
Citation: Wang, S.; Zhao, Y.; Zhang, S.;

Wang, D.; Wang, C.; Gong, B. A

Multi-Objective Optimization Method

for Single Intersection Signals

Considering Low Emissions.

Sustainability 2024, 16, 3522.

https://doi.org/10.3390/su16093522

Academic Editor: Armando Cartenì

Received: 6 March 2024

Revised: 17 April 2024

Accepted: 19 April 2024

Published: 23 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

A Multi-Objective Optimization Method for Single Intersection
Signals Considering Low Emissions
Shan Wang 1, Yu Zhao 1, Shaoqi Zhang 2,*, Dongbo Wang 3, Chao Wang 3 and Bowen Gong 4,5,*

1 Intelligent Transport System (ITS) R & D Center, Shanghai Urban Construction Design and Research
Institute (Group) Co., Ltd., Shanghai 200125, China; wangshan@sucdri.com (S.W.); zhaoyu@sucdri.com (Y.Z.)

2 China FAW Group Co., Ltd., Changchun 130011, China
3 Bureau of Transportation and Construction, TEDA Administrative Commission, Tianjin 300450, China;

wangdb@teda.gov.cn (D.W.); wangchao87@163.com (C.W.)
4 Department of Traffic Information and Control Engineering, Jilin University, Changchun 130022, China
5 Jilin Engineering Research Center for Intelligent Transportation System, Changchun 130022, China
* Correspondence: zsq21@mails.jlu.edu.cn (S.Z.); gongbowen@jlu.edu.cn (B.G.)

Abstract: The exponential growth of urban centers has exacerbated the prevalence of traffic-related
issues. This surge has amplified the conflict between the escalating need for travel among individuals
and the constricted availability of road infrastructure. Consequently, the escalation of traffic accidents
and the exacerbation of environmental pollution have emerged as increasingly pressing concerns.
Urban road intersections, serving as pivotal junctures for vehicle convergence and dispersal, have
remained a focal point for scholarly inquiry regarding enhanced operational efficacy and safety.
Concurrently, vehicles navigating intersections are subject to external influences, such as pedestrian
crossings and signal controls, causing frequent fluctuations in their operational dynamics. These
fluctuations contribute to heightened exhaust emissions, exacerbating air pollution and posing
health risks to pedestrians frequenting these intersections. A reasonable signal timing scheme can
enable more vehicles to pass through the intersection safely and smoothly and reduce the pollutants
generated by transportation. Therefore, optimizing signal timing schemes at intersections to alleviate
traffic problems is a topic that needs to be studied urgently. In this paper, the emission model
based on specific power is analyzed. Through an analysis of the correlation between specific power
distribution intervals and the emission rates of individual pollutants, it has been observed that
vehicle emission rates are at their lowest during idle speed, progressively increasing with rising
vehicle speeds. Investigation into specific power distribution based on variables, such as vehicle
type, frequency of stops, and varying delays, has led to the deduction that the peak specific power
of vehicles at intersections consistently occurs within the (0, 1) interval. Furthermore, it has been
established that high-saturation intersections exhibit higher peak specific power compared to low-
saturation intersections.

Keywords: single intersection; traffic signal timing; traffic emissions; multi-objective optimization;
improved genetic algorithms

1. Introduction

The rapid pace of economic development has brought about a significant increase
in the number of vehicles on our roads, drawing considerable attention. The congestion
on roads and the increase in vehicle emissions have become issues worthy of attention.
A collaborative report [1] titled 2022 Annual Traffic Analysis of Major Chinese Cities,
crafted by authoritative institutions, meticulously scrutinized the traffic dynamics across
50 medium-to-large cities nationwide. The thorough analysis of data unearthed a persistent
annual upsurge in the travel delay index during peak hours. The urban road intersection is
an important node in the traffic network, and traffic participants are numerous. When the
vehicle passes through the intersection, the rules of road priority and the control of traffic
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lights will produce frequent deceleration, idling, acceleration, and constant speed form
of state change. Different driving conditions produce different emissions [2]. Scientific
inquiries [3] have unequivocally illustrated that, during vehicular acceleration, the average
emissions of hydrocarbons and carbon dioxide soar to levels nearly five times higher than
those of their idling counterparts. Similarly, emissions of nitrogen oxides and carbon
monoxide surge to levels nearly ten times greater than observed during idle periods.
However, traditional intersection signal timing only considers delay and queue length
and ignores the impact of emissions [4]. Therefore, this paper proposes a signal timing
optimization scheme considering vehicle emissions at intersections. It aims to bridge the
gap between traditional approaches to traffic management and the realization of sustainable
urban road traffic systems. Firstly, the evaluation index of single-intersection signal control
was selected and analyzed, and then a multi-objective evaluation model was constructed.
Secondly, the improved genetic algorithm is used to solve the optimal timing scheme model.
Finally, the effect is verified by experiments.

The main contributions of this research can be summarized as follows:

(1) A comprehensive evaluation index system considering emissions is proposed.
(2) A vehicle emission model based on specific power is proposed.
(3) The genetic algorithm has been improved to solve the objective function.

The remainder of this paper is organized as follows: Section 2 reviews related research
on influencing factors for vehicle emissions, vehicle emission models, and signal control
considering vehicle emissions. Section 3 presents the method of signal optimization consid-
ering low emissions. In Section 4, experiments are conducted to illustrate the performance
of the proposed method. Section 5 concludes the paper with a summary and discusses
future work.

