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Abstract: This study employed big data analytics to investigate the impacts of land use and network
features on passenger flow distribution at urban rail stations. The aim was to provide decision
support for differentiated operational management strategies for various types of rail stations,
thereby achieving refined operation and the sustainable development of urban rail systems. First,
this study compared clustering results using different similarity measurement functions within the
K-means algorithm framework, selecting the optimal similarity measurement function to construct
clustering models. Second, factors influencing passenger flow distribution were selected from land
use and network features, forming a feature set that when combined with clustering model results,
served as input for the XGBoost model to analyze the relationship between various features and the
station passenger flow distribution. The case study showed that (1) the clustering results using a
dynamic time-warping distance as the similarity measurement function was optimal; (2) the results
of the XGBoost model highlighted commercial services and closeness centrality as the most important
factors that affected rail station passenger flow distribution; (3) urban rail stations in Nanjing could be
categorized into four types: “strong traffic attraction stations”, “balanced traffic attraction stations”,
“suburban strong traffic occurrence stations”, and “distant suburban strong traffic occurrence stations”.
Differentiated operational and management strategies were developed for these station types. This
paper offers a novel approach for enhancing the operational management of urban rail transit, which
not only boosts operational efficiency but also aligns with the goals of sustainable development by
promoting resource-efficient transportation solutions.

Keywords: urban rail stations; big data; land use; network features; passenger flow distribution;
station classification analysis; management strategy

1. Introduction

In recent years, the global scale of urban rail transit networks has continued to grow,
and an increasing number of cities have entered the urban rail transit network operation
stage [1]. Wikipedia data indicate that as of December 2023, a total of 215 cities worldwide
are operating urban rail transit systems. Among them, 41 cities have constructed 100
or more stations, 75 cities operate three or more rail lines, and 61 cities have urban rail
networks exceeding 100 km in size [2]. Especially in China, where urban rail transit is
developing rapidly, by the end of 2022, 26 cities had entered the urban rail transit network
operation stage. A total of 50 cities are implementing urban rail transit network construction
plans, and the total length of the planned construction lines in progress is 6675.57 km. It
can be seen that as more new lines are put into operation, more new stations will be put
into use [3,4]. Studying the classification of urban rail transit stations based on passenger
flow distribution characteristics, as well as analyzing the relationship between passenger
flow distribution, land use, and network features, helps to clarify resource allocation
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strategies for different types of stations. This aids in reducing the operational costs of urban
rail transit and achieving refined operation, thereby contributing to the broader goals of
sustainable development.

Research indicates a widespread interest in exploring various facets of rail transit
station passenger flow characteristics, particularly in China, where the rapid develop-
ment of rail transit has prompted significant contributions from Chinese scholars in this
field. Scholars have extensively investigated the passenger flow features of rail transit
stations, examining aspects such as boarding and alighting passenger flows [5,6], peak
hours passenger flows [7–10], and weekday versus weekend passenger flows [11,12]. While
discrepancies in research conclusions regarding the influencing factors of urban rail station
passenger flow exist, they primarily result from variations in study cases, data sources, and
adopted models. However, with advancements in information technology, research data
have shifted from conventional survey data to big data, leading to more precise expressions
of influencing factor indicators [10,11,13–16]. In terms of research methodologies, linear
regression models have been widely utilized to analyze the relationship between urban rail
station passenger flow characteristics and influencing factors [5,6,8,16,17]. To better discern
commonalities between stations, many scholars employ clustering algorithms to classify
stations before delving into the passenger flow characteristics and influencing factors of
different station types [9,18,19].

Although there has been extensive research on the characteristics and influencing
factors of urban rail station passenger flow, studies that specifically focused on the distribu-
tion of passenger flow at urban rail stations during operational phases are relatively scarce.
Furthermore, existing research on station classification often relies on simplistic clustering
algorithms, overlooking the significant impact of the clustering quality on subsequent anal-
yses, and many analyses of influencing factors still heavily lean on linear regression models,
neglecting potential nonlinear relationships between station passenger flow characteristics
and influencing factors, as well as the limitations of linear regression models in addressing
classification challenges.

