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Abstract: This paper proposes an electric vehicle routing problem, considers the states of charging
stations and suggests solution strategies. The charging of electric vehicles is a main issue in the field of
electric vehicle routing. There are many studies that find the locations of charging stations, recharging
functions for the batteries of vehicles, and so on. However, the state of charging stations significantly
affects the routes of electric vehicles, which is not much explored. The states may include open or
closed charging stations, occupied or empty charging slots, and so on. This paper investigates how
the states of charging stations are estimated and how routing strategies are determined. We formulate
a mixed integer programming model and suggest how to solve the problem with an exact method.
Numerical examples provide the optimal routing strategies of electric vehicles for the changing
environments regarding the states of charging stations.

Keywords: electric vehicle routing problem; states of charging stations; location routing problem;
mathematical model; optimization

1. Introduction

The fast growth of air pollution and global climate change has driven the consideration
of sustainability in various sectors including energy, manufacturing, logistics, and so on.
Countries are forced to reduce the use of fossil fuel as it is the main cause of global warming.
Transportation has accounted for more than 23% of greenhouse gas emissions causing air
pollution (Xiao et al., 2021 [1]). Accordingly, transportation has been changed to encourage
the use of electric vehicles rather than internal combustion vehicles. The study of the
vehicle routing problem has been extended to the study of the electric vehicle routing
problem. The electric vehicle routing problem has become an important issue in the field
of sustainability.

Many studies have been conducted for the electric vehicle routing problem. Com-
pared to the conventional vehicle routing problem, the electric vehicle routing problem has
additional issues, while both problems aim to find the optimal route from the alternatives.
The issues of the electric vehicle routing problem include finding the optimal location of
charging stations, estimating the recharging functions of the battery and energy consump-
tion, and so on. Most studies are related to charging the battery of electric vehicles. Without
the charging issue, the problem is the same as the conventional vehicle routing problem.
The issue with location is to find the optimal locations of charging stations, minimizing the
total travel costs. With vehicle routing, this problem becomes the location routing problem.
For the charging function, the problem is to find the change or pattern of charging level
by time. The function is assumed as a linear or nonlinear function. Since the charging
time is long, there are some studies on partial charging instead of full charging. Research
questions include where the charging stations are in place and how to charge the battery.

On the other hand, there is a lack of studies into the states of charging stations. When
an electric vehicle arrives at a charging station and all charging slots are occupied, the
electric vehicle may have to wait for a long time. If the charging station is closed, the
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electric vehicle should go to another charging station. The state of the charging station
can be defined by its availability. If the charging station is not available when the vehicle
arrives, this situation significantly affects its route. Thus, this paper considers the states
of charging stations for the electric vehicle routing problem. Each charging station has its
own state. The states for charging stations may have distributions or patterns. Once the
patterns of the states are found, one can find the optimal location routes of electric vehicles.

One of the concerns for the electric vehicle routing problem is that the charging time is
too long, rather than the issue of using fossil fuels. Due to their long charging time, vehicles
occupy the charging slots for an extended period, so there may be lack of available slots.
If the stations are crowded, the availability does matter. For example, assuming a vehicle
arrives at a charging station and all charging slots are occupied, if the earliest available
slot is in thirty minutes, the vehicle has to wait at least thirty minutes. The states of the
charging station are not deterministic, but random or stochastic. Each station has a different
uncertainty such as open/closed, occupied/empty, normal/out of order, and so on. These
uncertainties present the availability of the charging station. Assuming there are multiple
deliveries, each vehicle travels twice in a day, and needs to recharge one time either in
the first time period or the second time period. If a vehicle’s battery is recharged in the
first time period, the vehicle can travel without recharge in the second time period. On
the other hand, if the vehicle wants to recharge in the second time period, the vehicle can
travel without recharging in the first time period. In this case, the vehicle has to decide the
time period to recharge to minimize the total travel costs in a day. Depending on the states
of charging stations, we can decide when to recharge the battery for each vehicle. Thus, the
patterns for the states of charging stations can be used as input parameters in the electric
vehicle routing problem.

The contributions of this paper are as follows: This paper suggests an electric vehicle
routing problem with states of charging stations and an optimization model. Depending
on the states of charging stations, the optimal routes may be different. We also propose the
strategy to achieve the optimal routing plans for vehicles. Vehicles must decide when and
where to go at the next time period to minimize the total travel costs. Lastly, this paper pro-
vides some numerical experiments to show the viability of the proposed solution approach.