2. Related Works

With growing environmental awareness, an increasing number of transportation
scholars take vehicle emissions into account on traffic signal control optimization [5–7].
This involves three key aspects. Firstly, factors affecting emissions at intersections are
analyzed. Secondly, estimation methods for vehicle emissions at intersections are explored.
Thirdly, emissions as an optimization target in signal timing and traffic organization
are considered.

Vehicle emissions are the results of multi-factor interactions. Research on these ve-
hicular emission factors varies, but the influencing factors of vehicle emissions in the
literature differs significantly according to the research content [8]. Data are abundant
and include values for the vehicular operating factors and road environmental factors [9].
Vehicle operating factors are mainly divided into fuel-related factors and speed-related
factors. Fuel-related factors are dominated by vehicle characteristics and take into account
the operational requirements during the vehicle’s operation, including the fuel type, fuel
consumption, travel distance, and engine type [10,11]. Vehicle running speed is the basic
index of emissions in many models, and mainly includes the average speed and instanta-
neous speed. In the laboratory, various velocity changes are often simulated for emission
modeling [12,13].

Some scholars have realized that external environmental factors in vehicle operation
need to be taken into account. Costagliola [14] proposed that the actual road conditions of
vehicles during operation had a significant impact on the emission results. Yao [15] utilized
VISSIM simulation data and discovered that, the greater the slope of the intersection’s
approach road, the higher the emission factor for motor vehicles. Studies have shown
that changes in the parameters between the tires and road surface can also stimulate the
running efficiency of vehicles, thus increasing the impact of vehicle emissions [16,17].

When vehicles are running at intersections, they are controlled by signals and ad-
just between different operating states, which inevitably affects the engine’s operating
efficiency. Pandian [18] compared CO2 emissions at an intersection before and after its
conversion from signal control to a roundabout. The study found that vehicles’ emissions
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at roundabouts were lower than at signal-controlled intersections and the difference was
statistically significant. Haydari [19], using deep learning and neural networks to optimize
intersection signal control, found that travel time is highly correlated with CO2 emissions
and fuel consumption.

There are two main types of intersection vehicle emission models: fuel-based [20,21]
and speed-bases [13,22]. Fuel-based emission models are mainly applied to the measure-
ment and analysis of transportation carbon emissions in cities, regions, and whole coun-
tries [23]. Applying emission models based on vehicle speed and related parameters is more
commonly used at an intersection. Gao [24] categorized queuing vehicles at intersections
according to different operating conditions, used fixed acceleration/deceleration values,
calculated intersection stop frequencies and delays, and utilized an emission model based
on specific power distribution to simplify the calculation of total emissions when vehicles
queue in front of signal intersections. Sun [25] referred to the establishment principles of
existing emission models, first identified initial emission factors, then adjusted parameters
based on influencing factors, and finally combined the two to calculate the emissions. Using
available emission data and simulated vehicle operation data, Sun established an emission
estimation method for signal intersections under vehicle–road coordination, keeping the
relative error between the model results and simulation values within 3%. Xu [26] collected
floating vehicle GPS data, clustered specific powers based on the particle swarm algorithm,
established a speed-based operation mode distribution model, and compared emission
rates for different operation modes, with an error of less than 6.08% against actual values.

Based on emission method research, numerous scholars have analyzed factors influ-
encing emissions and conducted signal optimization research targeting emission reduction
at intersections [26,27]. Ba [28] built a simulation platform integrating VISSIM and MOVES
to estimate intersection emissions, analyzing the effects of traffic organization optimization,
the establishment of left-turn waiting areas, and signal optimization on intersection emis-
sions. Wu [29] found that intersections with borrowed left-turn schemes showed reduced
vehicle pollutant emissions, and signal control optimization also decreased emissions.
Qu [30] performed regression analysis on emissions and delays, establishing a relationship
and developing a signal optimization model targeting emission reduction and delay reduc-
tion. Simulation of typical intersections showed a 10.54% reduction in delays and a 13.41%
reduction in emissions post-optimization. Li [31] categorized vehicle operating states at
intersections into uniform speed, deceleration, idling, and acceleration, providing simpli-
fied emission calculation formulas for each state and establishing an emission-minimizing
single-point and arterial signal optimization model.

In conclusion, both domestic and international researchers have conducted in-depth
on-going studies on traffic signal optimization. However, most researchers, when opti-
mizing traffic signals at single intersections or along arterial roads, tend to rely solely on
mobility metrics, with only a few incorporating sustainability metrics. Among those who
use sustainability metrics, many rely on specific power models, using tools like MOVES to
establish emission calculation platforms for intersection vehicle emissions. However, such
methods have not quantified the relationship between signal timing parameters, evaluation
metrics, and emissions, making it difficult to analyze the quantitative impact of signals
on emissions.

Hence, this paper aims to overcome these limitations by quantifying the relationship
between signal timing parameters, evaluation metrics, and emissions. It integrates both
mobility and sustainability metrics for signal optimization at single intersections. The aim is
not only to alleviate congestion and optimize signal timings but also curtail environmental
ramifications by intelligently addressing emissions during peak traffic hours. Through a
comprehensive analysis of intersection-based emissions patterns, this research aspires to
contribute substantively to the development of sustainable urban road traffic systems.
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3. Materials and Methods
3.1. Evaluation Metrics for Single-Intersection Signal Control

Urban intersection signal control can temporally segregate the flow of traffic, reduce
conflict points, enhance traffic safety, and ensure optimal throughput and environmental
benefits when traffic signals are allocated reasonably. This section introduces commonly
used optimization indicators for intersection signals: mobility metrics (throughput capacity,
delay time, and queue length) and sustainability metrics (pollutant emissions).

