation of HSM4SSL shows a weakness in CPU usage. To
reduce CPU utilization caused by MySQL processes, one strategy is to implement database-
caching mechanisms. Caching frequently accessed data can reduce the computational load
on the CPU by minimizing the need to repeatedly retrieve data from the database. Plus, by
utilizing more parallelization techniques, HSM4SSL can reduce the latency and processing



Future Internet 2024, 16, 148 20 of 22

time by enabling the simultaneous execution of multiple certificate generation requests.
Moreover, by performing request throttling to limit the number of requests from a single
user, HSM4SSL can prevent potential spikes in resource usage and maintain a smoother
and more predictable operation. This approach can help ensure fair resource allocation,
reduce the risk of resource contention, and mitigate the impact of excessive concurrent
requests on system performance.

5. Conclusions

This paper addresses the current security issues for communication in intra-domain
environments, as most peer-to-peer communication is unencrypted and unauthenticated,
and proposes the HSM4SSL architecture, which appeared as a novel solution to address
the evolving challenges of secure communication within intra-domain environments. This
research has discussed the architecture’s design, components, and performance evaluation,
providing insights into its capabilities and contributions.

HSM4SSL is a unified and standardized architecture that aims to strengthen the
security of intra-domain environments. Its integration of hardware security modules has
contributed to its robustness by providing secure storage and key management. This
implementation ensures that cryptographic keys and sensitive data are protected against
unauthorized access and tampering, reinforcing the architecture’s commitment to security.
Plus, comparing HSM4SSL with the widely used OpenSSL demonstrates the former’s
superior ability to manage requests more efficiently, with higher requests per second and
lower latency while ensuring the effective utilization of CPUs and network resources. This
performance advantage underscores HSM4SSL’s potential to serve as a reliable foundation
for secure communication within intra-domain environments. However, it is important
to mention that the provided comparative analysis with OpenSSL represents preliminary
results, which were aimed at providing a foundational overview of HSM4SSL’s performance
against a well-established tool within the security realm. Looking forward, we acknowledge
the importance of extending our comparative analysis to include a broader range of security
tools and technologies, where we plan to perform a comprehensive evaluation that not
only revisits our preliminary findings with OpenSSL but also encompasses additional
comparisons with other cryptographic tools. Plus, it is crucial to focus on a comprehensive
security analysis of HSM4SSL against relevant architectures, including a detailed evaluation
of the API in the face of well-known security attacks, along with developing threat models
that enable us to simulate various attack victors and assess the system’s response under
different threat scenarios.

However, HSM4SSL introduces challenges such as the dependency on physical HSMs,
which introduces cost complexities, especially when multiple HSMs are deployed. Plus,
the architecture, while optimized for multiple HSM integration, may encounter latency
and overhead, especially when integrating a single HSM within the premises. Furthermore,
despite efforts to ensure system robustness, certain components could become failure
points if not managed properly, such as the central management of HSMs, the API, and the
centralized policy management system. Additionally, the necessity to regularly update both
the HSMs and software components to align with evolving security standards underscores
our commitment to continual improvement and adaptation.

In summary, HSM4SSL represents notable progress in tackling security issues in intra-
domain situations. However, there are various areas for future study and development
that might improve its capabilities and influence. Further research might be conducted to
improve the compatibility of HSM4SSL with a wider array of HSMs, therefore enabling en-
terprises to select from a varied selection of HSM alternatives while upholding the security
requirements and principles of the architecture. This presents an opportunity to investigate
sophisticated load-balancing methodologies, caching methods, and parallel processing
strategies in order to minimize latency and enhance throughput. Furthermore, future
endeavors may encompass initiatives to advocate HSM4SSL as a widely accepted option
for ensuring secure communication within a certain domain. The attainment of widespread



Future Internet 2024, 16, 148 21 of 22

acceptance may necessitate collaboration with pertinent standards bodies and industry
groups. For the time being, HSM4SSL codes and API are under development to meet
the standards of security, functionality, and scalability, where the aim is to provide com-
prehensive documentation, including detailed guides on endpoints, usage examples, and
configuration instructions, to support future exploration and validation of “HSM4SSL”’s
capabilities.

