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Abstract: Differentiable physics is an approach that effectively combines physical models with deep
learning, providing valuable information about physical systems during the training process of
neural networks. This integration enhances the generalization ability and ensures better consistency
with physical principles. In this work, we propose a framework for estimating the temperature of a
permanent magnet synchronous motor by combining neural networks with the differentiable physical
thermal model, as well as utilizing the simulation results. In detail, we first implement a differentiable
thermal model based on a lumped parameter thermal network within an automatic differentiation
framework. Subsequently, we add a neural network to predict thermal resistances, capacitances, and
losses in real time and utilize the thermal parameters’ optimized empirical values as the initial output
values of the network to improve the accuracy and robustness of the final temperature estimation. We
validate the conceivable advantages of the proposed method through extensive experiments based
on both synthetic data and real-world data and then provide some further potential applications.

Keywords: permanent magnet synchronous motor; temperature estimation; lumped parameter
thermal network; differentiable physics; system identification

1. Introduction

In recent years, environmental protection and renewable energy have gained increas-
ing attention [1], and in the automotive industry, traditional fuel vehicles have gradually
been replaced by more environmentally friendly new energy vehicles. Electric motors
are one of the essential components of new energy vehicles, and permanent magnet syn-
chronous motors (PMSMs) are widely used due to their high efficiency, simple structure,
and high power density. However, the temperature inside the motor will rise sharply dur-
ing operation, posing risks of insulation failure and demagnetization [2] due to exceeding
thermal limits. How to estimate the temperature distribution inside the motor accurately
and stably is a key issue that must be focused on for practical use.

The temperature estimation methods for PMSMs are mainly classified into two cat-
egories: sensor-based and sensorless methods. Sensor-based methods involve directly
measuring the temperature at certain positions inside the motor using thermal sensors [3,4].
However, these methods involve additional costs and manufacturing complexities, mak-
ing them unsuitable for large-scale industrial production. Moreover, the repairing and
replacing can be time-consuming and costly when encountering sensor failure.

Sensorless methods can be further divided into direct and indirect methods. Indirect
methods include flux observer [5,6] and signal injection [7,8]. Direct methods generally
predict the temperature at the internal positions of the motor by directly establishing a
thermal model. Among direct methods, lumped-parameter thermal network (LPTN) [9] is
the most widely used, which replaces the motor with some nodes. The complex thermo-
dynamic behavior inside the motor is equivalently modeled as interactions between these
nodes, based on the flow paths of heat, the law of heat conservation, and the mechanism
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of heat generation [10]. Parameters such as thermal losses, thermal capacitances, and
thermal resistances in this thermal model can be obtained through theoretical or empirical
formulas [11], finite element analysis (FEA) [12], computational fluid dynamics (CFD), or
different data-driven methods [13,14]. Another common approach is treating temperature
estimation as a time-series prediction problem [15–17] utilizing supervised learning to fit
nonlinear relationships based on data. However, pure data-driven methods commonly lack
physical interpretability, diverge from physical mechanisms, and fail to utilize the actual
physical information of the motor.

Recently, the concept of physics-informed machine learning (PIML) or physics-based
deep learning (PBDL) has gained prominence. These approaches combine prior knowledge
of physics with data-driven methods, which is very helpful when training data are scarce,
model generalization is limited, or some physical constraints need to be satisfied. One
adds the differential equations of dynamic systems as several regularization terms into
the loss function, corresponding to the physics-informed neural network (PINN) [18,19].
Therefore, the backpropagated gradients contain information provided by differential
equations. Another approach integrates the complete physical model with deep learning.
In the context of the motor temperature estimation problem, several potential integration
patterns are illustrated in Figure 1. Among them, the neural network first often requires
the physical model to be differentiable, namely, differentiable physics (DP) [20–22], so as to
enable the backpropagation of gradients.

... ...

... ...Input

Loss

... ...Input Loss

(a)

(b)

(c) 

Input
gradgrad

grad

Loss
grad

Figure 1. Different ways of combining physical models with neural networks. (a) Neural networks
first; (b) physical models first; (c) parallel. For (a), the output of the neural network is fed into the
following physical model. For (b) and (c), the gradients generally do not directly flow through the
physical model, and the neural network primarily serves to learn the residual error.

In this work, we propose a lightweight end-to-end trainable framework for tem-
perature estimation by integrating neural networks, differentiable physical models, and
simulation results. Specifically, according to the real geometry, material properties, winding
and cooling configurations, and other information of the investigated PMSM, we establish
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a corresponding thermal simulation model in MotorCAD, which is an electromechanical
design software. The simulation model provides the structure of the thermal network
and simulated thermal parameters, including thermal losses, capacitances, and resistances,
that can serve as reasonable initial values. Considering the time-varying characteristic
of thermal parameters, a neural network for parameters correction is introduced. The
network dynamically adjusts the thermal parameters based on the real-time operating
conditions and temperature distribution. The corrected parameters are then fed into the
corresponding differentiable LPTN, which significantly improves the accuracy of tempera-
ture estimation. To the best of our knowledge, it is the first time in the literature that the
integration of differentiable physics into the domain of motor temperature estimation has
been investigated.

The principal conclusions drawn from this work highlight the effectiveness of the
proposed method in accurately estimating motor temperature using both synthetic and
real-world data. The integration of physical principles through a differentiable physics
model not only improves the accuracy and robustness of temperature estimations but also
maintains consistency with physical mechanisms. This method is deemed highly practical,
offering a significant improvement over purely data-driven methods by incorporating
physical model constraints and simulations, which result in more reliable and physically
consistent outcomes.