3.1.1. Throughput Capacity of the Intersection

The throughput capacity of an intersection depends on its geographical environment,
channelization shapes, and signal timings. It represents the maximum traffic volume pass-
ing through the road’s approach in a unit time under specific conditions and is a crucial
metric for assessing the fluidity of an intersection. The throughput can vary due to differ-
ences in signal control methods, intersection geometrical structures, traffic participation
conditions, and other factors. The calculation method is as shown in Formula (1):

Cap = S·
ge
C

= S·u (1)

where:
S is the saturation flow rate of the approach, unit: pcu/h (passenger car units per hour);
ge is the effective green light time of the phase, unit: s (seconds);
C is the signal cycle duration, unit: s (seconds);
u is the green signal ratio of the signal phase, dimensionless;
Cap is the throughput capacity of the signalized intersection, unit: pcu/h (passenger

car units per hour).

3.1.2. Delay at the Intersection

Delay time is one of the most frequently used metrics to assess the operational status
of an intersection. The severity of congestion at an intersection is directly proportional
to the average delay time experienced by vehicles operating there. Conversely, a smaller
average delay time indicates smoother vehicle flow. The delay time consists of four main
components: delay caused by signal control, delay due to vehicle queuing, delay arising
from vehicle braking, and delay resulting from vehicle lane changing.

Popular models for calculating delay at intersections include the HCM (Highway Ca-
pacity Manual) model [32], the steady-state theory [33], and the fixed number theory [34].
Given that the steady-state theory and the constant theory are too idealistic in their con-
ditions, in the actual operation of intersections vehicle departures and arrivals function
discretely. The HCM model divides vehicle delay at intersections into random delay and
average delay. Random delay is caused by uneven traffic volume arrivals during different
cycles of the intersection, leading to imbalances in certain periods and resulting in longer
queues. Average delay occurs when the vehicle arrival rate remains constant or changes
very little. By integrating the steady-state theory [33] and the constant theory [34], the
HCM model can be improved. The formula is as follows:

∼
dall =

∑n
i=1 qi·

∼
di

∑n
i=1 qi

(2)

∼
di =

qi
2uiSi(uiSi − qi)

+
1 − ui

2qi
+

C(1 − ui)
2

2(1 − yi)
(3)

where:∼
dall is the total delay within the intersection’s cycle, unit: s (seconds);
∼
di is the average delay of vehicles during the ith phase of the intersection’s cycle, unit:

s (seconds);
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qi is the traffic volume during the ith phase of the intersection’s cycle, unit: pcu/h
(passenger car units per hour).

3.1.3. Vehicle Queue Length at the Intersection

The maximum queue length represents the greatest distance between the stop line of
the approach and the rearmost vehicle within a single cycle. If this length exceeds the dis-
tance to the preceding intersection, it may lead to overflow queuing, significantly hindering
the signal control effectiveness of the upstream intersection. When the intersection is in an
oversaturated state, there is a possibility of intersection “spillover”, where vehicles from
the previous cycle queue up to the upstream intersection, obstructing the normal traffic
flow of the upstream intersection. The queue length of vehicles at this intersection can be
calculated using Formula (4).

l =
Q
4

[√
12(x − x0)

u·C + (x − 1)2 − 1 + x

]
(4)

where:
x0 =

tgqs

600
+ 0.67 (5)

where:
l is the queue length of vehicles when the green light just turns on at the start of the

cycle at the intersection, unit: m (meters);
Q is the throughput capacity of the intersection, unit: pcu/h (passenger car units

per hour);
u is the green signal ratio of the signal phase, dimensionless;
x is the saturation degree of the intersection, dimensionless;
C is the cycle of the intersection, unit: s (seconds);
qs is the saturation flow rate of the approach at the intersection, unit: pcu (passenger

car units).
When the saturation degree of the intersection approaches 1, the queue length is:

l = Tredq + tg·(q − u) + ls (6)

where:
ls represents the queue length of vehicles left over from the previous cycle at the

intersection, unit: m.
q represents the vehicle arrival rate, unit: pch/h.
u is the green signal ratio for the signal phase, dimensionless.
Tred stands for the red light at the intersection phase, unit: S.
When the intersection is in an under-saturated state, the queued vehicles consist of

those arriving during the red light and those left over and not entering the intersection
before the red light starts. The queue length can be calculated using Equation (7):

l = lstart + lred (7)

where:

lstart =
exp

[
− 4(1−x)

3x ·(qs·C·u)
1
2
]

2(1 − x)
(8)

lred = q·Tred (9)

where:
lstart is the queue length of vehicles remaining at the intersection after the green light

ended in the previous cycle, unit: m.
lred is the queue length of vehicles arriving at the intersection during the red-light

duration, unit: pch/h.
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3.1.4. Vehicle Emission at the Intersection

In recent years, topics like “carbon neutrality” and “carbon peak” have gradually
become parts of our daily lives. This has prompted traffic management departments to
elevate the control of vehicle exhaust emissions to the same importance level as intersection
traffic efficiency. Reducing vehicle exhaust emissions while increasing the efficiency of
intersections, such as by decreasing delays and queue lengths, is an urgent problem that
we need to address.