This paper presents the literature about this issue in Section 2. Section 3 describes
the problem and a mathematical model for the electric vehicle routing problem. Section 4
proposes solution methods for the electric vehicle routing problem with the states of
charging stations. Numerical examples and results are presented in Section 5. Finally, this
paper summarizes the paper and discusses future work.

2. Literature Review

The electric vehicle routing problem has become an interesting issue in a variety
of different fields such as transportation, energy, sustainability, and so on. Researchers
have focused on charging-related issues or solution approaches. This section presents the
related works for the electric vehicle routing problem rather than the conventional vehicle
routing problem.

Various problems for the electric vehicle routing problem have been considered.
Chakraborty et al. (2021, [2]) have dealt with the electric vehicle routing problem to find
optimal charging schedules and routes. Schneider et al. (2015, [3]) have introduced time
window constraints in the electric vehicle routing problem. Keskin et al. (2019, [4]) have
considered the electric vehicle routing problem with time windows and explored the
queues at charging stations. Hiermann et al. (2016, [5]) have also explored the electric
vehicle routing problem with different vehicle sizes. Charging the vehicle has also been
explored. Montoya et al. (2017, [6]) assumed a nonlinear function for the charging rate
and suggested proper charging behavior. Froger et al. (2019, [7]) used a nonlinear function
and proposed arc-based and path-based tracking of the time approach rather than a node-
based model to avoid replicating the charging station nodes. If vehicles are fully charged
during the travel, the total traveling time will be significantly increased. Instead of full
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charging, partial charging has been proposed in many studies. Bac and Erdem (2021, [8])
proposed the electric vehicle routing problem with multiple depots and heterogeneous
fleets. Basso et al. (2021, [9]) also considered partial charging. In their research, the problem
has included uncertainties such as road condition or energy consumption. Hybrid electric
vehicles have been considered. In their research, Kasani et al. (2021, [10]) investigated
electric vehicles and hybrid electric vehicle routing and scheduling problems in the private
and public sectors. Ma et al. (2021, [11]) suggested the shared autonomous electric vehicle
routing problem with battery swapping and proposed a speed optimization model on the
travel arc. Pelletier et al. (2019, [12]) explored the uncertainty of energy consumption during
a delivery tour. Al-dal’ain and Celebi (2021, [13]) investigated the problem of the vehicle
compositions of electric and conventional vehicles to minimize total operational costs in ur-
ban areas. Brady and O’Mahony (2016, [14]) tried to find the patterns of travel of the vehicle
and charging behavior. They used a dataset of vehicles traveling to resolve uncertainty.

For the modeling of the electric vehicle routing problem, studies have adopted op-
timization models. Mixed integer programming has been mostly used to formulate the
problems, as many studies have adopted the mixed integer programming model for the
vehicle routing problem. The objective function is similar to that of the conventional ve-
hicle routing problem. Schneider et al. (2014, [15]) formulated their model to minimize
the total travel distance. Hiermann et al. (2016, [5]) tried to minimize the total distance
and vehicle costs. Ma et al. (2021, [11]) formulated the objective function to minimize the
total travel distance, travel time, and energy consumption. Froger et al. (2019, [7]) and
Montoya et al. (2017, [6]) constructed their objective function to minimize total driving
and charging times. Bac and Erdem (2021, [8]) tried to minimize the total travel time, time
window deviations, unscheduled jobs, and overtime. Al-dal’ain and Celebi (2021, [13])
constructed the objective function to minimize the total costs of vehicles: purchasing and
salvage value, operational cost, maintenance cost, CO2 emission cost, and fuel cost. Variants
of the mixed integer programming have been used for the model. Pelletier et al. (2019, [12])
formulated a robust mixed integer programming model. Chakraborty et al. (2021, [2])
proposed a multi-objective mixed integer programming model for minimizing energy
consumption and travel time. Nolz et al. (2022, [16]) developed their model with a mixed in-
teger quadratic programming model as a nonlinear programming model. A data analytical
model has also been used for the problem. Basso et al. (2021, [9]) used Bayesian regression
for the estimation of energy consumption. Brady and O’Mahony (2016, [14]) suggested a
model with the Monte Carlo simulation and copula function. Alizadeh et al. (2014, [17])
used a network model with a single-shortest-path problem on an extended transportation
graph with virtual nodes. Lu and Wang (2019, [18]) developed a dynamic programming
model for the capacitated electric vehicle routing problem. Gan et al. (2013, [19]) adopted
an optimal control problem to find the optimal schedule of electric vehicles.

