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Abstract: Various cities in China have been identified as “stove cities” either in contemporary or
historical times, exposing residents to extremely high temperatures. Existing studies on the heat
island effect in stove cities are not representative nationwide. The outdated nature of these studies
also significantly diminishes the relevance of their findings. Thus, reassessing the urban heat island
(UHI) effect of stove cities is necessary in the context of global climate change and urbanization. This
study focuses on seven symbolic and geographically distributed stove cities in China, including
Nanjing, Chongqing, Wuhan, Fuzhou, Beijing, Xi’an, and Turpan. Using land surface temperature
(LST) data, this study investigates the summer heat island effect from 2013 to 2023 and analyzes
changes in the spatial distribution of the heat island effect. This paper utilizes impervious surface data
and urban clustering algorithms to define urban and suburban areas. It then examines the evolution
and spatial distribution of surface urban heat island intensity (SUHII) over time. Incorporating
urbanization variables like population density and urban area, the study analyzes the main factors
affecting the heat island effect from 2013 to 2018. We find that all cities continuously expand, with
the annual average heat island effect intensifying over the years. With the exception of Beijing, the
summer heat island or cool island effects in the remaining six cities show an overall intensification
trend. From 2013 to 2018, SUHII has been primarily related to urban expansion and planning layout,
with minimal impact from factors such as population density.

Keywords: stove city; urban heat island effect; surface heat island; land surface temperature; remote
sensing

1. Introduction

The urban heat island phenomenon predominantly stems from urban development
and human activities. It denotes a scenario where the temperature within a city notably
surpasses that of its surrounding countryside or suburban areas despite experiencing
identical climate conditions. Specifically, the dense configuration of urban buildings,
coupled with asphalt and cement roads, possesses higher heat absorption rates and lower
heat capacities than the soil and vegetation found in suburban areas. This discrepancy
causes urban zones to rapidly accumulate heat, emitting substantial thermal radiation
into their surroundings and the atmosphere. Moreover, artificial heat sources within
cities (such as air conditioners, motor vehicles, and other urban activities) contribute
to the elevation of urban temperatures. Additionally, the absence of vegetation and an
irrational urban spatial layout exacerbates this trend, significantly contributing to the rise
in temperatures within urban locales. The combination of these elements jointly changes
the microclimate characteristics of the city, causing the temperature in the urban area to
be generally higher than the temperature in surrounding suburbs. The high-temperature
urban area is surrounded by low-temperature suburbs [1].
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The urban heat island effect carries substantial repercussions, profoundly impacting
not just the ecological environment within cities but also the quality of life and safety of
urban residents [2–4]. Studies demonstrate that heat stress induced by high temperatures
can impact the body’s physiological functions and mental well-being. In severe instances,
it can escalate to life-threatening conditions like heat stroke. The elevated nighttime tem-
peratures resulting from the heat island effect pose a challenge as they impede effective rest
and recuperation, disrupting people’s lives and productivity. Moreover, this effect triggers
a chain of repercussions, including intensified air pollution and heightened electricity and
water consumption [5]. These issues collectively hinder the sustainable development of
cities, emphasizing the multifaceted impacts of the UHI effect.

Certain cities, shaped by distinctive factors like geographical positioning, urban
planning, and industrial growth, have notably amplified high temperatures, earning the
moniker of “stove cities”. The term originated during the Republic of China era where
cities such as Chongqing, Wuhan, and Nanjing were colloquially referred to as “stove
cities” by the media, owing to their scorching summer temperatures and their prominence
as major urban centers along the Yangtze River. This designation captures the public’s
visceral perception of the sweltering climate in these urban areas, albeit lacking clear
definitions and standardized criteria. In the 21st century, considerations have expanded to
include factors such as the heat index, frequency of high temperature days, and duration of
heatwaves as determinants. Stove cities are typically characterized by a daily maximum
temperature of ≥35 ◦C and are predominantly clustered in the Yangtze River Basin of
southern China and the Huanghuai region in the north. The genesis of the urban heat
island effect isn’t an isolated occurrence. It intricately intertwines with elements such as
concentrated population, escalating energy consumption, burgeoning traffic, and dwindling
green spaces in the urbanization process. Recent years have witnessed shifts in China’s
urban heat islands due to rapid urbanization and global climate shifts [6]. The confluence
of climate warming and accelerated urban growth portends a continued intensification of
the heat island effect in Chinese cities.