When calculating pollutant emissions at an intersection, one can sum up the cumula-
tive emissions of individual vehicles. The emission of a single vehicle passing through the
intersection is shown in Equation (10):

TE = ∑m
i=1 ∑n

j=1 Eij·fVSPi (10)

where:
i is the power ratio interval index.
j is the pollutant category.
Eij is the emission rate of pollutant category j in the power ratio interval i.
fVSPi is the number distribution of the vehicle’s instantaneous power ratio in power

ratio interval i.
Once the per-second pollutant emission of a single vehicle is obtained, the total

emissions at the intersection can be calculated. The overall emissions at the intersection
can be calculated by dividing into approach road sections. The total emissions for each
approach road section can be further divided into emissions due to vehicle waiting time
at the intersection and emissions from vehicles passing through the intersection. The
calculation formula is shown below:

AE1
k = TE·qk·(Lk − lk) (11)

AE2
k =

1
3600

(TE·qk·Dk) (12)

where:
k is the approach road section. Typically, there are four for a cross intersection and

three for a T-shaped intersection.
AE1

k is the emission amount from vehicles passing through the intersection in the kth

approach road section.
AE2

k is the emission amount from vehicles waiting at the intersection in the kth ap-
proach road section.

Lk is the length from the upstream intersection to the stop line of the kth approach road
section at the intersection, unit: m.

Dk is the average delay time per vehicle in the kth approach road section at the
intersection, unit: s/pcu.

Therefore, the total pollutant emissions for the entire intersection can be expressed as:

AE = ∑
k

AE1 +
1

3600∑
k

AE2 (13)

where:
AE is the total emission amount at the intersection, with the unit: g.
Substituting Equations (11) and (12) into Equation (13) gives:

AE = ∑
k
[TE·qk·(Lk − lk)] +

1
3600∑

k
[TE·qk·Dk] (14)
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After selecting and analyzing the indicators for single-intersection signal timing evalu-
ation, we need to establish a multi-objective evaluation model to improve the efficiency of
intersections and reduce pollutant emissions.

3.2. Construction of the Multi-Objective Optimization Model for Single-Point Intersections
3.2.1. Construction of the Multi-Objective Optimization Function

The main goal of this paper is to establish a multi-objective optimization model
to improve the efficiency of the intersection and reduce pollutant emissions. Thus, the
optimization objectives are to minimize the overall pollutant emissions of the intersection,
minimize delay time, and minimize the queue length. A multi-objective optimization
model for signal timing at a single-point intersection is constructed. The objective function
is shown in Equation (15):

min

∼
dopt
∼
dori

,
lopt

lori
,

AEopt

AEori
(15)

where:∼
dopt is the average vehicle delay after optimizing the signal timing scheme at the

intersection, unit: s.
∼
dori is the average vehicle delay of the original signal timing scheme at the intersection,

unit: s.
lopt is the average queue length after optimizing the signal timing scheme at the

intersection, unit: m.
lori is the average queue length of the original signal timing scheme at the intersection,

unit: m.
AEopt is the pollutant emission amount after optimizing the signal timing scheme at

the intersection, unit: g.
AEori is the pollutant emission amount of the original signal timing scheme at the

intersection, unit: g.
The results of the multi-objective optimization function can only be on the Pareto

frontier, making it impossible to find a solution that optimally satisfies every individual
objective function. Given that the three current objective functions are dimensionless, we
can multiply them together, converting them into a single objective function. The optimal
solution can then be obtained, as shown in Equation (16).

min

∼
dopt
∼
dori

×
lopt

lori
×

AEopt

AEori
(16)

According to Equation (16), we need to find an optimal solution that minimizes the
overall value. Converting multi-objectives into a single objective function is more reason-
able than the simple weighted allocation method because the latter requires considering
the weight of each objective and is highly subjective.

3.2.2. Multi-Objective Optimization Model at a Single Point Intersection

During the optimization process of the signal timing scheme at a single-point intersec-
tion, the optimal solution obtained solely based on the objective function often cannot be
applied in practice. Constraints are usually added to variables based on real-world condi-
tions. Considering the traffic environment conditions and road parameters, the following
constraints are applied:

(1) Degree of Saturation

The signal timing at intersections is significantly influenced by the degree of saturation;
thus, its value should neither be too high nor too low. The researchers explored the
relationship between saturation and delays [35] to determine the critical saturation values
that are appropriate for the actual situation and for congestion. When saturation levels



Sustainability 2024, 16, 3522 8 of 19

exceed 0.85, this indicates that the intersection is oversaturated. In this state, the volume
of traffic exceeds the intersection’s capacity to efficiently handle it. Conversely, when
saturation levels fall below 0.6, this indicates that the intersection is operating below its
capacity. While traffic may flow smoothly under these conditions, the intersection is not
maximizing its potential throughput, resulting in underutilization of resources. In such
scenarios, applying complex multi-objective optimization schemes for signal timing may
not yield substantial benefits. This is because the intersection is not facing significant
congestion issues that necessitate intricate optimization strategies. Therefore, based on the
actual operating conditions of the intersection, constraints on the degree of saturation for a
single-point signal-controlled intersection are applied as follows:

0.6 < x < 0.85 (17)

(2) Green Light Duration

In urban single-point intersection signal control, the green light duration of each phase
is a crucial indicator affecting the intersection’s traffic efficiency. It is closely related to the
waiting time and queue length of vehicles and pedestrians at the intersection, as well as the
smoothness of the traffic flow. If the green light duration at an intersection is too short, it
may prevent slower pedestrians from crossing the intersection safely. Moreover, it could
lead to frequent switching of traffic lights, causing vehicles to frequently start and stop at
the intersection, exacerbating pollutant emissions and increasing delay times. If the green
light duration is too long, there might be instances of idling, increasing the waiting time
for other phases in red. This can cause agitation among drivers and potentially increase
the likelihood of accidents. Therefore, it is essential to specify maximum and minimum
values for the green light duration of each phase. The green light duration of each phase at
a single-point intersection can be constrained using Equation (18).

gmin ≤gi < gmax (18)

where:
gi is the green light duration of the ith phase at the intersection, unit: s.
gmin is the minimum green light duration of the ith phase at the intersection, unit: s.
gmax is the maximum green light duration of the ith phase at the intersection, unit: s.