For the solution method, a variety of different approaches have been used to find the
optimal solutions. Like the conventional vehicle routing problem, various heuristic meth-
ods have been used. Schneider et al. (2014, [15]) adopted a variable neighborhood search
with the tabu search method. In their approach, a tabu search was plugged in the variable
neighborhood search algorithm. Bac and Erdem (2021, [8]) used the variable neighborhood
search algorithm and variable neighborhood descent algorithm. The variable neighborhood
search was used to handle the dynamic problem and the variable neighborhood descent
algorithm was used to cover the deterministic problem. An adaptive large neighborhood
search algorithm has also been used to solve the problem. Nolz et al. (2022, [16]) proposed
a template-based adaptive large neighborhood search algorithm with a two-phase solu-
tion scheme. Ma et al. (2021, [11]) used an adaptive large neighborhood search method
with a speed optimization algorithm as a subroutine. Hiermann et al. (2016, [5]) solved
the problem using branch and price combined with the adaptive large neighborhood
search algorithm. Kessler and Bogenberger (2019, [20]) estimated the energy consumption
model for electric vehicles with statistical analysis. Montoya et al. (2017, [6]) adopted
a hybrid meta-heuristic combining an iterated local search and heuristic concentration.
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Basso et al. (2021, [9]) suggested a two-stage approach: the first stage is to find the paths
between all the nodes to be visited; the second is to select the best order of the tour to mini-
mize energy consumption. An exact algorithm has also been used. Pelletier et al. (2019, [12])
used an exact method with reformulation and a two-phase heuristic based on a large neigh-
borhood search for large instances. Keskin et al. (2019, [4]) solved the problem using the
exact algorithm for small instances and the adaptive large neighborhood search for large
instances. Al-dal’ain and Celebi (2021, [13]) also used the exact algorithm with the software
GAMS. Chakraborty et al. (2021, [2]) proposed a multi-objective heuristic algorithm, which
is a graph-based centralized scheduling strategy.

Luo et al. (2023, [21]) proposed a co-operative planning method of considering fixed
charging stations and mobile charging stations. In their study, the vehicles can charge
in both a fixed charging station and a mobile charging station. Wang et al. (2022, [22])
suggested an electric vehicle charging station and location routing problem with resource
sharing. They considered the location routing problem with multiple depots and multi-
ple periods. Jeong et al. (2024, [23]) proposed a two-stage adaptive robust optimization
approach for the electric vehicle routing problem with energy consumption uncertainty.

The related works listed above show that the electric vehicle problem has been ex-
plored in a variety of ways. Finding the optimal locations of charging stations has been
studied for the vehicle routing problem. The issues of charging have also been suggested.
They are charging functions, charging behaviors, partial charging, and so on. Most studies
have formulated the problem with mixed integer programming. Various methods have
been proposed to solve the electric vehicle problem. However, although there have been
many studies for the electric vehicle routing problem, there is a lack of research for the state
of charging stations, while their states can affect optimal routes. Thus, this paper can be a
trigger to tackle this issue.

3. Electric Vehicle Routing Problem
3.1. Problem Statement

The vehicle routing problem is finding the optimal routes for vehicles that have to
travel to customer sites which are geographically dispersed. The vehicle routing problem is
comprised of two problems: the traveling salesman problem and the bin packing problem.
The traveling salesman problem is known as the NP-hard problem. Accordingly, the vehicle
routing problem is also the NP-hard problem. The electric vehicle routing problem has
additional issues of charging the battery.

Figure 1 presents the electric vehicle routing problem. We assume that the change in
weather conditions do not affect the optimal route, which is considered in the dynamic
vehicle routing problem. There are charging stations that vehicles can visit during their
delivery tours. The problem must consider charging the battery for the electric vehicle
while the conventional vehicle routing problem does not need to consider this. As the
number of electric vehicles increases, the number of charging stations has been increased in
city areas. So, we assume that there are multiple charging stations so that the vehicle can
choose one of them. Selected charging stations can affect the optimal routes for vehicles
and total travel costs or distances. Thus, the vehicle must choose the charging station to
minimize the total travel costs. We assume that some factors affecting routing solutions
such as terrain and weather conditions or the degree of vehicle loading are not taken into
account at this moment.

Assuming there are many customer sites to deliver, each vehicle has to do the delivery
tour twice in a day because of the capacity of vehicle. We also assume that each vehicle
should charge in either the first route or the second one. Thus, each vehicle has to decide
when it charges.
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Figure 1. Electric vehicle routing problem.