In the field of UHI research, there is an international emphasis on investigating the
factors influencing urban heat islands. This involves analyzing and quantifying the impacts
of various factors such as vegetation, water bodies, buildings, land use, and spatial patterns
on urban temperatures or microclimates. For example, studies like that of Lin et al. have
explored the relationship between the morphology of built-up areas and the UHI effect,
suggesting that appropriate spatial layouts of built-up areas can actually mitigate the
heat island phenomenon [7]. Furthermore, there is a focus on simulating urban thermal
environments. For instance, Mansourmoghaddam et al. employed six machine learning
algorithms to model and estimate LST [8].

Current research on stove cities has been explored from various perspectives. Lin
et al. conducted an extensive study examining the evolution of the thermal environment
in Nanjing, Hangzhou, Fuzhou, and Guangzhou from 1990 to 2010 [9]. Simultaneously,
Shen et al. delved into the intricate spatiotemporal dynamics of urban surface heat island
intensity and surface temperature patterns in Wuhan and Nanchang between 1984 and 2018,
unveiling a remarkable contrast in the spatiotemporal patterns between the two cities [10].
Moreover, Li et al. focused on investigating the impact of urban redevelopment on the SUHI
phenomenon within Guangzhou City. Their research highlighted the profound potential
of strategic urban planning and redevelopment initiatives in notably mitigating the local
SUHI intensity growth rate [11], however, the present research still has several limitations.
Firstly, current research on stove cities largely consists of studies analyzing individual
cities or similar urban areas such as Nanjing and Wuhan [12–15]. These studies have a
narrow research focus, primarily concentrating on variations in the thermal environment
and the influencing factors of specific cities. Secondly, there is a dearth of recent research
analysis. Thirdly, scholarly attention is predominantly directed towards densely populated
or large-scale cities, with limited studies on the heat island effect in inland northwest cities
(such as Turpan, the conventional stove city).
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This paper focuses on the rapid urbanization of China since the year 2000, analyz-
ing from the perspectives of spatial and temporal patterns to gain new insights into the
spatiotemporal evolution of UHI. It primarily explores the SUHI dynamics within the con-
temporary and historical stove cities from 2013 to 2023. Through comparative analysis, it
delves further into the trends and causes of UHI changes, aiming to enhance understanding
of the UHI phenomenon in stove cities [16,17]. Compared to existing studies, this paper
covers a wide range, and its selection of study areas is evenly distributed. It includes
densely populated cities like Beijing, less intense cities like Wuhan, and even areas with
lower population density such as Turpan in the northwest, making the results broader.
Additionally, this study is highly novel, analyzing surface UHI changes from 2013 to 2023
and filling a gap in the latest findings of stove cities within domestic research. However,
we can only analyze the correlation from 2013 to 2018 due to data limitations.

To achieve this objective, we proposed multipronged statistical methodologies inte-
grating moderate-resolution imaging spectroradiometer (MODIS) data, impervious surface
data, and related datasets. Initially, urban and suburban areas were delineated using a city
clustering method. Subsequently, summer and annual mean LST data for each study area
were obtained through overlay analysis techniques. Finally, we used Spearman analysis
to conduct correlation analysis between SUHII changes and surface temperature, urban
expansion, population density, and other aspects. This analysis aimed to uncover the
spatiotemporal evolution characteristics of the urban heat island phenomenon in these
cities and its correlation with natural and anthropogenic factors. The urban clustering
method selected for this study is primarily based on the approach developed by Imhoff
et al. [18]. This method has been referenced by many researchers such as [19,20], indicating
its significant impact and widespread adoption in the field. The insights gained provide a
scientific foundation for various critical aspects including urban planning, climate change
adaptation, resource management, and ecological conservation.

2. Materials and Methods
2.1. Study Area

This study meticulously considers the selection of target cities in China. Factoring in
climate distribution, urban geography, and social environment, we screened seven cities
across China to facilitate a comprehensive analysis of the heat island phenomenon. These
cities were chosen to ensure a broad representation across geographical regions throughout
the country. The selected cities are as follows: Nanjing, Chongqing, Wuhan, Fuzhou,
Beijing, Xi’an, and Turpan. Notably, four cities are within the southern regions, while the
remaining three are in northern regions.

It is noteworthy that while the urban heat island effect in Turpan exhibited a gradual
upward trend over the 40 years from 1974 to 2013 [21], recent years have witnessed
considerable fluctuations in Turpan’s heat island dynamics. Hence, we have included
Turpan in our analysis due to this intriguing instability in its heat island changes. The
geographical location is shown in Figure 1.

As per the “Statistical Charts of Economic and Social Development” published by the
National Bureau of Statistics in 2021, Beijing and Chongqing belong to megacities, defined
by having a population of permanent residents surpassing 10 million. Nanjing, Wuhan,
and Xi’an fall into the category of large cities, with populations ranging between 5 million
to 10 million.