(3) Signal Cycle Duration

The signal cycle duration of a signal-controlled intersection is another factor affecting
its traffic efficiency. A cycle that is either too long or too short can negatively impact not
just the intersection but potentially the efficiency of the entire road network. Therefore,
it is essential to apply constraints to the intersection’s signal cycle duration, as shown in
Equation (19), ensuring that the optimized cycle duration aligns with the road’s actual
conditions.

Cmin ≤C < Cmax (19)

where: C is the cycle duration of the intersection, unit: s. Cmin is the minimum cycle
duration of the intersection, unit: s. Cmax is the maximum cycle duration of the intersection,
unit: s.

Based on the previously presented multi-objective optimization function for signal
timing, along with its three constraints, the multi-objective optimization model at a single
point intersection can be established as shown in Equation (20).

F = min

∼
dopt
∼
dori

×
lopt

lori
×

AEopt

AEori

s.t


0.6 <x < 0.85

gmin ≤gi < gmax
Cmin ≤C < Cmax

(20)

After the multi-objective optimization model at a single point intersection is built, the
model needs to be solved to obtain the optimal solution.



Sustainability 2024, 16, 3522 9 of 19

3.3. Optimization Model Solution Based on Genetic Algorithms

Genetic algorithm (GAs) [36] are a type of modern optimization algorithm. According
to the law of survival of the fittest in nature, the genes of the superior individuals in the
population are inherited. The chromosomes of each individual produce new chromosomes
with greater fitness through the process of selection, crossover and mutation, among
which the individuals with greater fitness are favourable for selection, the population is
optimized, the solution approximation is close to the optimal solution, and the population
is continuously optimized by repeated iterations to finally obtain the optimal solution to
the target problem. GAs are an intelligent search algorithm based on the principles of
natural selection and genetic mechanisms.

GAs generate initial points randomly, facilitate parallel searches, and operate in
encoded forms, minimizing impact on the decision variables themselves. Operations, like
selection and mutation, generate newer, more optimal individuals and populations. After
multiple iterations, the best-performing individual is obtained, representing the optimal
solution to the optimization problem. With a broader operational space, the algorithms only
need a fitness function for evaluations. The iterative process is probability-driven, ensuring
efficient and effective global optimization. Given these advantages, this paper adopts the
GA as the solution for the single-point intersection signal control optimization model.

3.3.1. Implementation Steps of GAs

The computational flowchart of the genetic algorithm is shown in Figure 1.
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Step 1: Chromosome Gene Encoding
In genetic algorithms, individuals in a population have the same number of chromo-

somes, each representing optimization parameters, like cycle duration and green signal
ratio, for a single-point signal-controlled intersection. Genes on chromosomes encode these
parameters, with different combinations, yielding varying fitness levels. Chromosomes are
passed to the next generation through individual mating.

Step 2: Random Generation of Initial Population
The initial population size (N) in genetic algorithms must be carefully chosen. If it is too

small, the algorithm’s optimization potential is limited, possibly hindering optimal solution
identification. Conversely, if N is too large, although the likelihood of finding optimal
fitness increases, it can decrease optimization efficiency, consuming more time. Therefore,
the initial population size should be chosen based on the computational capabilities of
the hardware.

Step 3: Calculate the Fitness of Individuals within the Population
When the genetic algorithm solves the objective function, fitness is used as the criterion

to evaluate the effect. Higher fitness means better traits. Our objective function, on the
other hand, needs to be as low as possible for each indicator, so we need to convert the
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objective function into fitness. We take fitness as the reciprocal of the objective function, as
shown in Equation (21).

f =
1
F

(21)

where F is the objective function and f is the fitness function.
Step 4: Perform Selection Operator Operation
The selection operator is the most critical part of the genetic operations in a genetic

algorithm. We choose roulette wheel selection [37] because the basic idea of this method is
that the probability of each individual being selected is directly proportional to its fitness.
This method is conducive to the selection of targets with high adaptability in the process of
multi-objective optimization and promotes the rapid evolution of genetic algorithms. This
can be represented by Equation (22).

Pi =
fi

∑N
1 fi

(22)

where:
N represents the population size.
fi represents the fitness of the ith individual, dimensionless.
Pi represents the probability of the ith individual being selected during the genetic

operation, dimensionless.
Step 5: Perform Crossover Operator Operation
In genetic algorithms, the crossover operator mates individuals to create new ones

with unique genes. The crossover probability is a crucial parameter, balancing precision
and diversity. High probabilities ensure enough offspring but may compromise precision,
while low probabilities risk premature convergence. A piecewise function is needed: early
stages favor high probabilities for diversity, later stages decrease them for precision. The
crossover probability can be calculated using Equation (23).

Pjc =

{
Pjcmax −

( f ′− fa)(Pjcmax−Pjcmin)
fmax− fa

f ′ ≥ fa

Pjcmin f ′ ≤ fa
(23)

where:
Pjcmax is the user-defined maximum crossover probability for the population, dimen-

sionless.
Pjcmin is the user-defined minimum crossover probability for the population, dimen-

sionless.
f ′ is the higher fitness value between the two individuals undergoing crossover in the

population, dimensionless.
fa is the average fitness of the current generation in the population, dimensionless.
fmax is the maximum fitness of the current generation in the population, dimensionless.
Step 6: Perform Mutation Operator Operation
In genetic algorithms, the mutation operator simulates gene mutation, enhancing

population diversity and global search capabilities. The mutation probability is crucial.
High probabilities risk instability due to excessive mutations, making it hard to find optimal
solutions. Low probabilities limit search capabilities, hindering convergence. Balancing
mutation probability is vital for effective optimization. Therefore, similar to the crossover
operator, the mutation operator also requires a piecewise nonlinear function, as shown in
Equation (24).