Figure 2 denotes the vehicles servicing twice in a day. The information related to the
status of the charging stations is updated daily. The states of charging stations are revealed
every day before the start of routing. At the beginning, the customer sites are determined
for delivery in the day and they are divided into two groups: the first time period group to
visit and the second one. If a vehicle decides to charge in the first time period, the vehicle
needs no charging in the second time period. On the other hand, if a vehicle does not
charge in the first time period, the vehicle has to charge in the second time period. We
assume the vehicle has no time to charge the battery in between period one and two since
the vehicle has to load the products for the deliveries in period two during the time in
between. The problem is to find the optimal routes for two time periods, as well as when
the vehicles charge to minimize the total travel cost for a whole day.
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3.2. Mathematical Model

We consider an electric vehicle routing problem with time windows. There is one
depot, multiple vehicles, and multiple customer sites. The model for the problem is
as follows.

Sets
V = {0, 1, 2, . . . , n, n + 1, . . . , n + p}: (0: depot node, 1 ~ n + p: nodes)
F = {n + 1, . . . , n + p}: Charging stations
F′: Dummy charging stations
N = V\{{0} ∪ F}: Customer sites
A = {(i, j)|i, j ∈ V, i ̸= j}: Arcs
M = {1, . . . , m}: Vehicles
V+(i) = {j ∈ V|(i, j) ∈ A}: Successor nodes of node i
V−(i) = {j ∈ V|(j, i) ∈ A}: Predecessor nodes of node i
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Parameters
[ai, bi]: Time window for node i
si: Service time for node i
qi: Demand for node i
wi: Difficulty of using the charging station i
di,j: Travel time from node i to node j
τ: Charging time per unit energy
δ: Energy consumption per unit distance
K: Capacity of a vehicle
Q: Capacity of energy (electricity) for a vehicle
L: Large constant number
Variables
xm

i,j: Binary variable, 1 if arc (i, j) ∈ A belongs to the optimal routes by vehicle m, 0
otherwise

tm
i : Arrival time of vehicle m at node i (beginning of service)

ym
i : Energy level of vehicle m at node i

zi: Binary variable, 1 if charging station i is used, 0 otherwise

(EVRP) Min∑m∈M ∑(i,j)∈A di,jxm
i,j + ∑i∈F′ wizi (1)

s.t.∑m∈M ∑j∈V xm
i,j = 1, ∀i ∈ N, (2)

∑m∈M ∑j∈V xm
i,j ≤ 1, ∀i ∈ F′, (3)

∑j∈V+(0) xm
0,j = 1, ∀m ∈ M, (4)

∑i∈V−(h) xm
j,i − ∑i∈V +(h) xm

i,j = 0, ∀j ∈ N, m ∈ M, (5)

∑i∈V −(0) xm
i,0 = 1, ∀m ∈ M, (6)

∑i∈N qi∑j∈V xm
i,j ≤ K, ∀m ∈ M, (7)

tm
i +

(
si + di,j

)
xm

i,j − tm
j ≤

(
1 − xm

i,j

)
L, ∀(i, j) ∈ A, i, j ∈ N, m ∈ M, (8)

tm
i + di,jxm

i,j + τ(Q − ym
i )− tm

j ≤ (L + τQ)
(

1 − xm
i,j

)
, ∀i ∈ F′, j ∈ N, m ∈ M, (9)(

δdi,j
)

xm
i,j − Q

(
1 − xm

i,j

)
≤ ym

i − ym
j , ∀i, j ∈ N, m ∈ M, (10)

ym
i − ym

j ≤
(
δdi,j

)
xm

i,j + Q
(

1 − xm
i,j

)
, ∀i, j ∈ N, m ∈ M, (11)

∑i∈N,j∈F′ xm
i,j = 1, ∀m ∈ M, (12)

xm
i,j ≤ zi, ∀i ∈ F′, j ∈ N, m ∈ M, (13)

xm
i,j ≤ zj, ∀i ∈ N, j ∈ F′, m ∈ M, (14)

ai ≤ tm
i ≤ bi, ∀i ∈ N, m ∈ M, (15)

xm
i,j, ym

i , zi ∈ {0, 1}, ∀i, j ∈ V, m ∈ M (16)

The objective function (1) aims to minimize total travel distances and the difficulty of
visiting charging stations. The second term plays a role as the availability. If a charging
station is easy to access, the value of wi will have a small value. That is the state of each
charging station. Constraint (2) ensures that each customer site is served once by one vehicle.
Constraint (3) presents that each charging station can be used once at most. Constraints (4) and
(6) enforce that each vehicle has to leave and return to the depot. Constraint (5) presents that
once a vehicle enters a node, the vehicle has to leave the node except the depot. The capacity
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of each vehicle is in constraint (7). Constraints (8) and (15) are time window constraints for
customer nodes. Constraint (9) denotes the constraint for the time of charging. Constraints (10)
and (11) present energy consumption through the arc. Constraint (12) forces each vehicle to
visit a charging station once. Constraints (13) and (14) ensure a charging station is open only
if a vehicle travels to the charging station. Constraint (16) is for binary variables.