2. Related Work

Most prior works based on LPTN primarily focus on how to identify the thermal
parameters. Veg and Laksar [23] established a seven-node LPTN for a high-speed perma-
nent magnet synchronous motor and calculated thermal resistances and other parameters
using heat transfer coefficients. The accuracy of this method based on the theoretical formula
is limited. Choi et al. [13] utilized measured data under different operating conditions and
employed the least square method to obtain a set of optimal fixed thermal parameters, but this
method is unable to ensure the physical consistency of the results and ignores the time-varying
characteristic of thermal parameters. Wallscheid and Böcker [24] constructed a four-node
LPTN for a 60 kW HEV permanent magnet synchronous motor. Using the global particle
swarm optimization algorithm and extensive measured data, they identified the unknown
coefficients in empirical formulas, while considering various physical constraints and prior
knowledge like heat transfer theory. This method effectively adds prior knowledge into
the optimization algorithm, but the explicit empirical formulas generally make some sim-
plifications, making it difficult to capture different or more complex nonlinear patterns.
Kirchgässner et al. [25] viewed the four-node LPTN as a recurrent neural network and then
proposed a so-called thermal neural network. At each time step, the thermal parameters
that lose physical meanings were directly predicted by independent neural networks and
then computed the temperature after discretizing the differential equations of the corre-
sponding LPTN. The error between the estimated temperature with ground truth was
used to update the neural networks in the end. However, their method predicted thermal
parameters merely based on data, still towards a data-driven fashion. When discarding the
neural networks, the remaining cannot work independently as a physical model, and the
behavior of the neural networks is relatively uncontrollable and prone to violate physical
consistency. Wang et al. [26] established a ten-node LPTN for an automotive PMSM and
incorporated three independent neural networks to predict thermal parameters based on
theoretical values. This is a feasible attempt that combines physical models with neural
networks. However, they neglect the deviation between theoretical and real values of
thermal parameters, which limits the final accuracy and robustness and is unable to ensure
that the estimated temperatures at all nodes in LPTN conform to physical reality when
underconstrained. Additionally, their work lacks more in-depth experiments and analyses,
as well as comparisons with other algorithms to validate the method and the rationality of
certain settings.
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3. Background

The main idea of LPTN is to simplify the representation of various components inside
the motor (such as windings, stator, rotor, etc.) by using lumped nodes and then represent
heat flows through an equivalent circuit diagram. Each node has a thermal capacitance
to characterize the heat storage capacity of the corresponding component. There typically
exists a thermal resistance between every pair of nodes, reflecting the heat transfer process
between internal components of the motor. Additionally, several components may generate
power losses, such as copper loss, iron loss, etc. The losses are the major factor causing
the change in internal temperature distribution. A schematic of the i-th node in a typical
thermal network is illustrated in Figure 2.

Figure 2. The i-th node in a typical LPTN.

For node i, based on heat transfer theory and heat diffusion equation [27], the following
simplified ordinary differential equation can be derived [25]:

Ci
dϑi
dt

= Pi −
n

∑
j=1,j ̸=i

ϑi − ϑj

Ri,j
, i = 1, ..., n, (1)

where R denotes the thermal resistance between nodes, C the thermal capacitance, P
the loss, and ϑ the temperature. The number of thermal resistances generally increases
quadratically with the number of nodes. For a thermal network with n nodes, the equations
can be combined and written in the following matrix form:

dϑ

dt
= Aϑ + BP, (2)

with

A =


− 1

C1

n
∑

i=2

1
R1,i

· · · 1
C1R1,n

...
. . .

...
1

CnRn,1
· · · − 1

Cn

n−1
∑

i=1

1
Rn,i

, B =


1

C1
· · · 0

...
. . .

...
0 · · · 1

Cn


From the perspective of state space, the state variable ϑ represents the temperature at

each node, A is the state transition matrix, and B is the input matrix. If the matrices A and
B are time-invariant, then given the initial condition of temperature ϑ0, the temperature ϑt

at each time can be calculated as follows:

ϑt = eAtϑ0 +
∫ t

0
eA(t−τ)BP(τ)dτ (3)

However, in practical situations, the matrices A and B vary with time, because the
capacitances and resistances actually change with the operating points and the temperature
distribution inside the motor. For example, as the speed increases, the thermal resistances
related to ventilation may decrease accordingly. The losses vary due to different speed
and torque during operation; thus, the total loss as well as the ratio between losses is
variable. Therefore, the key to improving the accuracy of temperature estimation lies in
determining A, B, and P at each step, that is, thermal capacitances, thermal resistances, and
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losses. Then, several numerical methods can be used to solve Equation (2), such as forward
or backward Euler, Runge–Kutta methods, etc. Implicit methods generally have better
numerical stability. Taking backward Euler as an example, the equation can be discretized
as follows:

ϑt+1 − ϑt

Ts
= Atϑt+1 + BtPt, (4)

then

ϑt+1 = (E − Ts At)
−1

(ϑt + TsBtPt) (5)

We can implement this equation in an automatic differentiation framework, as it is
entirely matrix-based, so the gradients will not be blocked.

4. Differentiable Physics Temperature Estimation Framework

We have implemented a differentiable LPTN in PyTorch and incorporated a neural
network to dynamically correct thermal parameters online. The specific estimation frame-
work is shown in Figure 3, which illustrates the flow path to estimate the temperature at
each timestep. In general, the raw simulation thermal parameters need to be optimized
first to obtain the optimized values that are more in line with the reality (thermal parameter
optimization) and then fine-tuned by a neural network to compensate for the relatively
small time-varying change (dynamic correction). After that, these thermal parameters are
used for solving Equation (2) to obtain the estimated temperatures (differentiable LPTN),
which are then transferred to loss calculation and gradient backpropagation during training.
A detailed explanation for different components is provided in the following.

... ......

Total Loss
LUT

... ...

... ...

Elementwise
Product

Scale Ratio ( )

... ...
node node

 node

Dynamic Correction

Thermal Parameters Optimization

Differentiable LPTN

Loss Calculation
Temperature Estimation

Trainable
Parameters

Neural Network ( )

Gradient Backpropagation

Input

Update 

Figure 3. Differentiable physics temperature estimation framework. (1) Thermal parameter opti-
mization: simulation thermal parameters are optimized to obtain better initial values. (2) Dynamic
correction: the neural network predicts several correction ratios at each time step. These two outputs
are then fed into the downstream differentiable thermal model to obtain the estimated temperature.
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4.1. Thermal Parameter Optimization

For a thermal network with n nodes, there typically exist n thermal capacitances, C2
n

thermal resistances, and less than n thermal losses. These thermal parameters’ simulated
values (SVs) exported directly from simulation software, while based on relevant physical
theories and empirical formulas, often diverge from their real-world counterparts due to
model simplification, the diversity of operating conditions, and environmental impacts.
This discrepancy can lead to a decrease in the accuracy of the estimation model. Hence,
before directly utilizing these simulated thermal parameters, it is crucial to optimize
them to better align with the measured data, which is the key step in enhancing the final
estimation accuracy.