Pby =

{
Pbymax −

( f max− f ′)(Pjcmax−Pjcmin)
fmax− fa

f ′ ≥ fa

Pjcmin f ′ ≤ fa
(24)

where:
Pbymax is the user-defined maximum mutation probability for the population, dimensionless.
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Pjcmin is the user-defined minimum mutation probability for the population, dimensionless.
fa is the average fitness of the current generation in the population, dimensionless.
Step 7: Determine if the Algorithm Meets the Termination Criteria
Given finite computational resources, termination criteria must be set for genetic

algorithms. Two common methods are:
Precision-based: If the optimal solution remains unchanged or varies very slightly for

x consecutive generations, the loop terminates, and the optimal solution is output.
Generation-based: The algorithm evolves for Y generations, and the optimal solution

of the Yth generation is output. If the termination criteria are met, the algorithm concludes;
otherwise, the process repeats until an optimal solution is achieved.

3.3.2. Genetic Algorithm Optimization Solution

In genetic algorithms, obtaining the global optimal solution can be challenging due
to the standard operators potentially disrupting good gene combinations. To address this,
an improved genetic algorithm is proposed. This includes a selection operator aimed at
retaining the global optimal solution, crucial for converging multi-objective optimization
problems to their global optima.

Step 1: According to the encoding rules, initialize a population P composed of N
individuals. The population P can be described as follows:

P(t) = {a1(t), a1(t), . . . , aN(t)} (25)

Step 2: If the stopping condition is met, terminate the process. Otherwise, continue
with the following steps.

Step 3: Calculate the fitness of the best individuals in the tth and (t + 1)th generations,
as follows:

fmax(t) = max{ f (a1(t)), f (a1(t)), . . . , f (aN(t))} (26)

fmax(t + 1) = max{ f (a1(t + 1)), f (a1(t + 1)), . . . , f (a N(t + 1))} (27)

Step 4: Pass all the best individuals from the current population to the next genera-
tion. Independently select the remaining N − 1 individuals from the current population,
as follows:

if fmax(t) > fmax(t + 1) then replicate:{
a′k(t) = {ak(t)| f (ak(t)) > fmax(t + 1), ak(t) ∈ P(t)

}
replace the worst ones of

{
aj(t + 1) ∈ P(t + 1)

}
with

{
a′k(t)

}
end if
Step 5: Independently perform crossover and mutation operations on the N − 1

individuals. Then, obtain a new generation of the population with N individuals.
Step 6: Return to Step 2. To verify the effectiveness of the improved genetic algorithm,

we compared the fitness calculation results of the standard genetic algorithm and the
improved genetic algorithm. The crossover and mutation probabilities for the genetic
algorithm were set to 0.5, respectively, the initial population size was set to 1000, and the
number of population iterations was set to 50. The final results are shown in Figure 2.

According to Figure 2a, we can observe that the standard genetic algorithm does not
guarantee that the fitness of the best individual in the current generation is always better
than that of the previous generation. For instance, when evolving from the eighth to the
ninth generation, the fitness of the best individual is actually worse than before. On the
other hand, the improved genetic algorithm retains the best individual from each genera-
tion, as described in Step 4, ensuring they do not participate in crossover and mutation. As
a result, it guarantees that the best individual’s fitness in the current generation is never
less than that of the previous generation. For example, as shown in Figure 2b, the fitness
of the population’s best individual always increases, indicating that the improved genetic
algorithm can be used to find the global optimum for optimization problems.
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Figure 2. Fitness calculation before and after genetic algorithm improvement. (a) Population
fitness calculation using the standard genetic algorithm. (b) Population fitness calculation using the
improved genetic algorithm.

4. Experiment and Result
4.1. Experimental Setup

This verification example utilizes VISSIM4.3 simulation software, known for accurately
replicating real road traffic conditions based on its designed models and parameters.
Subsequently, traffic flow conditions and road parameters are input into the single-point
intersection signal control multi-objective optimization model. Decision variables from the
model are encoded and input into the improved genetic algorithm. Using this algorithm, we
can compute the optimal signal timing that satisfies the objective function and constraints.
This optimal scheme is then automatically input into the VISSIM signal group via the
VISSIM COM interface. Running the VISSIM simulation provides results like the average
delay at the intersection, the average queue length, and pollutant emission levels. These
results are logged into a file. Within the VISSIM microscopic simulation framework, the
optimal signal timing is recalculated every 10 min, implementing rolling optimization for
a 24-h period at the intersection. Finally, the simulation outputs are analyzed to validate
the effectiveness of the model and algorithm. The system framework based on VISSIM
microscopic simulation is shown in Figure 3.
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Figure 3. System Framework of VISSIM Microscopic Simulation.

4.1.1. Simulation Road Network and Scenario Construction

The intersection of Jinshui Road and Renmin Road in the main urban area of Taiqian
County is chosen as the examination scenery. This intersection is a 4-phase junction,
equipped with a traffic island. The planar channelization diagram and 3D view are shown
in Figure 4.