If wi has a large value, the charging station i will have a low possibility to be chosen
by a vehicle. Thus, depending on the value, we can control the availability of the charging
station. The model assumes that the capacity of the battery is limited, so each vehicle has
to visit a charging station during a delivery tour. In the problem of two time periods, we
solve the problem of electric vehicle routing with the above EVRP model. Depending on
the locations of customer sites and available charging stations, decisions will be made if the
vehicles visit the charging stations in the first time period or not with the solutions from
the model. The solution of the model provides the optimal strategy for the electric vehicle
routing problem.

4. Solution Method

This section presents how to solve the electric vehicle routing problem with the states
of charging stations. For a conventional vehicle routing problem, we have to determine
the optimal routes for vehicles. When it comes to an electric vehicle routing problem,
the locations of charging stations are additionally determined. Considering the states of
charging stations, the states will affect the optimal solution. In this paper, we consider
a two-time-period problem. The vehicles have to determine how to travel for the time
periods. This seems to have two electric vehicle routing problems. The optimal route for
each time period may include a visit to the charging stations or may not. These decisions
are to be made for the problem in this paper.

In Figure 3, the problem is solved with two phases. At first, the patterns of states for
the charging stations are estimated to present the availability of charging stations. Each
charging station has its own pattern for the state of occupation. Upon collecting the data
from the charging stations, the patterns are determined by analyzing the data. Once the
pattern is found, it can be seen as the availability of the charging station. In the second
phase, we solve the electric vehicle routing problem of the model proposed in the previous
section. The patterns become the parameters in this routing problem. The solution presents
the total travel costs with the states of the charging stations. The solutions for time periods
can be used to find the optimal strategy.

The algorithm has been designated to find optimal routing schemes for vehicles.
For the problem described in this paper, three algorithms have been adopted to find the
solutions of the vehicle routings. The Algorithm 1 randomly chooses the charging time. At
the beginning of the day, a random number is generated for each vehicle. If the number is
less than 0.5, the vehicle will charge the battery at time period two. Otherwise, the vehicle
can charge the battery at time period one.

For the Algorithm 2, total travel distances are considered to make the decisions of
charging. Solutions for the vehicle routing problems for period one and two present the
total distances of travel for each vehicle. Each vehicle will charge the battery at period one
if the total distance of period one is less than the period two.

The Algorithm 3 considers the states of charging stations in order to find the optimal
solution for vehicle routings. In addition to the solutions for vehicle routings for period one
and two, the solutions considering the states of the charging stations are also considered to
make decisions for the optimal routing strategy.
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Algorithm 1: random solution strategy

Initialize:
T = {1, 2, . . . , n}: time horizon for all days
ri,j: route in period i with j action where j = {0, 1};
where 1 (visit charging station), 0 (no visit charging station)
Di,j: demand for period j in day i

Repeat: until k = n
k → 1

For day k
Rnd = random(): generate random number [0,1]

If Rnd ≥ 0.5, π∗(k) = {r1,1, r2,0}
If Rnd < 0.5, π∗(k) = {r1,0, r2,1}
k → k + 1

End

Algorithm 2: minimal distance solution strategy

Initialize:
T = {1, 2, . . . , n}: time horizon for all days
ri,j: route in period i with j action where j = {0, 1};
where 1 (visit charging station), 0 (no visit charging station)
Di,j: demand for period j in day i

Repeat: until k = n
k → 1
For day k

Solve (EVRP) with Dk,1: Tdk1 (total distances)
Solve (EVRP) with Dk,2: Tdk2 (total distances)

If Tdk1 < Tdk2, π∗(k) = {r1,1, r2,0}
If Tdk1 ≥ Tdk2, π∗(k) = {r1,0, r2,1}
k→k + 1

End
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Algorithm 3: charging stations solution strategy

Initialize:
Find states Ω(s, t) of charging stations
T = {1, 2, . . . , n}: time horizon for all days
ri,j: route in period i with j action where j = {0, 1};
where 1 (visit charging station), 0 (no visit charging station)
Di,j: demand for period j in day i

Repeat: until k = n
k → 1
For day k

Solve (EVRP) with Dk,1: zk1 (objective value)
Solve (EVRP) with Dk,2: zk2 (objective value)
Solve (EVRP) with Dk,1 and Ω(s, t): zk3 (objective value)
Solve (EVRP) with Dk,2 and Ω(s, t): zk4 (objective value)

If zk1 + zk4 > zk2 + zk3, π∗(k) = {r1,1, r2,0}
If zk1 + zk4 < zk2 + zk3, π∗(k) = {r1,0, r2,1}
k → k + 1

End

The above algorithms can help vehicles to decide when they should charge. We have
compared the results of three algorithms with an example to see their performance.