Chongqing resides within the subtropical humid climate zone, while Nanjing, Fuzhou,
and Wuhan share the subtropical monsoon climate akin to Chongqing’s climatic profile.
Beijing and Xi’an fall under the temperate monsoon climate, whereas Turpan experiences
the continental warm mild desert climate. Beyond climate, these southern cities share
resemblances in terrain and landforms, predominantly marked by mountainous and hilly
landscapes interwoven with intricate water systems comprising numerous urban rivers.
Beijing and Xi’an have similar climate conditions, situated on northern plains, encircled by
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hills and mountains. These nuances and distinctions in climate, geography, and topography
amplify the study’s comparative scope and depth.
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Figure 1. Study areas. (a) Location of Shaanxi Province, Jiangsu Province, Fujian Province, Hubei
Province, Xinjiang Uygur Autonomous Region, Chongqing City, and Beijing City in China; (b) location
of Xi’an City in Shaanxi province; (c) location of Nanjing City in Jiangsu province; (d) location of
Fuzhou City in Fujian province; (e) location of Wuhan City in Hubei province; (f) location of Turpan
in Xinjiang Uygur Autonomous Region.

2.2. Materials
2.2.1. Impervious Surface Data

We delineated urban and suburban areas’ boundaries using the impervious surface
data product developed by Tsinghua University’s Department of Earth Sciences. This
extensive impervious surface dataset is a culmination of remote sensing images and Google
Earth Engine (GEE), synergized with Tsinghua University’s proprietary impervious surface
identification algorithm. This fusion enabled the creation of comprehensive global 30 m
resolution data showcasing annual urban impervious surfaces from 1985 to 2018 [22]. This
study primarily utilized impervious surface data from 2013 and 2018, however, there
was a lack of impervious surface data for 2023, leading us to reference land cover data
spanning from 1985 to 2022 (https://doi.org/10.5281/zenodo.8176941) [23]. This data
indicates a significant reduction in urban expansion post-2018. Consequently, we assert
that the impervious surface data from 2018 is suitable for analyzing the urban heat island
phenomenon in 2023. Table 1 illustrates the changes in impervious surface coverage from
2013 to 2022 based on the land cover dataset.

https://doi.org/10.5281/zenodo.8176941
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Table 1. Changes in impervious surface area (unit: km2).

City 2013 Net Expansion Rate
(2013–2018) (%) 2018 Net Expansion Rate

(2018–2022) (%) 2022

Nanjing 1174.28 11.25 1306.43 6.12 1386.41
Chongqing 1178.09 28.89 1518.42 12.99 1715.60

Wuhan 968.19 15.42 1117.44 8.79 1215.64
Fuzhou 710.19 14.21 811.11 5.82 858.34
Beijing 3357.66 5.59 3545.40 1.43 3596.06
Xi’an 1174.88 11.35 1308.20 5.36 1378.29

Turpan 209.88 20.40 252.71 7.14 270.75

2.2.2. Vector Data

This study primarily relies on two types of vector data: (1) administrative division
data delineating the study area and (2) comprehensive water system data. The water
system data was sourced from the 1:1 million national basic geographic database available
via the National Geographic Information Resources Directory Service System (https://
www.webmap.cn, accessed on 2 August 2023). This database, a public version updated
in 2021, encompasses a spectrum of nine datasets: water, residential areas and facilities,
transportation, pipelines, boundaries and political districts, landforms and soil quality,
vegetation, place names, and notes. Each data layer is identified by a specific four-character
nomenclature. The initial character signifies the data classification, followed by a content
abbreviation in the second and third characters, concluding with a character indicating the
geometry type. Specifically, “H” denotes the water system, and for this study, we utilized
the water system (area) data identified as “HYDA” within the water system dataset. Due
to the lack of updated water system data annually, the study opted to maintain overall data
consistency by utilizing the data from 2021 for the entire analysis.

2.2.3. LST Data

Since one-kilometer resolution can meet our analysis needs, higher resolution data
greatly increases the workload and complexity of data acquisition, processing, and analysis.
Therefore, this study utilized MOD11A1 data products as primary remote sensing sources.

The MOD11A1 product data captures daytime and nighttime land surface temper-
atures globally, offering daily coverage and a spatial resolution of one kilometer. We
employed the GEE platform to process daytime surface temperature data spanning from
January to December for the study area in 2013, 2018, and 2023. Monthly value data were
directly downloaded, facilitating the computation of both the summer average LST for the
period from June to August and the average annual LST.