Author Contributions: Conceptualization, Y.A. and A.O.; methodology, Y.A. and A.O.; software, Y.A.;
validation, Y.A. and A.O.; formal analysis, Y.A. and A.O.; investigation, Y.A. and A.O.; resources, Y.A.
and A.O.; data curation, Y.A. and A.O.; writing—original draft, Y.A.; writing—review and editing,
Y.A. and A.O.; project administration, A.O.; funding acquisition, A.O. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data is not accessible to the public due to its involvement in an
ongoing study.

Acknowledgments: During the preparation of this work the authors used Grammarly tool in order
to check the English grammar of the manuscript. After using this tool, the author(s) reviewed and
edited the content as needed and take full responsibility for the content of the publication.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, M. On the State of the Inter-Domain and Intra-Domain Routing Security; University of Oregon: Eugene, OR, USA, 2016; p. 23.
2. Schulze, H. 2020 Insider Threat Report. Available online: https://www.cybersecurity-insiders.com/wp-content/uploads/2019

/11/2020-Insider-Threat-Report-Gurucul.pdf (accessed on 22 April 2024).
3. Bourke, T. Server Load Balancing, 1st ed.; O’Reilly: Beijing, China; Sebastopol, CA, USA, 2001.
4. Membrey, P.; Hows, D.; Plugge, E. SSL Load Balancing. In Practical Load Balancing; Apress: Berkeley, CA, USA, 2012. [CrossRef]
5. SectigoStore. SSL Certificate for IP Address—An Expert Guide on SSL for IP Address. Available online: https://sectigostore.

com/page/ssl-certificate-for-ip-address/ (accessed on 22 April 2024).
6. Sectigostorepages. Google Announces Intentions to Limit TLS Certificates to 90 Days: Why Automated CLM Is Crucial.

Available online: https://www.sectigo.com/resource-library/google-announces-intentions-to-limit-tls-certificates-to-90-days-
why-automated-clm-is-crucial (accessed on 22 April 2024).

7. Aref, Y.; Ouda, A. Still Computers Networking is Less Secure Than It should be, Causes and Solution. In Proceedings of the 2023
International Symposium on Networks, Computers and Communications (ISNCC), Doha, Qatar, 23–26 October 2023; pp. 1–8.
[CrossRef]

8. Herzberg, A.; Hollick, M.; Perrig, A. Secure Routing for Future Communication Networks (Dagstuhl Seminar 15102). Dagstuhl
Rep. 2015, 5, 28–40. [CrossRef]

9. Shue, C.A.; Kalafut, A.J.; Gupta, M. A Unified Approach to Intra-domain Security. In Proceedings of the 2009 International
Conference on Computational Science and Engineering, Vancouver, BC, Canada, 29–31 August 2009. [CrossRef]

10. Boisrond, P.D. To Terminate or Not to Terminate Secure Sockets Layer (SSL) Traffic at the Load Balancer. arXiv 2020,
arXiv:2011.09621.

11. Rescorla, E. RFC2818; HTTP over TLS. Available online: https://www.rfc-editor.org/info/rfc2818 (accessed on 22 April 2024).
12. W3Techs. Usage Statistics of Default Protocol Https for Websites. Available online: https://w3techs.com/technologies/details/

ce-httpsdefault (accessed on 22 April 2024).
13. Chordiya, A.R.; Majumder, S.; Javaid, A.Y. Man-in-the-Middle (MITM) Attack Based Hijacking of HTTP Traffic Using Open

Source Tools. In Proceedings of the 2018 IEEE International Conference on Electro/Information Technology (EIT), Rochester, MI,
USA, 3–5 May 2018. [CrossRef]

14. Fung, A.P.H.; Cheung, K.W. SSLock: Sustaining the trust on entities brought by SSL. In Proceedings of the 5th ACM Symposium
on Information, Computer and Communications Security—ASIACCS ’10, Beijing, China, 13–16 April 2010. [CrossRef]

15. Chang, L.; Hsiao, H.C.; Jeng, W.; Kim, T.H.J.; Lin, W.H. Security Implications of Redirection Trail in Popular Websites Worldwide.
In Proceedings of the 26th International Conference on World Wide Web, Perth, Australia, 3–7 April 2017. [CrossRef]

16. Hodges, J.; Jackson, C.; Barth, A. HTTP Strict Transport Security (HSTS). RFC 6797 (Proposed Standard). Available online:
https://www.rfc-editor.org/info/rfc6797 (accessed on 22 April 2024).