Table 1 shows the experimental results for the three algorithms with examples which
will be shown in Section 5. From the results, the CS algorithm has obtained better solutions
than the other algorithms. Each vehicle can visit the charging station only once, minimizing
the total travel costs.

Table 1. Total costs for three algorithms.

Days Algorithm 1 Algorithm 2 Algorithm 3

1 922.3 922.3 874.0
2 943.7 963.9 943.7
3 788.4 840.2 788.4
4 862.3 862.3 860.5
5 746.3 825.0 742.5

Sum 4263.0 4413.7 4209.1

For the estimation of the patterns for the states of charging stations, we can derive the
probability distribution of the states from the data. The state of a charging station is defined
as the time a vehicle must wait when it arrives at the charging station. The data from a
charging station may not be the waiting time, so we can derive the waiting time from the
dataset. Common data at a station are the number of vehicles that arrive at a certain time.
With these data, we can derive the distributions of waiting times at charging stations.

Arrivals to a system are usually assumed as following a Poisson distribution in a
queueing system. Let λ be the parameter of the Poisson distribution and denote the number
of events in a given interval. The probability density function is defined as follows.

P(X = x) =
λxe−λ

x!
, x = 0, 1, 2, . . . (17)

Function (17) presents the probability that the number of events is x in a unit time
interval. From the probability distribution of arrivals, we can derive the distribution of the
time intervals between arrivals. The probability distribution of the time interval can be
defined as an exponential distribution as follows.

f (x) = λe−λx, x ≥ 0 (18)
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Function (18) denotes the probability that the interarrival time between events is x.
These two probability distributions are used to estimate the states of charging stations. The
waiting time of a vehicle is calculated by summing the charging time with the interarrival
time. For instance, we assume a simple example for estimating the states from the data.

Table 2 shows the number of vehicles arriving in time intervals. The data can be
counted in each charging station. With the data, we can derive the probability distribution
of arrivals, which is assumed to follow a Poisson distribution.

Table 2. Arrival of vehicles in time intervals.

Time Interval Arrivals of Vehicles Time Interval Arrivals of Vehicles

11:00–11:10 1 12:20–12:30 1
11:10–11:20 0 12:30–12:40 2
11:20–11:30 0 12:40–12:50 1
11:30–11:40 0 12:50–13:00 0
11:40–11:50 1 13:00–13:10 4
11:50–12:00 2 13:10–13:20 0
12:00–12:10 3 13:20–13:30 2
12:10–12:20 4

Table 3 presents the counts of the arrivals from Table 2. For example, there were
zero arrivals five times in Table 1 and two vehicle arrivals occurred three times. The third
column is the value of the product of two numbers. With the two sums, we can calculate
the λ of the distribution as follows.

λ =
A × B

Sum of observed counts
=

21
14

= 1.5 (19)

Table 3. Count of arrivals.

Number of Arrivals (A) Observed Counts (B) A × B

0 5 0
1 4 4
2 3 6
3 1 3
4 2 8

Sum 14 21

Function (19) presents the calculation of λ of the distribution of arrivals of vehicles at
the charging station. The value of λ denotes that the average number of vehicles in a unit
time period is 1.5. With this λ, we can derive the interarrival time distribution with the
exponential distribution. Thus, the average time of interarrival is calculated as 1

λ = 0.67.
Adding the charging time from the interarrival can estimate the waiting time of the vehicle.

These estimated waiting times are the parameters for the electric vehicle routing
problem as the EVRP model. The routing problem can be solved with the exact algorithm.
We show some numerical examples for the routing problem in the next section.

5. Experimental Results

This section presents simple numerical examples for the electric vehicle routing prob-
lem. This paper considers an instance modified from a Solomon benchmark problem. The
dataset, so-called Solomon benchmark instance, generated by M.M. Solomon (1987, [24])
has been used in many studies into vehicle routing problems; for example, instances.