Sustainability 2024, 16, 3522 13 of 19

Sustainability 2024, 16, x FOR PEER REVIEW 13 of 19 
 

 

Figure 3. System Framework of VISSIM Microscopic Simulation. 

4.1.1. Simulation Road Network and Scenario Construction 

The intersection of Jinshui Road and Renmin Road in the main urban area of Taiqian 

County is chosen as the examination scenery. This intersection is a 4-phase junction, 

equipped with a traffic island. The planar channelization diagram and 3D view are shown 

in Figure 4. 

 

 

(a) (b) 

Figure 4. Channelization map of Jinshui Road and Renmin Road intersection. (a) Plan view of the 

intersection. (b) Plan view of the intersection. 

Through a traffic survey at the intersection, actual operational data of the junction 

was obtained. 

(1) Signal timing of the intersection 

The intersection of Jinshui Road and Renmin Road operates on a fixed signal timing 

scheme, with a cycle length of 162 s. It is a four-phase intersection. The signal timings for 

each phase are as shown in Table 1. 

Table 1. Signal timing at the intersection of Jinsui Road and Renmin Road. 

Phase Direction 
Green Light 

Duration (s) 

Red Light Du-

ration (s) 

Yellow Light 

Duration (s) 

All-Red Dura-

tion (s) 
Cycle (s) 

Phase 1 
East–West Straight 

Through 
46 101 3 3 162 

Phase 2 East–West Left Turn 30 117 3 3 162 

Figure 4. Channelization map of Jinshui Road and Renmin Road intersection. (a) Plan view of the
intersection. (b) Plan view of the intersection.

Through a traffic survey at the intersection, actual operational data of the junction
was obtained.

(1) Signal timing of the intersection

The intersection of Jinshui Road and Renmin Road operates on a fixed signal timing
scheme, with a cycle length of 162 s. It is a four-phase intersection. The signal timings for
each phase are as shown in Table 1.

Table 1. Signal timing at the intersection of Jinsui Road and Renmin Road.

Phase Direction Green Light
Duration (s)

Red Light
Duration (s)

Yellow Light
Duration (s)

All-Red
Duration (s) Cycle (s)

Phase 1 East–West Straight
Through 46 101 3 3 162

Phase 2 East–West Left Turn 30 117 3 3 162

Phase 3 North–South Straight
Through 47 100 3 3 162

Phase 4 North–South Left Turn 26 121 3 3 162

(2) Traffic Volume Survey at the Intersection

The traffic flow survey was conducted at the same time on 12 December 2021 and
13 December 2021, from 16:40 to 17:40, with an hourly interval. The survey method was
aerial photography using drones. At the intersection, statistics were gathered from both
the flow volume of each incoming lane and the flow volume of each incoming direction.
The number of vehicles recorded from the survey is shown in Table 2.

Table 2. Traffic Volume at the Intersection.

Entry/Flow Direction Left Turn Right Turn Straight Through

East Entry 312 329 572
West Entry 410 525 309

North Entry 538 535 202
South Entry 532 457 341

Based on the survey results of the example scenario provided above, a VISSIM simula-
tion network was constructed, as shown in Figure 5.
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4.1.2. Calibration of Model and Algorithm Parameters

(1) Calibration of signal timing parameters

During the optimization process of the intersection signal timing, it is necessary to
calibrate the parameters used. Specific parameter calibration is shown in Table 3.

Table 3. Calibration of Intersection Signal Timing Parameters.

Start-Up Loss Time Yellow Light Duration All-Red Duration All-Red Duration

a + b Ty TR L = a + b + Ty
2 2 0 4

(2) Green light duration constraint

Ensuring the safe crossing time for pedestrians in each direction at the intersection is
also something to consider during signal optimization. This paper adopts the minimum
green light duration calculation formula for pedestrian safe crossing proposed by HCM2010,
as shown in Formula (28).

gmin =

3.2 + lperson
Vperson

+ 0.81 Nperson
wperson

, wperson > 3.0

3.2 + lperson
Vperson

+ 0.27 Nperson
wperson

, wperson ≤ 3.0
(28)

where:
gmin is the shortest green light duration allocated for the ith phase at the intersection,

measured in seconds (s);
lperson is the length of the pedestrian crosswalk at the intersection, measured in me-

ters (m);
wperson is the width of the pedestrian crosswalk at the intersection, measured in

meters (m);
Vperson is the speed of pedestrians crossing the intersection, measured in meters per

second (m/s);
Nperson is the number of people crossing the intersection during one cycle.
The designed saturation constraint for the intersection is: 0.6 < x < 0.85. Based on

the saturation constraint and the minimum green light duration for pedestrian safety, the
green light duration constraint range for each phase at the intersection can be calculated, as
shown in Table 4.
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Table 4. Green light duration constraints for each phase at the intersection.

Green Light Phase Minimum Green Light Duration Maximum Green Light Duration

Phase 1 20 s 65 s
Phase 2 30 s 70 s
Phase 3 20 s 65 s
Phase 4 30 s 70 s

(3) Lane Saturation Flow Rate. To more accurately calculate the saturation flow rate of a
certain incoming lane composition, corrections are made for right-turn and left-turn
traffic flows, as shown in Equations (29) and (30).

fRT =


0.8, Right Turn Only Lane

1.0 − 0.2VRT , Straight–Rright Combined Lane
1.0 − 0.25VRT , Left–Straight–Right Combined Lane

(29)

where: fRT is the right-turn correction factor. VRT is the proportion of right-turn traffic flow.

fLT =

{
0.8, Left Turn Lane with Dedicated Left Turn Phase

1
1.0+0.2VLT

, Straight–Left Combined Lane (30)

where: fLT is the left-turn correction factor. VLT is the proportion of left-turn traffic flow.
In accordance with the HCM 2010 method for lane saturation flow rates, along with

lane correction factors, the calculated saturation flow rates for left-turn, right-turn, and
through lanes are 1200 veh/h, 1000 veh/h, and 1500 veh/h, respectively.