The data processing primarily involves the following steps: initial data selection,
defining the date range (e.g., from 1 January 2023 to 1 January 2024), extracting by mask,
and calculating the mean values. This process includes filtering the MOD11A1 dataset from
the MODIS database to select surface LST data. Masking is employed to extract data within
specified dates and geographical areas, discarding irrelevant information. Subsequently,
the daily values for each month are averaged to obtain monthly mean data, mitigating the
variability introduced by daily value fluctuations.

2.3. Methods
2.3.1. Identification and Extraction of Urban Scope

We effectively delineated urban and suburban areas by leveraging an urban clustering
algorithm. This algorithm clusters city regions with similar characteristics and attributes
together to identify core areas. It accounts for critical factors such as the spatial distribution,
shape, and size of urban impervious surface data to define urban regions’ boundaries
accurately.

https://www.webmap.cn
https://www.webmap.cn
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This clustering algorithm primarily relies on impervious surface pixel proportions.
Areas where the proportion of impervious surface pixels surpass half are identified as
urban areas, while the remaining areas are classified as non-urban areas.

The urban clustering algorithm follows these key steps: Initially, the impervious
surface data is aggregated to a size of 900 m × 900 m to align with the MODIS LST
data pixel dimensions. Subsequently, a building intensity threshold of 50% is applied to
distinguish between high- and low-intensity built-up areas [18]. The urban boundary is
then demarcated within a one-kilometer radius surrounding the high-intensity region, with
careful attention to exclude water bodies and high-altitude pixels. Finally, a buffer zone
equivalent in size to the city is established around it, designating it as a suburban area. It is
crucial to ensure that both urban centers and suburbs fall within the city’s administrative
boundaries. The detailed process is shown in Figure 2.
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2.3.2. Calculation of SUHII

The magnitude of UHI effect is commonly quantified through the urban heat island
intensity (UHII), denoting the temperature differences between urban and suburb ar-
eas [24,25]. When SUHII < 0, it indicates the cold island effect, while SUHII > 0 signifies
the presence of the heat island effect [21]. The SUHII for a specific day, denoted as t, can be
expressed as Equation (1):

SUHIIt = Ut − Rt (1)

where Ut denotes the urban surface temperature, Rt denotes the suburb surface temperature,
and t denotes a specific day.

In academic research, the evolving traits of the urban heat island effect are frequently
investigated through its spatiotemporal dynamics, encompassing diurnal, monthly varia-
tions, and other influencing factors. This study calculates the evolving characteristics of the
urban heat island effect using monthly and quarterly time scales. Specifically, the average
SUHII on a given timescale denoted as “d” can be expressed by Equation (2):

SUHIId = ∑d
t=0

SUHIIt/d (2)

the monthly average SUHII and the quarterly average SUHII represent the mean value
derived from all days within a month and a quarter, respectively.
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2.3.3. Spearman’s Rank Correlation Analysis

Spearman’s rank correlation is a statistical measure utilizing monotonic functions to
assess the relationship between two statistical variables. It involves sorting the distributions
of two time series statistical variables and computing the correlation based on their order.
Spearman’s rank correlation coefficient ranges between −1 and 1, with a larger absolute
value indicating a stronger correlation. A coefficient of −1 or 1 indicates a complete
monotonic relationship between two variables.

In practical applications, considering a sample size of n and two statistical variables as
x and y, they are arranged and transformed into ordered datasets {xn} and {yn} correspond-
ingly. The Spearman rank correlation coefficient is calculated using Equation (3):

ρ =
∑i (xi − x)(yi − y)√

∑i(xi − x)2∑i(yi − y)2
(3)

In general, when dealing with datasets comprising relatively few sample points,
the Spearman rank correlation coefficient offers a more robust description of correlation
compared to other coefficients [26]. This distinctive trait has led to its extensive utilization
in economics. In this study, owing to the limited quantity and insufficient refinement of
data series, the Spearman rank correlation coefficient was employed.

3. Results
3.1. Urban Expansion (2013–2018)

The urban clustering algorithm was utilized to define the boundaries of urban and
suburban areas within each study location. Following this, we conducted a comparative
analysis focusing on the urban area extents for 2013 and 2018. The spatial distribution
characteristics observed within each urban area are visible in Figure 3.

When considering spatial distribution, notable characteristics emerge distinctly, in-
cluding:

1. The urban areas in Nanjing, Wuhan, and Fuzhou predominantly cluster on both banks
of the river. This distribution emphasizes their reliance on river and marine resources
as pivotal elements for their development.

2. The urban areas of Beijing and Xi’an exhibit a distinct agglomeration trend. Both
cities are highly conducive to urbanization and situated on flat terrains within plain
regions.

3. The layout of urban areas in Chongqing are significantly influenced by its distinctive
topographical and landform characteristics marked by mountainous and hilly terrain.
This leads to a relatively scattered distribution of urban spaces.