Figure 4 shows an instance for an electric vehicle routing problem. The instance is
randomly modified from a Solomon benchmark problem. We have plotted the layout of
the instance with the co-ordinates of x and y in the dataset as shown in Figure 4. In the
layout, we have not taken into account the route topography since the dataset is generated
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from the benchmark problem. There is one depot, multiple customer sites, and multiple
charging stations. In the figure, the square denotes the depot, circles represent charging
stations, and stars represent customer sites. All customer sites have to be visited, but some
of the charging stations are selected to visit. A vehicle has to visit a charging station once
during the delivery tour.
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Solving a mixed integer programming problem with an exact algorithm is a time-
consuming task. Thus, we have sampled five small instances from the problem of Figure 4,
reducing the size to 15 customer sites. Figure 5 shows the sample example one from the
instance in Figure 4, so the instance has one depot, 21 potential charging stations, and
15 customer sites for each time period. Vehicles have to service all customer sites for two
time periods and charge either in period one or period two. Potential charging stations are
selected to minimize the total travel costs.

Sustainability 2024, 16, x FOR PEER REVIEW 12 of 16 
 

  
(Period 1) (Period 2) 

Figure 5. Instance example one for Periods One and Two in a day. 

In this paper, we have implemented the EVRP model with C# with the concert tech-
nology of the CPLEX 12.6.1 software. Solving the instance in Figure 5 for period one and 
period two, we have the following results. 

Figures 6 and 7 show the solution of example one. The numbers in each row denote 
the nodes of the depot (0), charging stations, and customer sites. The order of the node 
numbers in a row presents the sequence of the optimal route. The sequence of nodes in a 
row is for the route of each vehicle. The vehicle starts from depot node 0 and returns to 
the depot. The objective value is the total cost of each route. The total cost is calculated 
with the sum of the total distances of the routes and costs of reaching the charging stations. 
Three vehicles are used to service the customer sites. In Figure 6, vehicles travel without 
visiting charging stations. On the other hand, vehicles are visiting charging stations once 
in Figure 7 and the number with an asterisk presents the charging station the vehicle visits. 
From the results, it can be seen that the optimal routes are changed when the vehicles visit 
the charging stations. The objective values as total travel costs are also changed. For the 
optimal strategy, we can calculate 𝑧 + 𝑧  and 𝑧 + 𝑧  and compare them. 𝑧 + 𝑧 = 385 + 489 = 874 <  𝑧 + 𝑧 = 485.9 + 436.4 = 922.3 (20)

From comparison (20), 𝑧 + 𝑧  is less than 𝑧 + 𝑧 . Accordingly, vehicles are rec-
ommended to visit charging stations in period two rather than period one. 

The results of Figure 6 without visiting charging stations can be seen as the routing 
from fossil-fueled vehicles. The results of Figure 7 from electric vehicles have 6% more 
total distances than the results of Figure 6. However, for the emission of CO2, the results 
of traditional routing solutions are much larger than the results of the optimal routings 
from Figure 7. 

 
Figure 6. Solution of example one not visiting charging stations. 

Figure 5. Instance example one for Periods One and Two in a day.

In this paper, we have implemented the EVRP model with C# with the concert tech-
nology of the CPLEX 12.6.1 software. Solving the instance in Figure 5 for period one and
period two, we have the following results.

Figures 6 and 7 show the solution of example one. The numbers in each row denote
the nodes of the depot (0), charging stations, and customer sites. The order of the node
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numbers in a row presents the sequence of the optimal route. The sequence of nodes in a
row is for the route of each vehicle. The vehicle starts from depot node 0 and returns to
the depot. The objective value is the total cost of each route. The total cost is calculated
with the sum of the total distances of the routes and costs of reaching the charging stations.
Three vehicles are used to service the customer sites. In Figure 6, vehicles travel without
visiting charging stations. On the other hand, vehicles are visiting charging stations once in
Figure 7 and the number with an asterisk presents the charging station the vehicle visits.
From the results, it can be seen that the optimal routes are changed when the vehicles visit
the charging stations. The objective values as total travel costs are also changed. For the
optimal strategy, we can calculate z11 + z14 and z12 + z13 and compare them.

z11 + z14 = 385 + 489 = 874 < z12 + z13 = 485.9 + 436.4 = 922.3 (20)
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From comparison (20), z11 + z14 is less than z12 + z13. Accordingly, vehicles are
recommended to visit charging stations in period two rather than period one.

The results of Figure 6 without visiting charging stations can be seen as the routing
from fossil-fueled vehicles. The results of Figure 7 from electric vehicles have 6% more
total distances than the results of Figure 6. However, for the emission of CO2, the results
of traditional routing solutions are much larger than the results of the optimal routings
from Figure 7.