Therefore, this study examined the factors that influenced passenger flow distribution
at urban rail transit stations from the perspective of station classification. Understanding
these factors is crucial for optimizing station management and enhancing service quality,
which, in turn, contributes to the sustainability of urban transportation systems by promot-
ing efficient resource utilization and reducing operational costs. In the station classification
module, a time-series clustering approach was utilized to categorize stations, alongside
the selection of appropriate similarity measurement functions to enhance the clustering
effectiveness. Within the analysis of the influencing factors module, the outstanding clas-
sification capabilities and capacity to learn nonlinear relationships of the XGBoost model
were leveraged to analyze the impact of factors on station passenger flow distribution.
Finally, integrating the results from both modules, the temporal and spatial characteristics
of different station types were analyzed to furnish decision-making foundations for the
refined operational management of rail transit stations. The remaining part of this paper
is organized as follows. A literature review is conducted in Section 2. The research data
and method are presented in Section 3. Section 4 details the empirical results and Section 5
provides a discussion. Section 6 presents the conclusions.

2. Literature Review
2.1. Passenger Flow Characteristics

Previous studies investigated station-level passenger flow characteristics from var-
ious perspectives: some scholars studied the characteristics of boarding and alighting
passenger flows [5,6,15,17,20–22]; some scholars intercepted the peak passenger flow at
stations during peak hours to study the peak characteristics of passenger flow at urban
rail stations [7–10]; An and Li et al. subdivided daily passenger flow into weekdays and
weekends based on whether the main purpose of travel was commuting [7,11,12]; Yang
et al. extracted passenger flow data with commuting characteristics from the travel chain
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and conducted research on it [9]; Yin et al. extracted statistical characteristic values, such as
maximum value, kurtosis, skewness, and peak coefficient, from daily passenger flow data
to study the characteristics of urban rail station passenger flow [18]; in order to explore
more fine-scale features, Wang et al. studied the hourly changes in passenger flow on
weekdays and weekends [16]; although there were studies on the passenger flow at urban
rail stations from different perspectives, there has been relatively little research on the
distribution of passenger flow at urban rail stations. For the networked operation of urban
rail transit, it is necessary to grasp the characteristics of passenger flow distribution at
different stations to develop refined management strategies and improve the operational
management efficiency.

2.2. Influence Factors and Research Data

Early research on the influencing factors of passenger flow at urban rail stations is
mainly based on survey and statistical data, for example, built environment factors, such as
population, employment, and land use, as well as network factors, such as road networks,
bus networks, and rail networks [17,20,23,24]. Research on Seoul metro stations indicates
that population, employment, office spaces, and commercial land use are significant factors
influencing station passenger flow [20]. Research on Nanjing metro stations revealed that
factors such as the length of roads within the pedestrian catchment area, the number of
connecting bus routes, park and ride (P&R) spaces, and whether the rail transit station
serves as a transfer station also have significant impacts on station passenger flow [24]. The
survey and statistical data have the disadvantages of high cost and coarse scale, as they
are mainly derived from government statistical data at the administrative district level or
travel surveys conducted at the traffic analysis zone (TAZ) level.

With the development of information and communication technology (ICT), big data,
especially spatiotemporal data, has been widely utilized in various studies [25], including
social media data, OpenStreetMap, points of interest (POIs), and automatic fare collection
(AFC) data. OpenStreetMap can provide more accurate data on road traffic infrastructure,
allowing for the computation of features such as road lengths within the PCA [10]. POI data
have advantages such as easy accessibility and more accurate identification of land-use
types [13]. Therefore, in recent research, POI data have been widely used to calculate land
use characteristic indicators. However, due to the detailed classification of POI data (for
example, Amap categorizes POIs into 19 classes), many scholars perform further processing
on POI data to better represent land-use characteristics, select several types of POI data
with strong correlation to represent a certain land type [15], or reclassify POI data [10,11].

With the use of big data, further discoveries have been made regarding the factors
influencing urban rail station passenger flow. A case study of the Beijing metro system
demonstrated that land-use entropy has a significant impact on both boarding and alighting
passenger flows [21]. An et al. found that factors such as betweenness centrality, whether
a station is a terminal station, and the number of bus stops have a significant impact on
urban rail station passenger flow. Simultaneously, the study emphasized that land use is
the most crucial factor [11]. Residential, commercial, service, scientific research education
area ratio, the number of bus stations, use diversity, the number of entrances at a station,
and whether it serves as a transfer station are key factors influencing passenger flow on
both weekdays and weekends [7]. Li et al. also demonstrated the importance of bus station
density, land-use entropy, and land-use characteristics for station passenger flow [12].