4. Turpan, situated within the Tarim Basin, boasts relatively flat terrain. However, owing
to its encompassment by expansive desert regions, Turpan’s urban expanse is limited
and extensively dispersed.

The urban area expansion from 2013 to 2018 is shown in Table 2. The net rate of urban
expansion and the expansion area are closely related to the UHI phenomenon. The net
urban expansion rate measures the growth of a metropolitan land area over a specific period.
The increase in expansion area and net expansion rate usually implies the replacement of
natural surfaces with buildings, roads, and other artificial surfaces. These changes directly
affect the urban thermal balance and microclimate, thus promoting the formation and
intensification of UHI. It is shown that, from 2013 to 2018, Xi’an and Nanjing recorded
the highest net expansion rates, 33.59% and 30.38%, respectively. Beijing experienced the
most extensive expansion area, reaching 1062.3 km2, followed by Chongqing and Nanjing.
Conversely, Turpan and Wuhan had the lowest expansion rates and areas.
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Table 2. Changes in urban area (unit: km2).

City Urban
Area_2013

Urban
Area_2018

Expansion Area
(2013–2018)

Net Expansion Rate
(2013–2018) (%)

Nanjing 1782.7 2324.2 541.5 30.38
Chongqing 2777.6 3375.3 597.7 21.52

Wuhan 1651.1 1946.3 295.2 17.88
Fuzhou 1392.3 1694.8 302.5 21.73
Beijing 4921.7 5984.0 1062.3 21.58
Xi’an 1316.5 1758.7 442.2 33.59

Turpan 279.2 299.6 20.4 7.31

3.2. Changes in Spatiotemporal Patterns

To visually portray disparities in heat island effects across various stove cities, we
conducted mapping and analysis of the spatial and temporal trends of urban heat islands
in seven cities, spanning from 2013 to 2023.

Based on the data provided in Table 3 and illustrated by Figure 4 at three crucial time
points in 2013, 2018, and 2023, the changes can be delineated (Table 4).
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Table 3. Changes in surface temperature in urban and suburban areas (2013~2023).

City Year Month Urban
LST

Suburban
LST

Summer Average
SUHII

(Summer)

Year Average
SUHII

(Annual)Urban
LST

Suburban
LST

Urban
LST

Suburban
LST

Nanjing

2013
6 30.624 29.281

33.276 31.416 1.860 31.191 30.318 0.8737 34.148 31.972
8 35.055 32.995

2018
6 32.829 30.995

33.398 31.330 2.067 20.505 19.790 0.7157 34.323 32.301
8 33.041 30.695

2023
6 33.207 31.656

32.989 31.057 1.932 30.920 29.988 0.9327 33.263 30.953
8 32.496 30.561

Chongqing

2013
6 32.535 30.557

34.653 32.607 2.047 32.055 31.231 0.8247 35.433 33.196
8 35.992 34.067

2018
6 32.406 30.023

34.442 32.056 2.387 34.062 32.687 1.3757 36.691 34.007
8 34.23 32.137

2023
6 33.674 30.87

33.879 31.442 2.437 32.829 31.696 1.1337 33.194 31.075
8 34.768 32.380

Wuhan

2013
6 31.909 29.951

33.639 31.362 2.047 31.348 30.526 0.8227 33.359 30.905
8 35.649 33.230

2018
6 32.75 30.512

33.673 31.391 2.282 31.832 30.750 1.0827 35.209 32.293
8 33.06 31.368

2023
6 32.672 30.744

33.474 31.295 2.179 32.035 30.967 1.0687 34.051 31.434
8 33.700 31.707

Fuzhou

2013
6 33.627 31.211

34.067 31.714 2.352 31.610 30.713 0.8977 34.083 31.815
8 34.490 32.117

2018
6 32.604 30.453

33.277 30.872 2.405 31.970 30.952 1.0187 33.003 30.8
8 34.223 31.363

2023
6 34.610 31.194

33.909 31.169 2.740 31.728 30.701 1.0277 34.606 32.313
8 32.512 30.000

Beijing

2013
6 34.010 29.624

33.869 29.477 4.391 29.445 28.244 1.2017 34.569 29.976
8 33.027 28.832

2018
6 37.245 33.096

34.943 30.701 4.243 30.074 28.270 1.8047 34.148 29.952
8 33.437 29.054

2023
6 37.344 34.050

35.031 31.555 3.476 29.635 28.192 1.4437 36.142 32.577
8 31.608 28.037

Xi’an

2013
6 36.915 36.241

35.176 33.561 1.615 32.716 32.213 0.5037 34.274 32.219
8 34.338 32.222

2018
6 36.247 34.992

36.296 34.301 1.995 31.499 30.675 0.8247 37.228 34.645
8 35.413 33.266

2023
6 34.455 32.924

34.553 32.413 2.140 31.436 30.522 0.9147 35.488 33.265
8 33.717 31.051
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Table 3. Cont.