Therefore, we add a scaling ratio vector WSR corresponding to thermal capacitances
and resistances, which is a learnable parameter, into our framework. By element-wise
multiplying simulated values of capacitances Csv and resistances Rsv with WSR, we obtain
the optimized values (OVs) for these thermal parameters, namely, optimized values of
capacitances Cov and resistances Rov. That is,

[Cov, Rov] = WSR ⊙ [Csv, Rsv], (6)

where the learnable WSR is updated via gradient descent to improve the final temperature
estimation accuracy during the training process.

For the simulated values of losses Psv, first, the current operating condition xt (includ-
ing speed, torque) is used to determine the total loss based on a lookup table (LUT) derived
from real-world motor testing. By normalizing Psv (i.e., element-wise division by the sum)
and then multiplying it with total loss, a more accurate Pov is obtained. That is,

Pov = (LUT(xt)/ ∑
i

Psv[i])⊙ Psv (7)

4.2. Dynamic Correction

After obtaining the optimized thermal parameters Pov, Rov, and Cov, considering
the time-varying characteristic of these parameters, we introduce a neural network into
our framework. Taking into account the mechanisms of change and influencing factors
of these thermal parameters, the network inputs operating conditions xt (such as speed,
torque, coolant temperature, and ambient temperature) and the estimated temperatures
of all nodes at the previous time. Then, it outputs the correction vectors αt

P, αt
R, and αt

C,
corresponding to Pov, Rov, and Cov, respectively. The learnable weight is WNN. This step
allows for the fine-tuning of the optimized thermal parameters dynamically to improve
the final accuracy of temperature estimation. For the i-th node in the lumped parameter
thermal network model at time t, its loss Pt

i , thermal capacity Ct
i , and thermal resistance

Rt
i,j between node i and node j are adjusted accordingly, that is,

Pt
i = αt

P[i] · Pov[i]

Ct
i = αt

C[i] · Cov[i]

Rt
i,j = αt

R[i, j] · Rov[i, j]

(8)

Using these corrected thermal parameters, the temperature at the next moment can be
calculated by Equation (5) and then used for loss calculation as well as gradient backpropagation.

To avoid parameter coupling between WSR and WNN and limit the parameter feasible
regions during the actual training of the proposed framework, it is better to conduct the
training in two steps. First, the WSR is trained to obtain optimized thermal parameters.
This step significantly reduces the temperature estimation error and, due to the fewer
learnable parameters of WSR, is unlikely to result in overfitting. Then, the WNN is trained
to represent the time-varying characteristics of thermal parameters. At this point, with
the error already reduced after the first step, the initial phase of training is less prone to
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challenges such as gradient explosion, severe fluctuations, or falling into poorly generalized
local minima.

4.3. Loss and Backpropagation

The corrected thermal losses, capacitances, and resistances are fed into the subsequent
differentiable LPTN to estimate the temperature. The estimated temperature is then com-
pared with the true temperature. Finally, the gradients are backpropagated to update WSR
and WNN.

In this work, the loss function includes not only the error between the estimated
temperature ϑt and the true measured temperature ϑ̂

t
at each time step, denoted as LData,

but also an additional term related to the error between the temperature change rate
dϑ/dt and dϑ̂/dt, denoted as LODE. This transient characteristic is primarily introduced
by thermal capacitances. Therefore, adding this loss term is also beneficial for the training.
The weight of these two loss terms is adjusted by the coefficient β, i.e., L = LData + βLODE.
Different β results in different learning curves and accuracy, which is a hyperparameter.

One can see that temperature estimation is essentially an iterative process that re-
quires real-time operating conditions and the temperature information of the previous time.
Therefore, the proposed framework in this paper works like a recurrent neural network
(RNN). To avoid excessively long sequences that incur gradient explosion or gradient van-
ishing, we employ truncated backpropagation through time (TBPTT), a method commonly
used to train RNN-like networks, to train the proposed framework. As shown in Figure 4.
Specifically, we need to manually truncate the temperature sequence into smaller segments
and then backpropagate the errors through these segments during training.

Proposed Framework ... Proposed Framework Proposed Framework ...

Initial
temperature

Figure 4. Truncated backpropagation through time (TBPTT) for training the proposed framework.

5. Simulation

In this section, we first establish a fine-grained simulation model of the PMSM based
on MotorCAD. Then, we generate simulation data under various operating conditions to
validate the effectiveness of the proposed method. Finally, we investigate the performance
and behavior of the framework under different settings through multiple experiments.

5.1. Thermal Simulation Model

The motor investigated in this work is an 8-pole, 48-slot PMSM designed for automo-
tive use. The fundamental geometric and material parameters are presented in Table 1. The
motor’s hairpin winding consists of 5 layers, connected in a Y configuration. To establish
a corresponding simulation model in MotorCAD software, we first need to specify more
detailed actual geometric parameters in the geometry panel, including radial and axial
dimensions, for example, stator inner and outer diameters, axial length, slot depth and
width, number of layers of permanent magnets, and the length and angle of each layer,
shaft diameter, cooling ducts diameter, etc. The configured radial section, axial section, and
3D view are shown in Figure 5.
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Table 1. Parameters of the permanent magnet synchronous motor in this work.

Parameter Value

Slot Number 48
Pole Number 8

Housing Outer Diameter 206 mm
Stator Outer Diameter 180 mm
Stator Inner Diameter 130 mm

Shaft Diameter 50 mm
Air Gap 1 mm

Slot Width 4.6 mm
Slot Depth 13.62 mm

Motor Length 250 mm
Stator Length 135 mm

Peak Torque ≥345 Nm
Maximum Rotating Speed 20,000 rpm

Peak Power ≥245 kW @ 650 Vdc

Figure 5. Simulation model in MotorCAD. (a) Radial section; (b) axial section; (c) 3D view. Different
colors represent different components of the motor, while the arrows in (b) and (c) denote the cooling
paths in the simulation model.

Then, it is necessary to set the specific connection of the winding. The software
supports directly selecting hairpin windings and allows customization of the winding
connections. The customized winding connections are shown in Figure 6.

Figure 6. Hairpin winding of simulation model.