(4) Parameters of the Improved Genetic Algorithm

In this paper, an improved genetic algorithm is employed to solve the multi-objective
optimization model, and the parameters used during the algorithm’s execution are cali-
brated, as shown in Table 5.

Table 5. Calibration of Genetic Algorithm Parameters.

Parameter Calibrated Value

Maximum Evolution Generations 50
Maximum Crossover Probability 0.5
Minimum Crossover Probability 0.1
Maximum Mutation Probability 0.5
Minimum Mutation Probability 0.05

Population Size 100

4.2. Result and Discussion

This paper presents the implementation of a model using Python, with the genetic
algorithm utilizing the third-party library geatpy. Computation tasks were performed on a
desktop computer equipped with an Intel® Core™ i5-9400 (2.9GHz) CPU (Intel, Santa Clara,
CA, USA). The computed results were then interfaced with the signal timing controller
of VISSIM via its COM interface. The VISSIM simulation duration was set to 3600 s,
with signal timing optimization conducted every 600 s. The random seed used for the
computations was 44. The optimization results obtained throughout the 3600 s of VISSIM
simulation are presented in Table 6.

Table 6 outlines the optimization scheme iterations along with their respective execu-
tion times. It is notable that the algorithm consistently converged towards improved signal
timing plans, showcasing its effectiveness in enhancing traffic flow efficiency. However,
while the execution times remained relatively consistent across iterations, there may be
scope for further optimization to reduce computational overhead, especially for real-time
applications or large-scale traffic networks.
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Table 6. Genetic Algorithm Solving Results.

Optimization Iteration Time Instant Optimization Scheme Program Execution Time

0 0 [48, 30, 48, 27, 165] (Initial Moment) 0
1 600 s [51, 40, 32, 35, 170] 3.75 s
2 1200 s [42, 31, 37, 48, 170] 4.13 s
3 1800 s [46, 39, 40, 47, 172] 3.40 s
4 2400 s [35, 33, 36, 35, 151] 3.94 s
5 3000 s [40, 39, 40, 41, 172] 4.05 s
6 3600 s [36, 37, 36, 42, 163] 3.88 s

The signal timing plans optimized for six iterations and the original signal timing plan
are separately input into the signal controller via the VISSIM–COM interface. Based on the
real-time evaluation results from VISSIM, the total delay time, total queue length, and total
pollutant emissions for this intersection were obtained, as shown in Table 7. We observe
substantial reductions in total delay, queue length, and pollutant emissions following the
algorithm’s interventions.

Table 7. Multi-Objective Model Optimization Results.

Number of Optimizations Total Delay (s) Total Queue Length (m) Total Emissions of
Pollutants (g)

1 12,412 987 10,188
2 14,115 1145 12,804
3 13,897 1036 13,741
4 14,852 1287 11,568
5 15,963 1695 17,865
6 12,008 1448 14,890

Average 13,874.5 1266.3 13,509.3
Unoptimized 17,542 1647 15,984

In order to further visually compare the gap before and after optimization, we will
make a standardized comparison between the indicators before optimization and the
indicators after optimization, and plot a histogram, as illustrated in Figure 6. It can be
observed that, after optimization using the single-point intersection signal control opti-
mization model, the total delay at the intersection decreased by 21%, the total queue length
decreased by 23%, and the total pollutant emissions decreased by 15%. The optimization
results were notably significant, demonstrating the effectiveness of the multi-objective
optimization model and the solving algorithm proposed in this paper.

Figure 6. Comparison Before and After Optimization of the Multi-Objective Model.
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5. Conclusions

This paper aimed to reduce vehicle delay, queue length, and pollutant emissions at
intersections. It established a multi-objective optimization model for single-point intersec-
tion signal timing, with intersection saturation, green light duration, and signal cycle as
constraint conditions. During the solution process, the selection operator of the genetic
algorithm was modified by directly preserving the fittest individual from the current gen-
eration as offspring. This ensured that the best solution in the current generation always
remained the best solution throughout the evolutionary process. Furthermore, a VISSIM
microscopic simulation system framework was developed, and within this framework,
rolling optimization was performed at the intersection every 10 min. Finally, using an actual
intersection as an example, the effects before and after optimization were compared. It was
found that, after optimization using the multi-objective model, the total delay at the inter-
section decreased by 21%, the total queue length decreased by 23%, and the total pollutant
emissions decreased by 15%. The optimization results were significant, demonstrating the
effectiveness of the multi-objective optimization model and the solving algorithm proposed
in this paper.

However, the proposed method is not free from limitations. Firstly, although the indi-
cators of signal timing optimization include emissions, queuing time, etc., other indicators
deserve to be explored. Secondly, there are many models of vehicle emissions, and this
article does not analyze which model is more realistic. Finally, there are still many ways
to solve the optimal solution of the objective function and, although genetic algorithm is
beneficial, other methods are also worthy of further study.

In addition, there are still some problems to be further studied: (1) When formulating
the signal timing optimization method, different indicators can be given different weights,
and the multi-objective optimization model can be formulated in more detail. (2) The
emission model can vary according to different road conditions and different vehicles.
(3) The algorithm deserves further improvement and optimization, which will contribute
more to the accuracy of the solution.
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