Figures 8–11 show the experimental results of examples 2~5. The examples are
generated by randomly sampling 15 customer sites from the instance in Figure 4. Optimal
routes are determined by solving the EVRP model with the exact method. For the strategy
for a day, we calculate zk1 + zk4 and zk2 + zk3 for each example.

z21 + z24 = 448.6 + 525.1 = 973.7 < z22 + z23 = 516.2 + 468.8 = 985 (21)

z31 + z34 = 352.9 + 435.5 = 788.4 < z32 + z33 = 392.3 + 404.7 = 797 (22)

z41 + z44 = 393 + 467.5 = 860.5 < z42 + z43 = 442.3 + 420 = 862.3 (23)

z51 + z54 = 309.6 + 436.7 = 746.3 > z52 + z53 = 354.2 + 388.3 = 742.5 (24)
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Figure 11. Solution of example five.

Equations (21)–(24) present the comparisons of total travel costs for the days. In
examples two, three, and four, the total travel costs of zk1 + zk4 are smaller than zk2 + zk3.
Thus, in case of examples two, three, and four, visiting the charging stations in period two
is better than the other way. On the other hand, for example five, it is better for vehicles
to visit the charging stations in period one. In this way, we can make decisions how and
when the vehicles take charging during the delivery tours.

Figure 12 presents the solutions as the difficulties of charging at the stations change.
The difficulty of charging is the weight in the objective function of the EVRP model. As the
difficulty changes, the optimal route changes. If the change is small, the optimal solution
does not change. However, if the change is big enough, the optimal route will be different.
The model can find the threshold of the difficulty to change the optimal routes. Thus, with
the values, we can control the routing strategy for vehicles.

Depending on the battery state or charger’s power output or other factors, the charging
times vary in some charging stations. The variability of the charging times may affect the
routing solutions. We have conducted the sensitivity analysis to show how the changes in
the charging times affect the routing solutions.
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Figure 12. Solutions depending on the states of charging stations.

Table 4 shows the sensitivity analysis of charging times and routing solutions. In total,
21 potential charging stations are divided into three groups: 1~7, 8~14, and 15~21. We
have assigned the charging times differently to those three groups to see the changes to
the routing solutions. As the charging times in only a certain group increase, the charging
stations in that group have not been used in the optimal routes.

Table 4. Sensitivity analysis: charging times affect the routing solutions.

Charging Stations 1~7 8~14 15~21 Charging Stations Used in the Optimal Routes
for Three Vehicles

Charging times

5 5 5 4, 8, 17
10 5 5 4, 8, 17
. . . 5 5 4, 8, 17
35 5 5 4, 8, 17
40 5 5 8, 14, 21
45 5 5 8, 14, 21
5 5 5 4, 8, 17
5 10 5 4, 6, 17
5 15 5 4, 6, 17
5 5 5 4, 8, 17
5 5 10 4, 8, 17
5 5 15 4, 8, 14
5 5 20 4, 8, 14

6. Conclusions

This paper suggests the electric vehicle routing problem by considering the states of
charging stations. The issue of charging is important for the electric vehicle routing problem.
Charging functions, energy consumption, and the location of charging stations have been
explored in many studies. However, the state of a charging station is also important to find
the optimal route in the electric vehicle routing problem. The state of a charging station
can be seen as the availability of the charging station. If charging is not available when a
vehicle arrives, the travel costs will significantly increase. In this paper, we consider the
states of charging stations, formulate the model, and suggest the solution approach.

The first step of the solution approach is to collect the data from all charging stations.
The arrivals of vehicles to the station are collected as raw data. The data has been analyzed
to find the patterns of states of the charging stations. Estimating the probability distribution
of arrivals and interarrival times can be used to find the pattern of waiting times when a
vehicle arrives at the charging station. Once the patterns of the states of charging stations
are determined, the values are used as input parameters for the model of the electric vehicle
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routing problem. With the solutions, we can find the optimal routing strategy for the
two-time-period problem.

Experimental results provide how to find the optimal strategy for the electric vehicle
routing problem with the states of charging stations. In the two-time-period problem, we
are able to determine in which time period the vehicles visit the charging stations. The
difficulty of charging can be used to find the threshold where the optimal routes change.
Thus, we can control the electric vehicle routing by considering the availability of the
charging stations.

The nonstationary distributions for the states of charging stations should be explored
in future work. Investigating the uncertainty of charging durations for vehicles is also
a challenging issue. Obtaining real-world scenarios for the states of charging stations
and investigating the charging behaviors of vehicles are the future works of our study.
In addition, the change in atmospheric conditions, especially temperature, change of
topography (driving uphill or downhill), or carried weight have a significant impact on
the operation of batteries and thus the range of electric vehicles. Taking into account these
parameters is also future work.
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