By setting the materials of the stator, rotor, and permanent magnets, the software itself
provides material-related properties such as thermal conductivity, specific heat, density,
etc. For thermal simulation calculations, the cooling of this motor includes housing water
jacket cooling, rotor water jacket cooling, and winding end spray, which can be found in
Figure 5. The temperature of these coolants is controllable and measurable.

Finally, we can manually formulate duty cycle data for transient temperature cal-
culation. The definitions of duty cycle mainly include torque-speed, loss-speed, and
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current-speed. When calculating, MotorCAD can build a thermal network based on the
actual information of the motor and obtain simulation values for thermal parameters
through theoretical and empirical formulas. The fine-grained simulation LPTN includes
135 nodes and is based on the actual geometric parameters, material properties, windings,
and cooling system configurations. Subsequently, a simplified thermal model is developed,
which consists of 10 nodes, as shown in Figure 7 and Table 2.

Wdg_F Wdg_A Wdg_R
Tooth

Stator Yoke

Rotor

Magnet

Rotor CoolantRotor Coolant Rotor Coolant

Housing Coolant

Housing Coolant Housing Coolant

Ambient

Ambient

Ambient

Figure 7. Simplified thermal model (10 nodes). For better visualization, we only display the distribu-
tion of several thermal resistances.

Table 2. The meaning of each node in the simplified thermal model.

Node Name Meaning

Stator Yoke Stator yoke
Wdg_F Front end of the third-layer winding
Wdg_A Active of the third-layer winding
Wdg_R Rear end of the third-layer winding
Tooth Third-layer stator tooth
Rotor Rotor core

Magnet Permanent magnet
Housing Coolant * Housing cooling inlet

Rotor Coolant * Rotor cooling inlet
Ambient * Ambient

* The temperatures of these nodes are known at each time.

Apart from the thermal resistances between the coolant nodes, there are in total
42 thermal resistances. Similarly, the software can provide simulation values for thermal
parameters in the simplified thermal model, including torque-speed grid loss data, Rsv, and
Csv. The torque-speed grid loss data are utilized for obtaining Psv by bilinear interpolation.

5.2. Synthetic Data

We randomly select from candidate operating points within the motor’s maximum
torque/speed curve for constructing a specific set of operating conditions. Subsequently,
these conditions are imported into MotorCAD, and the fine-grained thermal model is
simulated to obtain temperature data as ground truth. With the simplified thermal model
and the corresponding simulation thermal parameters, our proposed method is employed
to enhance the temperature estimation accuracy of nodes in the simplified thermal model,
thereby validating the effectiveness of our approach. Different sets of candidate operating
points are used for generating training and testing conditions to avoid overlap, as indicated
by circles in Figure 8.
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Figure 8. Candidate points (represented by circles) for constituting operating conditions. (a) Training;
(b) testing. For both training and testing conditions, choose non-overlapping operating points.

We finally generated 30 training conditions (20 transient conditions + 10 steady condi-
tions) and 10 testing conditions (5 transient conditions + 5 steady conditions). Each set of
conditions has a duration of 800 s and the frequency is 2 Hz.

5.3. Validation Based on Synthetic Data

As described in the previous chapter, firstly, we optimize the simulation thermal
parameters that are directly exported from the software with all training data using gradient
descent to obtain Rov and Cov. The training process contains 1400 epochs with a small
learning rate of 1 × 10−5 and the error curve during training is shown in Figure 9.

0 200 400 600 800 1000 1200 1400
Epochs

101

102

103

M
SE

train
test

Figure 9. The error curve for optimizing the simulation thermal parameters, which are directly
exported from the software. This step corresponds to thermal parameter optimization in Figure 3.

Then, we set the neural network with two hidden layers with sizes of 32 and 64 neu-
rons, respectively, and use Hardswish [28] as the activation function. The optimizer is
Adam and initial learning rate is 1 × 10−4 with cosine annealing decay strategy. The
training contains 1200 epochs, with a tbptt size of 1024 and mean squared error (MSE) as
loss function. The error curve for the mean absolute error (MAE) and MSE of 7 nodes is as
shown in Figure 10.
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Figure 10. Error curve during training. (a) MAE; (b) MSE.

Figure 11 shows the estimation results of the proposed method. Compared with the
results calculated merely based on simulation parameters, it can be seen that the proposed
method can achieve excellent accuracy in areas with drastic temperature changes.
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Figure 11. The performance of the proposed method on synthetic data. (a) Stator yoke temperature
estimation result; (b) stator yoke temperature estimation error; (c) Wdg_R temperature estimation
result; (d) Wdg_R temperature estimation error.

To better understand the behaviors of the network, further exploration of model
interpretability is conducted. It is meaningful to observe the distribution of correction
ratios. Hence, we create a histogram that represents the frequency distribution of correction
ratios for all thermal resistances and thermal capacitances in the testing set, as shown in
Figure 12 and Table 3. This provides insights into how the corrections are distributed across
different components and nodes in the thermal model.
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Figure 12. The frequency distribution of correction ratios for thermal capacitances and thermal
resistances. (a) Capacitances; (b) resistances.

Table 3. The range of correction scale ratio for each node.

Stator Yoke Magnet Rotor Wdg_F Wdg_R Wdg_A Tooth

(0.87, 1.07) (0.25, 0.78) (1.11, 1.22) (0.79, 1.21) (0.85, 1.00) (0.57, 0.96) (0.58, 1.00)

The correction ratios for thermal capacitances are reasonably balanced, showing
neither over-correction nor under-correction. The correction magnitudes are relatively
small, such as for the stator yoke and rotor. It is also observed that the optimized values for
the magnet, Wdg_R, Wdg_A, and tooth are generally larger, leading to correction ratios all
less than 1. A similar analysis can be applied to the correction ratios for thermal resistances.
The correction magnitudes are mainly distributed between 0.8 and 1.5, indicating subtle
rather than drastic adjustments. It is noteworthy that the network actually has the ability
to output very small or large correction ratios.

5.4. Ablation Study

Based on synthetic data, we have conducted the following three ablation studies, with
the final errors on the testing set shown in Table 4.

Table 4. Ablation study based on synthetic data. MAE: mean absolute error; MSE: mean square error;
MAX: maximum error.