17. Dolnak, I.; Litvik, J. Introduction to HTTP security headers and implementation of HTTP strict transport security (HSTS) header
for HTTPS enforcing. In Proceedings of the 2017 15th International Conference on Emerging eLearning Technologies and
Applications (ICETA), Stary Smokovec, Slovakia, 26–27 October 2017. [CrossRef]

https://www.cybersecurity-insiders.com/wp-content/uploads/2019/11/2020-Insider-Threat-Report-Gurucul.pdf
https://www.cybersecurity-insiders.com/wp-content/uploads/2019/11/2020-Insider-Threat-Report-Gurucul.pdf
http://doi.org/10.1007/978-1-4302-3681-8_11
https://sectigostore.com/page/ssl-certificate-for-ip-address/
https://sectigostore.com/page/ssl-certificate-for-ip-address/
https://www.sectigo.com/resource-library/google-announces-intentions-to-limit-tls-certificates-to-90-days-why-automated-clm-is-crucial
https://www.sectigo.com/resource-library/google-announces-intentions-to-limit-tls-certificates-to-90-days-why-automated-clm-is-crucial
http://dx.doi.org/10.1109/ISNCC58260.2023.10323980
http://dx.doi.org/10.4230/DagRep.5.3.28
http://dx.doi.org/10.1109/CSE.2009.204
https://www.rfc-editor.org/info/rfc2818
https://w3techs.com/technologies/details/ce-httpsdefault
https://w3techs.com/technologies/details/ce-httpsdefault
http://dx.doi.org/10.1109/EIT.2018.8500144
http://dx.doi.org/10.1145/1755688.1755714
http://dx.doi.org/10.1145/3038912.3052698
https://www.rfc-editor.org/info/rfc6797
http://dx.doi.org/10.1109/ICETA.2017.8102478


Future Internet 2024, 16, 148 22 of 22

18. Poddebniak, D.; Ising, F.; Böck, H.; Schinzel, S. Why TLS is better without STARTTLS: A Security Analysis of STARTTLS in the
Email Context. In Proceedings of the 30th USENIX Security Symposium (USENIX Security 21), Virtual Event, 11–13 August 2011.

19. Bittau, A.; Hamburg, M.; Handley, M.; Boneh, D. The case for ubiquitous transport-level encryption. In Proceedings of the 19th
USENIX Security Symposium (USENIX Security 10), Washington, DC, USA, 9 August 2010.

20. Nikolidakis, S.A.; Giotsas, V.; Georgakakis, E.; Vergados, D.D. Towards Utilizing Tcpcrypt in Mobile Healthcare Applica-
tions. In Proceedings of the Wireless Mobile Communication and Healthcare, Paris, France, 21–23 November 2012; Springer:
Berlin/Heidelberg, Germany, 2012.

21. Bhushan, B.; Sahoo, G.; Rai, A.K. Man-in-the-middle attack in wireless and computer networking — A review. In Proceedings of
the 2017 3rd International Conference on Advances in Computing, Communication & Automation (ICACCA) (Fall), Dehradun,
Indian, 15–16 September 2017. [CrossRef]

22. Odom, W. Ccna 200-301 Official Cert Guide, 1st ed.; Pearson Education, Inc.: Hoboken, NJ, USA, 2019; Volume 2.
23. Motero, C.; Higuera, J.R.; Bermejo, J.; Montalvo, J.A.; Gomez, N. On Attacking Kerberos Authentication Protocol in Windows

Active Directory Services: A Practical Survey. IEEE Access 2021, 9, 109289–109319. [CrossRef]
24. Deland-Han. Kerberos Authentication Troubleshooting Guidance—Windows Server. Available online: https://learn.microsoft.

com/en-us/troubleshoot/windows-server/windows-security/kerberos-authentication-troubleshooting-guidance (accessed on
22 April 2024).