City Year Month Urban
LST

Suburban
LST

Summer Average
SUHII

(Summer)

Year Average
SUHII

(Annual)Urban
LST

Suburban
LST

Urban
LST

Suburban
LST

Turpan

2013
6 44.846 45.217

45.142 45.701 −0.559 40.383 40.879 −0.4967 45.956 46.568
8 44.624 45.317

2018
6 44.957 45.422

45.808 46.441 −0.633 39.149 39.484 −0.3357 47.730 48.417
8 44.738 45.483

2023
6 45.838 46.446

46.256 46.978 −0.722 39.212 39.552 −0.347 47.836 48.585
8 45.095 45.904
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Table 4. Changes of LST and spatiotemporal distribution in stove cities (2013~2023).

City LST Spatiotemporal Distribution

Nanjing

Summer: The SUHII exhibited a pattern of initial increase
followed by a decrease, yet the SUHII value in 2023 remained

higher than that observed in 2013.
Annual: Contrary to the changes observed in the SUHII of
summer, it initially decreases and then increases, with the

value in 2023 being higher than that in 2013.

There has been a decrease in high-temperature
coverage and concurrently, the urban heat island

effect in the city center has shown signs of
gradual weakening.

Chongqing

Summer: The temperature decline persists in both urban and
suburban zones, yet the suburban areas experience a swifter
decrease, exacerbating the intensity of the urban surface heat
island even amidst declining temperatures, thus perpetuating

the intensification of the heat island effect.
Annual: The changes are similar to those in Nanjing.

The coverage of medium- to high-temperature
zones has significantly reduced, whereas

high-temperature zones are expanding and
becoming more concentrated.
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Table 4. Cont.

City LST Spatiotemporal Distribution

Wuhan

Summer: Both the overall temperature and surface heat island
intensity follow a pattern of initial increase followed by

decrease, observed across urban and suburban areas. Despite
the summer temperatures in 2023 being lower than those in
2013, there is an increase in heat island intensity compared

to 2013.
Annual: Overall, the trend is towards growth, but growth is

getting weaker in 2023.

The coverage of medium- to high-temperature
zones has significantly expanded, while some

medium–low and low-temperature zones, mainly
in the suburbs, have decreased, transitioning

towards cooler regions.

Fuzhou

Summer: The surface temperature initially decreased before
rising, while the intensity of urban heat islands continued

to escalate.
Annual: The SUHII continues to increase, reaching its peak

in 2023.

The distribution of high and medium-high
temperature zones remains unchanged, however,

the area on the right has shifted from a
medium-high temperature zone in 2013 to a

high-temperature zone by 2023 (based on the
review of remote sensing images from the

corresponding period. This is due to the area being
converted into building land.).

Beijing

Summer: Urban and suburban LST are steadily rising, yet the
LST difference between urban and rural areas is narrowing,

indicating a mitigation of the urban heat island effect.
Annual: The changes are similar to those in Nanjing.

The coverage of medium-high temperature zones
has expanded. Meanwhile, the area of

high-temperature zones has slightly decreased, yet
their distribution has become more concentrated.

Xi’an The annual SUHII and summer SUHII both continues to
increase, reaching its peak in 2023.

The coverage of high-temperature zones first
expands and then contracts with the central urban

high-temperature zone gradually diminishing.

Turpan

Summer: The urban heat island effect in Turpan across these
three time points remains consistently negative, indicating

that the suburban temperatures are higher than those within
the city, displaying a noticeable ‘cold island effect.’

Furthermore, as per the data in Table 3, the cold island effect
in Turpan continued to amplify throughout this period.

Annual: Unlike the summer SUHII, the annual average SUHII
exhibits a slight increase, with a minor reduction in the cold

island effect.

In the Turpan region, high-temperature zones and
mid-temperature areas are prevalent, with the LST

distribution remaining stable throughout the
observation period.

3.3. Correlation Analysis

The changes in summer SUHII and average temperatures between 2013 and 2018 for
the seven cities are examined, specifically calculating five correlations involving tempera-
ture (urban and suburban areas), urban expansion, population density, and annual average
temperature.

Population density is derived from resident population and designated zoning area.
However, the yearbook data for Turpan City lacks permanent population details, thus the
year-end total population data is utilized instead. The Spearman correlation coefficient
resulting from calculations is presented in Figure 5 and Table 5.

Table 5. Spearman correlation coefficient.