Csv Rsv Psv Additional Conditions MAE MSE MAX

×
√ √

- 0.77 1.18 7.71√
×

√
- 0.97 3.13 8.91√ √

× - 1.85 11.59 20.68
× × × - 1.34 4.40 12.37√ √ √

- 0.80 1.21 5.25

× × × 12 + 8 1.33 4.99 14.00√ √ √
12 + 8 0.89 1.63 11.17

× × × 7 + 3 1.85 9.94 15.34√ √ √
7 + 3 0.98 2.02 8.21

√ √ √
β = 10 0.79 1.20 5.16√ √ √

β = 100 0.77 1.16 4.84√ √ √
only LODE 1.25 3.17 9.09

√ √ √
w/o correcting capacitances 0.96 1.83 6.23√ √ √
w/o correcting resistances 2.23 18.96 30.16√ √ √

w/o correcting losses 1.20 4.14 15.23
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5.4.1. The Importance of Simulation Values

We firstly investigated the necessity of Psv, Csv, and Rsv, which indicates whether the
introduction of simulation values will have an impact on the final temperature estimation
accuracy. When making predictions without relying on some simulation values, the
network may directly predict values instead of ratios. In this situation, when initializing,
the total loss is evenly distributed among the seven nodes. For resistances, considering most
of the simulation values are small, all thermal resistances are randomly initialized with
a mean of 1/e, and the network’s outputs undergo exponentiation with base e to obtain
the final predicted thermal resistances. For capacitances, similarly, the simulation values are
in the range of hundreds to thousands, so each node’s thermal capacitance is initialized to
around 1200. The outputs of the network need to undergo exponentiation with base 10 to
obtain the final predicted thermal capacitances. Such conversion also ensures non-negativity.
Furthermore, experiments are conducted under different data sizes, including all data (20 + 10),
twelve transient and eight steady conditions (12 + 8), and seven transient and three steady
conditions (7 + 3).

5.4.2. Loss Term LODE

For the loss function L = LData + βLODE, the weight of the differential term loss LODE
can be adjusted by the coefficient β. As mentioned before, the thermal network’s transient
characteristics are caused mainly by thermal capacitances. Intuitively, adding a transient-
related loss term can benefit the training of the neural network. Therefore, we compare
four sets of experiments: β = 0, β = 10, β = 100, and using only LODE. It is important to
note that the previous researches are based on β = 0. When β = 10, the ratio between LData
and LODE is approximately 10:1, and when β = 100, it is about 1:1.

5.4.3. Without Correcting One

As shown in Figure 3, considering the time-varying characteristic of thermal param-
eters, there exists dynamic correction for thermal capacitances, resistances, and losses,
respectively, namely, αt

P, αt
R ,and αt

C. To examine the impact and necessity of the dynamic
correction, the following three different settings are conducted: (1) without correcting
capacitances, that is, the capacitances remain unchanged rather than dynamic correction
during training and testing; (2) without correcting resistances, that is, the resistances remain
unchanged rather than dynamic correction during training and testing; (3) without cor-
recting losses, that is, the losses remain unchanged rather than dynamic correction during
training and testing.

6. Experiment
6.1. Bench Testing

We have set up an experimental test bench, as shown in Figure 13. Thermal sensors
are used to measure and record temperature data at various positions inside the motor for
subsequent validation.

Due to the limitations, we have only measured the three parts of windings (front end,
active, and rear end), along with the stator tooth. The internal thermocouple layout scheme
is illustrated in Figure 14. There are a total of twenty-four thermocouples, with eight in
each layer at the front end and rear end. For the windings in the slot, sensors are placed
below the third layer, axially in the middle of the iron core. A total of five thermocouples
are arranged for the stator tooth, which are axial in the middle of the iron core.

The acquisition frequency is 10 Hz and the measured temperatures of sensors under
a specific operating condition are shown in Figure 15 as an example. It can be observed
that the data contain substantial noise. The motor’s placement, cooling conditions, and
variations in different winding layers all result in considerable fluctuations in temperature
at the same end of windings. We view the average temperature of the sensors in each part
of winding as the ground truth, corresponding to Wdg_F, Wdg_A, and Wdg_R.
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To obtain more reasonable simulation thermal parameters, this section begins by
adjusting the relevant settings of the simulation model. This mainly includes settings related
to cooling. The simulation model’s efficiency map is then close to that of the measured
motor. At this point, the losses interpolated from the simulation can be considered good
initial values for subsequent training. To reduce the computational cost and further alleviate
the impact of noise in the high-frequency data, we further downsample the measured data
from 10 Hz to 2 Hz. The experimental data were divided into training and testing sets. The
training set includes data from nine operating conditions: six steady conditions (continuous
performance testing) and three transient conditions (peak performance testing). The testing
set includes data from two operating conditions: one steady condition and one transient
condition. The total training dataset consists of 46,000 records, similar to the data size of
synthetic data. However, it is important to note that the measured data have fewer types of
operating points and contain ubiquitous noise, making it more complicated compared to
the simulation data.

Figure 13. Motor test bench.

Figure 14. Arrangement of thermal sensors at the winding. (a) U-shaped winding; (b) axial middle in
slots; (c) welded winding. 8 sensors for each layer at the U-shaped end and welding end; 5 sensors
for the third layer at the axial middle in slots.



World Electr. Veh. J. 2024, 15, 174 15 of 21

0 500 1000 1500 2000
Time/s

60

70

80

90

100

110

Te
m

pe
ra

tu
re

/

(a)

0 500 1000 1500 2000
Time/s

60

80

100

120

140

160

Te
m

pe
ra

tu
re

/

(b)

0 500 1000 1500 2000
Time/s

60

80

100

120

140

160

Te
m

pe
ra

tu
re

/

(c)

0 500 1000 1500 2000
Time/s

60

80

100

120

140

160

Te
m

pe
ra

tu
re

/
(d)

Figure 15. Temperature curves measured by all thermal sensors at four different locations. (a) U-shaped
(24 thermocouples); (b) welded (24 thermocouples); (c) axial middle (5 thermocouples); (d) tooth
(3 thermocouples).

6.2. Validation Based on Measured Data
6.2.1. The Performance of The Proposed Method

Firstly, to reduce the error of the simulation thermal parameters directly exported
by the simulation software, the simulation thermal parameters are optimized using the
measured temperature data to obtain optimized values that better align with the measured
data. Given the presence of noise in the data, a smaller learning rate and fewer training
epochs are used. In this experiment, a learning rate of 5×10−4 and 150 epochs with SGD
are used.