25. SerdarSoysal. Authentication Overview for SharePoint Server—SharePoint Server. Available online: https://learn.microsoft.
com/en-us/sharepoint/security-for-sharepoint-server/authentication-overview (accessed on 22 April 2024).

26. Han, J.; Kim, S.; Kim, T.; Han, D. Toward Scaling Hardware Security Module for Emerging Cloud Services. In Proceedings of the
4th Workshop on System Software for Trusted Execution, Huntsville, ON, Canada, 27–30 October 2019. [CrossRef]

27. Hupp, W.; Hasandka, A.; de Carvalho, R.S.; Saleem, D. Module-OT: A Hardware Security Module for Operational Technology.
In Proceedings of the 2020 IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, 6–7 February 2020.
[CrossRef]

28. Vereecke, A. Koninklijke Militaire School: Amazon-KMS. Available online: https://aws.amazon.com/kms/ (accessed on 22
April 2024).

29. NIST. CVE-2020-8897 Detail. Available online: https://nvd.nist.gov/vuln/detail/CVE-2020-8897 (accessed on 22 April 2024).
30. Group, T. Post-Quantum Cryptography Solutions. Available online: https://cpl.thalesgroup.com/encryption/post-quantum-

crypto-agility (accessed on 22 April 2024).
31. Crypto4A. Available online: https://crypto4a.com/news/quantum-safe-secure-manufacturing/ (accessed on 22 April 2024).
32. OpenDNSSEC. SoftHSM. Available online: https://www.opendnssec.org/softhsm/ (accessed on 22 April 2024).
33. Tomita, C.; Takita, M.; Fukushima, K.; Nakano, Y.; Shiraishi, Y.; Morii, M. Extracting the Secrets of OpenSSL with RAMBleed.

Sensors 2022, 22, 3586. [CrossRef] [PubMed]
34. Walden, J. The Impact of a Major Security Event on an Open Source Project: The Case of OpenSSL. Available online: http:

//arxiv.org/abs/2005.14242 (accessed on 22 April 2024).
35. NPM. “loadtest” Linux Tool. Available online: https://www.npmjs.com/package/loadtest (accessed on 22 April 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ICACCAF.2017.8344724
http://dx.doi.org/10.1109/ACCESS.2021.3101446
https://learn.microsoft.com/en-us/troubleshoot/windows-server/windows-security/kerberos-authentication-troubleshooting-guidance
https://learn.microsoft.com/en-us/troubleshoot/windows-server/windows-security/kerberos-authentication-troubleshooting-guidance
https://learn.microsoft.com/en-us/sharepoint/security-for-sharepoint-server/authentication-overview
https://learn.microsoft.com/en-us/sharepoint/security-for-sharepoint-server/authentication-overview
http://dx.doi.org/10.1145/3342559.3365335
http://dx.doi.org/10.1109/TPEC48276.2020.9042540
https://aws.amazon.com/kms/
https://nvd.nist.gov/vuln/detail/CVE-2020-8897
https://cpl.thalesgroup.com/encryption/post-quantum-crypto-agility
https://cpl.thalesgroup.com/encryption/post-quantum-crypto-agility
https://crypto4a.com/news/quantum-safe-secure-manufacturing/
https://www.opendnssec.org/softhsm/
http://dx.doi.org/10.3390/s22093586
http://www.ncbi.nlm.nih.gov/pubmed/35591276
http://arxiv.org/abs/2005.14242
http://arxiv.org/abs/2005.14242
https://www.npmjs.com/package/loadtest

	Introduction
	Current Security Mechanisms and Implementations
	HSM4SSL Architecture
	Inspiration from the Previous Work
	HSM4SSL: High-Level Architecture
	HSM4SSL: Low-Level Architecture
	HSM4SSL Application Layer
	HSM4SSL Management Layer
	Hardware Abstraction Layer
	Adaptive Driver Communication Protocol (ADCP)
	ADCP Assignment Policy Set
	HSM4SSL Physical Layer
	HSM4SSL CLI Tool


	HSM4SSL Performance
	Testing Scenarios and Metrics
	Results and Discussion

	Conclusions
	References