SUHII

Urban LST −0.444
Suburban LST −0.827 **

Urban expansion 0.728 **
Population density (people/sq km) 0.515

annual average temperature 0.145
** p < 0.01.
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and (c) changes in population density.

Based on the Spearman correlation coefficients in Table 5, the analysis reveals the
following associations: SUHII shows no correlation with three factors: urban surface
temperature, population density, and annual average temperature. However, SUHII and
suburban surface temperature have a notable negative correlation. Additionally, SUHII
exhibits a significant positive correlation with urban expansion.

4. Discussion
4.1. SUHII Trends

According to our findings, China’s UHI effect will likely grow more robust due to
rapid urbanization and climate change—especially in the south.

Annual average SUHII from 2013 to 2023 reveals a rising trend in urban heat island
effects across all cities. This includes Turpan, where the difference in LST between urban
and suburban regions is narrowing, showing a reduced cool island effect. The ongoing
increase in annual average SUHII is consistent with the findings of Geng et al. [27] For
summer SUHII, all cities, except Beijing and Turpan, saw more substantial heat island
effects from 2013 to 2018. However, from 2018 to 2023, Nanjing and Wuhan experienced
declining heat island effects. This aligns with changes between the old and new furnace
cities. Since the Republic of China era, there have been three major stove cities: Wuhan,
Chongqing, and Nanjing. However, Fuzhou replaced Wuhan and Nanjing in 2010. This
indicates that our analysis results are highly consistent with public perception.

Notably, based on SUHII changes, Beijing shows a trend of continuous weakening in
the heat island effect during summer. However, the annual mean SUHII initially strengthens
and then weakens, indicating an overall intensification of the heat island effect. According
to Lin et al., the observed patterns are due to the seasonal nature of heat islands [14]. Beijing
experiences a weaker heat island effect in summer and a stronger one in winter. Chongqing
shows the reverse seasonal trend. Along with seasonal variations, changes are also linked
to Beijing’s ecological corridors. According to the “Beijing Urban Master Plan (2016–2035)”
released in 2017, the plan is to establish five primary ventilation corridors and multiple
secondary ones in the city area by 2035. This long-term strategy aims to create a network of
ventilation corridors to enhance heat dissipation in urban areas.

Regarding spatial distribution, the main changes include the expansion of medium-
to high-temperature zones and the concentration of high-temperature areas in some cities
(such as Chongqing). These changes are direct outcomes of urban expansion. As cities
grow outward, surrounding areas gradually urbanize, shifting from lower to medium
and high-temperature zones. This process slightly relieves pressure in central urban areas,
reducing high-temperature zones or their transition to medium–high-temperature zones.
This situation is also related to the effective implementation of urban greening initiatives,
enhanced land use efficiency, and urban planning policies. The concentration of high
LST regions in Chongqing and the minimal changes in Turpan are likely attributed to
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geographic and environmental factors limiting urban expansion. Chongqing, known as
the “mountain city,” is surrounded by mountains—Daba in the north, Wushan in the east,
Wuling in the southeast, and Dalou in the south. This unique topography restricts the
outward expansion of Chongqing, preventing relief from urban pressure. The result is
increasingly dense construction and difficulty dissipating heat from the city center, leading
to increased LST areas. Similarly, the geographical environment of Turpan also restricts the
regions available for urban development.

4.2. Correlation Analysis and Measures

Correlation analysis reveals that summer SUHII is significantly negatively corre-
lated with suburban surface temperature and positively associated with urban expansion.
Changes in suburban surface temperature are mainly due to urban expansion and planning.
This indicates that the urban development process primarily influences summer SUHII in
the study area.

The SUHI effect primarily occurs during daytime and is influenced by internal urban
factors such as building density, population density, and land use types, making it a
key indicator of urban development [21,28]. The research underscores the correlation
between the UHI and factors such as urbanization, industrialization, urban population
density, nighttime lighting intensity, and climate change [29]. Notably, urbanization is
a significant driver of the UHI effect. Studies excluding urbanization’s effects revealed
minimal temperature increases—Hansen and Lebedeff noted a mere 0.1 ◦C rise in global
average temperatures [30]. Balling and Idso also found a very 0.02 ◦C warming in the
United States over 64 years from 1920 to 1984 [31]. These findings underscore the profound
impact of urbanization on the UHI effect.

This study highlights the correlation between the urban heat island effect and ur-
banization, specifically urban expansion. Our correlation analysis decisively indicates
that population density has ceased to be a significant determinant in the dynamics of the
summer surface urban heat island effect within these stove cities. From 2013 to 2018, the
population density across the study areas remained relatively stable, underscoring the need
to explore other urban factors that contribute to heat island intensity as part of sustainable
urban planning efforts.