Then, due to the limited amount of data, especially the limited variety of data types, the
number of neurons in the second hidden layer of the network is reduced to 32. Considering
that the network can output temperatures for seven nodes but only label data for three
nodes are provided, this essentially constitutes an under-constrained optimization problem.
The previous section shows that the dynamic correction is merely fine-tuning optimized
thermal parameters. Therefore, we artificially restrict the magnitude range of αt

P, αt
R, and αt

C.
This also highlights one of the advantages brought by incorporating simulation parameters.
Additionally, it is important to note that we do not utilize any normalization layers that are
commonly used in deep learning, such as LayerNorm [29] or BatchNorm [30]. It is because
after normalization, the original physical meaning of an input cannot be preserved. For
instance, different physical quantities like speed or torque may be mapped to the same
value after normalization, therefore losing comparability between two operating points.
This contradicts the principles of physical mechanisms, brings severe fluctuations, and
affects the final accuracy, despite speeding up the training speed in the early and middle
stages through our experiments.

We use Adam for 1000 epochs and the initial learning rate is 1×10−3. The tbptt
size remains 1024. Since we almost remove outliers during the data processing stage,
we use mse loss, which is helpful for reducing the maximum error. The average error
during training and the final accuracy is shown in Figure 16 and Table 5. The temperature
estimation results on the test conditions are shown in Figure 17.
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Figure 16. The error curve during training. (a) MAE; (b) MSE.

Table 5. Ablation study based on measured data.

Csv Rsv Psv Additional Conditions MAE MSE MAX

×
√ √

- 1.93 7.15 15.46√
×

√
- 1.91 6.96 13.80√ √

× - 1.98 7.04 12.69
× × × - 1.97 6.85 15.38√ √ √

- 1.64 6.33 13.75
√ √ √

β = 10 1.57 5.62 11.98√ √ √
β = 100 2.01 7.65 11.46

√ √ √
w/o correcting capacitances 1.96 7.68 15.98√ √ √
w/o correcting resistances 2.32 9.79 15.92√ √ √

w/o correcting losses 2.26 10.82 18.44
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Figure 17. The temperature estimation results of the test conditions of the proposed method.
(a) Wdg_F; (b) Wdg_A; (c) Wdg_R; (d) Wdg_F; (e) Wdg_A; (f) Wdg_R. (a–c) correspond to the
same operating condition; (d–f) correspond to another operating condition.
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6.2.2. Method Comparison

We have compared two common models in time-series regression prediction with
comparable number of learnable parameters, namel, long short-term memory (LSTM) and
temporal convolutional network (TCN). Additional steps such as data standardization and
feature engineering are performed for these two. Referring to reference [31], the exponential
moving average (EWMA) and exponential moving average standard deviation (EWMS)
are calculated for speed, torque, current, voltage, power, and coolant temperature with
window sizes of 200, 400, resulting in a total of 22 features. It is noteworthy that the
proposed physics-based temperature estimation framework only requires speed, torque,
and coolant temperature, without the need for any feature engineering. However, for LSTM
and TCN, we found that without feature engineering, comparable prediction results could
not be achieved with such a small dataset. We manually choose specific hyperparameters
to achieve better accuracy for both algorithms, which are shown in Table 6.

Table 6. Hyperparameters corresponding to LSTM and TCN.

Hyperparameters LSTM TCN

Hidden Neurons 16 16
Stacking Layers 1 1

Optimizer Adam
Epochs 1500

Learning Rate 0–1300: 5×10−4, 1300–1500: 1×10−4

TBPTT Size 512 -
Dropout - 0.2

Kernel Size - 3
Learnable Parameters 2.6 k 2.3 k

The final prediction accuracy is compared with the results of the proposed method in
Table 7. It can be observed from Figure 18 that both models have enough fitting capability,
achieving very low errors on the training set. However, they show a significant overfitting,
as evidenced by the noticeable gap in accuracy on the testing set and a relatively large
maximum error. Notably, LSTM performs worse than TCN, possibly due to TCN’s ability
to better capture both local and global patterns in the data.
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Figure 18. The error curves of LSTM and TCN during training. (a) LSTM; (b) TCN.

Table 7. The error of different methods.

TCN LSTM Proposed

MAE 2.47 2.55 1.57
MSE 6.92 8.70 5.62
MAX 18.16 23.02 11.98
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Next, we investigate the impact of data size on the accuracy of different methods, as
shown in Figure 19 and Table 8. The variation in accuracy under different data sizes can
effectively examine the robustness and stability of different methods.
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M
SE

(a)

LSTM
TCN
Proposed-without simulation values
Proposed-with simulation values
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X
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LSTM
TCN
Proposed-without simulation values
Proposed-with simulation values

Figure 19. The mean square error and max error on the testing set when providing different numbers
of training data. The testing set remains unchanged. (a) MSE; (b) MAX.

Table 8. The errors on the testing set when different amounts of training data are provided. w/o
values and w values mean the proposed method without and with simulation values.

Method 46k 30k 17k 12k 8k

MSE

LSTM 8.70 17.09 32.33 34.54 181.81
TCN 6.96 10.11 15.57 17.88 158.21

w/o values 6.85 8.81 9.89 11.13 14.51
w values 5.62 7.21 8.47 9.32 8.96

MAX

LSTM 23.02 20.60 29.49 31.91 53.77
TCN 18.16 17.78 21.15 22.14 57.44

w/o values 15.38 11.80 14.00 12.22 18.85
w values 11.98 11.62 11.44 12.87 13.79

It can be observed that the proposed method consistently achieves better results,
regardless of whether based on simulation values or not. The accuracy remains relatively
stable with varying data size. In contrast, the accuracy of data-driven algorithms undergoes
a significant decline, although they still perform well on the training set. Considering both
mean squared error and maximum error, the proposed method obtains the best results with
minimal sensitivity to data size. Due to the incorporation of physical priors and physical
constraints, the proposed method is less dependent on data and more effective in extracting
information contained within the data.

6.3. The Temperature Estimation of Stator Tooth

This section explores the estimation result for the stator tooth under different settings.
Since the proposed method can simultaneously output temperatures for all nodes, this
analysis serves as an extension to validate the framework and an example to demonstrate
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the potential application. The stator tooth’s temperature data are not involved in the
training, making the tooth’s temperature in the training set also suitable for evaluating
the final performance. Figure 20 illustrates the estimated tooth’s temperature obtained
by the proposed method with simulation thermal parameters for four different operating
conditions. It is noteworthy that even without providing any measured data of the tooth,
the framework, guided by the thermal network structure and physical priors, achieves
considerable accuracy in estimating the temperature of tooth.

Table 9 further illustrates the estimation results when not based on some SVs. It
is worth noting that these models all exhibit relatively small errors on three winding
nodes. However, when discarding Rsv or when no simulation values are used at all, the
estimation errors become significantly large. It should be pointed out that, if relying solely
on the simulation thermal parameters and without considering dynamic correction, the
corresponding tooth temperature estimation errors MAE, MSE, and MAX are 9.34 °C,
119.83 °C², and 29.22 °C, respectively. The neural network trained with three SVs achieves
the highest accuracy, followed by without Csv, as the number of thermal capacitances is
small and the given initial values are relatively reasonable. However, when all SVs are not
provided, the estimated tooth temperature is essentially meaningless.
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Figure 20. Estimation results for stator tooth temperature. (a–d) are four different operating conditions.

Table 9. The estimation errors for stator tooth temperature.

w Values w/o Csv w/o Rsv w/o Psv w/o Values

MAE 4.59 4.78 39.33 11.87 51.63
MSE 29.84 33.20 2421.97 233.75 4146.79
MAX 18.39 23.12 117.46 86.02 288.13
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7. Discussion

Previous studies have largely focused on either purely data-driven methods or models
heavily reliant on physical principles without integrating the advantages of machine learn-
ing techniques. This paper proposes a temperature estimation framework that integrates
physical information with data-driven methods. The proposed framework effectively com-
bines neural networks, differentiable physical models, and simulation results and addresses
the limitations of purely data-driven methods (lack of physical interpretability and poten-
tial divergence from physical principles) and purely physical models (rigidity and potential
inaccuracies in modeling complex real-world phenomena). The effectiveness of this method
is validated by using both synthetic data and measured data, including a thorough ablation
study of various settings, diverse comparisons with common data-driven methods, and
the exploration of temperature estimation for the node without any associated labels. Due
to the incorporation of physical principles, the output temperatures are more reasonable
and robust, and the overall results exhibit better physical consistency. This method holds
significant practical value and is crucial for optimizing motor performance, extending
lifespan, and ensuring safety in applications where thermal management is critical.

While the current findings are promising, several future research directions can further
enhance the framework’s applicability:

• Validating the proposed method’s effectiveness and generalization ability by utilizing
a more extensive and diverse set of real-world data;

• Investigating other neural network architectures, such as graphic neural networks
(GNNs) or convolutional neural networks (CNNs), could provide insights into their
efficacy in capturing temporal dynamics and spatial relationships within motor systems;

• Implementing the framework in real-time control systems and validating its performance
in operational environments would be a crucial step toward its industrial application.

Author Contributions: Conceptualization, P.W., X.W. and Y.W.; methodology, P.W., X.W. and Y.W.;
software, P.W.; validation, P.W.; formal analysis, P.W. and X.W.; investigation, P.W., X.W. and Y.W.;
resources, Y.W.; data curation, P.W. and X.W.; writing—original draft preparation, P.W., X.W. and Y.W.;
writing—review and editing, P.W., X.W. and Y.W.; visualization, P.W. and X.W.; supervision, X.W.
and Y.W.; project administration, X.W. and Y.W. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The datasets presented in this study are available on request from the
corresponding author due to privacy.

Conflicts of Interest: Yunpeng Wang is an employee of Leadrive Technology. The paper reflects the
views of the scientists and not the company.

References
1. Ilie, S.; Toader, D.; Barvinschi, F. Modern education on renewable energies by using numerical Finite Element Method of a

solar powered Stirling engine with heat transfer simulations. In Proceedings of the 2016 12th IEEE International Symposium on
Electronics and Telecommunications (ISETC), Timisoara, Romania, 27–28 October 2016; pp. 137–140.

2. Ruoho, S.; Kolehmainen, J.; Ikaheimo, J.; Arkkio, A. Interdependence of demagnetization, loading, and temperature rise in a
permanent-magnet synchronous motor. IEEE Trans. Magn. 2009, 46, 949–953. [CrossRef]

3. Ganchev, M.; Kubicek, B.; Kappeler, H. Rotor temperature monitoring system. In Proceedings of the XIX International Conference
on Electrical Machines—ICEM 2010, Rome, Italy, 6–8 September 2010; pp. 1–5.

4. Mejuto, C.; Mueller, M.; Shanel, M.; Mebarki, A.; Reekie, M.; Staton, D. Improved synchronous machine thermal modelling. In
Proceedings of the 2008 18th International Conference on Electrical Machines, Vilamoura, Portugal, 6–9 September 2008; pp. 1–6.

5. Specht, A.; Wallscheid, O.; Böcker, J. Determination of rotor temperature for an interior permanent magnet synchronous
machine using a precise flux observer. In Proceedings of the 2014 International Power Electronics Conference (IPEC—Hiroshima
2014—ECCE ASIA), Hiroshima, Japan, 18–21 May 2014; pp. 1501–1507.

6. Fernandez, D.; Hyun, D.; Park, Y.; Reigosa, D.D.; Lee, S.B.; Lee, D.M.; Briz, F. Permanent magnet temperature estimation in PM
synchronous motors using low-cost hall effect sensors. IEEE Trans. Ind. Appl. 2017, 53, 4515–4525. [CrossRef]

http://doi.org/10.1109/TMAG.2009.2033592
http://dx.doi.org/10.1109/TIA.2017.2705580


World Electr. Veh. J. 2024, 15, 174 21 of 21

7. Ganchev, M.; Kral, C.; Oberguggenberger, H.; Wolbank, T. Sensorless rotor temperature estimation of permanent magnet
synchronous motor. In Proceedings of the IECON 2011—37th Annual Conference of the IEEE Industrial Electronics Society,
Melbourne, VC, Australia, 7–10 November 2011; pp. 2018–2023.