The heat island effect stands as a critical environmental challenge in the context of
socioeconomic growth and urbanization. According to our research, measures can be taken
to alleviate the heat island effect, primarily focusing on urban expansion, urban planning,
layout adjustments, and green initiatives. These measures can be categorized into the
following three key aspects:

1. Safeguarding and expanding urban green spaces.

Expanding vegetated areas within urban landscapes is widely recognized as a viable
strategy to counteract the UHI effect [32,33]. Vegetation combats heat island effects through
evapotranspiration and carbon dioxide absorption, which is particularly beneficial in
densely populated urban centers with substantial human activity. Moreover, Theeuwes
et al. revealed that a 10% increase in vegetation can generally lead to a temperature
reduction of around 0.6 K [34]. However, this mitigation strategy can obstruct airflow
within cities.

2. Planning urban area distribution properly.

Urban planning and layout play a crucial role in urbanization, influencing the charac-
teristics of the UHI effect. The impact of surface urban heat islands must be integrated into
urban planning and design to ensure sustainability and human well-being and enhance
the city’s self-regulation capacity. Taking the ecological corridors planned in Wuhan and
Beijing as examples, these greenways channel “fresh breezes” from the suburbs into the
city centers, facilitating what can be described as the city’s “self-breathing” capability. The
airflow disruption caused by vegetation should also be strategically addressed in urban
landscape planning to mitigate heat accumulation while effectively minimizing airflow
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disruption. Wuhan and Nanjing share strong similarities in geographical location and the
spatiotemporal variations of summer SUHII, making them valuable references for each
other in urban planning.

3. Implement Targeted Policies.

Government policies play a crucial role in addressing heat emissions. Within industrial
sectors, the substantial heat emitted by factories highlights the need for regulations to
reduce heat emissions effectively. However, beyond corporate efforts, citizen participation
is essential. Enhancing public engagement is vital for developing sustainable and health-
conscious mitigation strategies. As urban residents, raising awareness about reducing heat
emissions and advocating for low-carbon and eco-friendly travel is essential.

Aside from the urban heat island effect discussed earlier, Turpan is one of the few cities
experiencing a cool island effect. Unlike the urban heat island effect, the cool island effect
has positive impacts, including urban temperature regulation, ecosystem protection, energy
saving, and environmental conservation. This effect helps maintain lower temperatures
within the city, providing residents a more comfortable environment during hot seasons.
Turpan’s current development trajectory is positive and beneficial, but efforts to maintain
and enhance the city’s cool island effect are still needed. Insights from strategies to mitigate
heat island effects, such as increasing urban greenery and refining urban planning, can
further enhance the cool island effect. This approach can improve the quality of life for
city residents, enhance the ecological landscape, and promote sustainable development in
Turpan.

5. Conclusions

This study delves into the urban heat island phenomenon within old and new stove
cities in China from 2013 to 2023. It aims to scrutinize the spatial and temporal evolution
patterns, subsequently analyzing potential causes and future trends in heat island changes.
The primary objective is to comprehensively understand these urban heat island occur-
rences, providing substantial insights to mitigate their adverse effects. This study unveils
the spatiotemporal characteristics of these urban heat island phenomena by employing
diverse data sets and methodologies.

Research shows the following.

1. From the perspective of the annual average surface urban heat island effect, the heat
island effect intensifies in the study area (except Turpan), and the cool island effect of
Turpan is diminishing.

2. Focusing solely on the summer surface urban heat island effect, Chongqing, Fuzhou,
and Xi’an continuously increase. Nanjing and Wuhan experience slight fluctuations,
while Beijing and Turpan (with an increasing cool island effect) consistently weaken.

3. Based on the spatial distribution of SUHII and correlation analysis, population density
and average annual air temperature are no longer significant factors affecting the
summer urban heat island effect in stove cities. Instead, urban expansion and planning
play a more substantial role. Thus, we offer targeted recommendations based on the
findings.

This study offers valuable insights for urban managers to understand the latest trends
in urban LST changes and the heat island effect, enabling them to devise appropriate
strategies to mitigate related thermal stress and support effective urban planning. Moreover,
the novelty of the data and multipronged analytical methods and the comprehensive
selection of study areas fill gaps in previous research, providing a reliable reference for
decision-making and planning in cities with similar climatic characteristics.

However, our study has limitations. Firstly, the study focused solely on urbanization
variables, lacking an in-depth examination of factors such as extreme weather events and
urban spatial patterns, which are crucial for developing effective mitigation strategies.
Secondly, the methods used in this study are traditional and hope to be improved and
perfected. Exploring these areas will be our next step in the work.
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