8. Reigosa, D.D.; Briz, F.; García, P.; Guerrero, J.M.; Degner, M.W. Magnet temperature estimation in surface PM machines using
high-frequency signal injection. IEEE Trans. Ind. Appl. 2010, 46, 1468–1475. [CrossRef]

9. Qi, F.; Schenk, M.; De Doncker, R. Discussing details of lumped parameter thermal modeling in electrical machines. In
Proceedings of the 7th IET International Conference on Power Electronics, Machines and Drives (PEMD 2014), Manchester, UK,
8–10 April 2014.

10. Wallscheid, O.; Huber, T.; Peters, W.; Böcker, J. Real-time capable methods to determine the magnet temperature of permanent
magnet synchronous motors—A review. In Proceedings of the IECON 2014—40th Annual Conference of the IEEE Industrial
Electronics Society, Dallas, TX, USA, 29 October–1 November 2014; pp. 811–818.

11. Dilshad, M.; Ashok, S.; Vijayan, V.; Pathiyil, P. An energy loss model based temperature estimation for Permanent Magnet
Synchronous Motor (PMSM). In Proceedings of the 2016 2nd International Conference on Advances in Electrical, Electronics,
Information, Communication and Bio-Informatics (AEEICB), Chennai, India, 27–28 February 2016; pp. 172–176.

12. Park, J.B.; Moosavi, M.; Toliyat, H.A. Electromagnetic-thermal coupled analysis method for interior PMSM. In Proceedings of the
2015 IEEE International Electric Machines & Drives Conference (IEMDC), Seattle, WA, USA, 10–13 May 2015; pp. 1209–1214.

13. Choi, J.; Lee, J.; Ha, J.I. Stator Temperature Estimation of PMSM Based on Thermal Equivalent Circuit. In Proceedings of the 2019
22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, 11–14 August 2019; pp. 1–4.

14. Wallscheid, O.; Böcker, J. Global identification of a low-order lumped-parameter thermal network for permanent magnet
synchronous motors. IEEE Trans. Energy Convers. 2015, 31, 354–365. [CrossRef]

15. Wallscheid, O.; Kirchgässner, W.; Böcker, J. Investigation of long short-term memory networks to temperature prediction for
permanent magnet synchronous motors. In Proceedings of the 2017 International Joint Conference On Neural Networks (IJCNN),
Anchorage, AK, USA, 14–19 May 2017; pp. 1940–1947.

16. Kirchgässner, W.; Wallscheid, O.; Böcker, J. Estimating electric motor temperatures with deep residual machine learning. IEEE
Trans. Power Electron. 2020, 36, 7480–7488. [CrossRef]

17. Lee, J.; Ha, J.I. Temperature estimation of PMSM using a difference-estimating feedforward neural network. IEEE Access 2020,
8, 130855–130865. [CrossRef]

18. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [CrossRef]

19. Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-informed machine learning. Nat. Rev. Phys.
2021, 3, 422–440. [CrossRef]

20. Thuerey, N.; Holl, P.; Mueller, M.; Schnell, P.; Trost, F.; Um, K. Physics-based deep learning. arXiv 2021, arXiv:2109.05237.
21. Seo, S.; Liu, Y. Differentiable physics-informed graph networks. arXiv 2019, arXiv:1902.02950.
22. Qiao, Y.L.; Liang, J.; Koltun, V.; Lin, M.C. Scalable differentiable physics for learning and control. arXiv 2020, arXiv:2007.02168.
23. Veg, L.; Laksar, J. Thermal model of high-speed synchronous motor created in MATLAB for fast temperature check. In Proceedings of

the 2018 18th International Conference on Mechatronics-Mechatronika (ME), Brno, Czech Republic, 5–7 December 2018; pp. 1–5.
24. Wallscheid, O.; Böcker, J. Design and identification of a lumped-parameter thermal network for permanent magnet synchronous

motors based on heat transfer theory and particle swarm optimisation. In Proceedings of the 2015 17th European Conference on
Power Electronics and Applications (EPE’15 ECCE-Europe), Geneva, Switzerland, 8–10 September 2015; pp. 1–10.

25. Kirchgässner, W.; Wallscheid, O.; Böcker, J. Thermal neural networks: Lumped-parameter thermal modeling with state-space
machine learning. Eng. Appl. Artif. Intell. 2023, 117, 105537. [CrossRef]

26. Wang, P.; Wang, X.; Wang, Y. Physics-Informed Machine Learning Based Permanent Magnet Synchronous Motor Temperature
Estimation. In Proceedings of the 2023 International Conference on Mechanical and Electronics Engineering (ICMEE), Xi’an,
China, 17–19 November 2023; pp. 582–587.

27. Bergman, T.L. Fundamentals of Heat and Mass Transfer; John Wiley & Sons: Hoboken, NJ, USA, 2011.
28. Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching

for mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27
October–2 November 2019; pp. 1314–1324.

29. Ba, J.L.; Kiros, J.R.; Hinton, G.E. Layer normalization. arXiv 2016, arXiv:1607.06450.
30. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings

of the International Conference on Machine Learning, Lille, France, 7–9 July 2015; pp. 448–456.
31. Kirchgässner, W.; Wallscheid, O.; Böcker, J. Empirical evaluation of exponentially weighted moving averages for simple linear

thermal modeling of permanent magnet synchronous machines. In Proceedings of the 2019 IEEE 28th International Symposium
on Industrial Electronics (ISIE), Vancouver, BC, Canada, 12–14 June 2019; pp. 318–323.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TIA.2010.2049816
http://dx.doi.org/10.1109/TEC.2015.2473673
http://dx.doi.org/10.1109/TPEL.2020.3045596
http://dx.doi.org/10.1109/ACCESS.2020.3009503
http://dx.doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/10.1038/s42254-021-00314-5
http://dx.doi.org/10.1016/j.engappai.2022.105537

	Introduction
	Related Work
	Background
	Differentiable Physics Temperature Estimation Framework
	Thermal Parameter Optimization
	Dynamic Correction
	Loss and Backpropagation

	Simulation
	Thermal Simulation Model
	Synthetic Data
	Validation Based on Synthetic Data
	Ablation Study
	The Importance of Simulation Values
	Loss Term LODE
	Without Correcting One


	Experiment
	Bench Testing
	Validation Based on Measured Data
	The Performance of The Proposed Method
	Method Comparison

	The Temperature Estimation of Stator Tooth

	Discussion
	References