Previous studies fully demonstrated the importance of land use and rail network
features on station passenger flow, but some features need further optimization, such
as whether rail stations are terminal stations and whether transfer stations often use
dummy variables. The degree centrality in complex network indicators can be used
for characterization, where the edge connected to the terminal station is 1 and the edge
connected to the transfer station is greater than 2. Second, some features are expressed
repeatedly. For example, the statistics of traffic facilities in POIs have included the number
of bus stops and parking lots.
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2.3. Methodology

In terms of research methodologies, the primary approach has been linear regression
analysis; in particular, early studies predominantly employed global regression models,
like ordinary least squares (OLS) [11,17,24,26,27], Bayesian negative binomial regression
(BNBR) [21], and multinomial logistic regression (MLR) [12]. However, global regression
models overlooked the spatial heterogeneity of rail stations. Subsequent research often
utilized geographically weighted regression (GWR) models to analyze the relationship
between the station passenger flow and the influencing factors while considering spatial
variations [6,7,28]. To solve the problem that using the same bandwidth for all variables
in the GWR model cannot reflect the spatial action scale of different variables, allowing
each variable to have its own different spatial smoothing level of multiscale geographically
weighted regression (MGWR) makes the fitting results better [8,10]. The geographically and
temporally weighted regression (GTWR) model considers both the spatial and temporal
heterogeneity in variables. Its application in the case of the Beijing subway demonstrated
superior fitting performance compared with the GWR model [16]. Some scholars also
improved the explanatory power of GWR models for temporal–spatial heterogeneity by
combining them with other models, such as the multimodal logistic (MNL) model [29].
Linear regression models can only capture linear relationships between variables, making
it challenging to obtain ideal results for some nonlinear structures. Machine learning
models, like XGBoost, effectively address this issue and have achieved favorable results in
various publicly available datasets [30]. Liu et al. combined XGBoost regression analysis to
study the factors influencing station passenger flow. The results indicate that the XGBoost
regression outperformed the OLS model [15].

To better enhance the operational efficiency of urban rail stations based on the factors
influencing passenger flow, it is necessary to further analyze the factors for different
types of stations. This enables the provision of differentiated operational strategies for
different station types. Many scholars started using clustering algorithms to classify rail
stations. The commonly used clustering algorithm is K-means [9,18,19], but to avoid
the issue of having to predefine the number of clusters, Li et al. employed expectation
maximization (EM) clustering for station classification [12]. Previous station classification
studies often utilized the Euclidean distance (ED), which lacks a comparison of data
shape similarity. However, for time-series clustering, selecting an appropriate similarity
measure function can effectively improve the clustering results [31,32]. Therefore, similarity
measurement functions, like shape-based distance (SBD) [33], dynamic time warping
(DTW) [34,35], and spatiotemporal similarity [36], have gradually been applied to time-
series clustering analysis.

In short, the current research faces the following challenges. First, there is still in-
sufficient exploration into the distribution patterns of passenger flow at stations, with
previous studies primarily concentrated on statistical characteristics of flows. However,
understanding the passenger flow distribution at stations is crucial for effective operational
management. Second, previous research demonstrated the significant influence of land
use and rail network features on passenger flow at stations. Nonetheless, issues such as
redundancy and inaccuracy in feature representation require further refinement to enhance
the accuracy and interpretability of models. Third, despite many scholars utilizing big data
sources, such as POIs and AFC, for research, data processing methods need refinement to
improve the data quality and reliability. Additionally, current research methods primarily
rely on the line regression model, neglecting potential nonlinear relationships between
station flows and influencing factors, thus limiting model-fitting capabilities. With the
rapid expansion of urban rail networks and the increasing number of stations in operation,
scholars are increasingly focusing on station classification studies to formulate more tar-
geted management strategies and operational plans. Therefore, constructing composite
models and studying the factors influencing passenger flow distribution from a station clas-
sification perspective can better elucidate the effects of various factors on the distribution
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of passenger flows at different stations, thereby enhancing the operational efficiency and
service levels at stations.

3. Data and Methodology
3.1. Research Data
3.1.1. Data Source

This study took the urban rail transit system of Nanjing as the research example. The
involved data included the following:

1. Passenger flow data

Passenger flow data were for Nanjing urban rail stations from 19 September 2022
(Monday) to 25 September 2022 (Sunday). The data covered 11 urban rail lines (excluding
trams) and 175 urban rail stations (excluding transfer stations without repetition). A data
sample is provided in Table 1.

Table 1. Example of passenger flow data at Nanjing urban rail station.

Line
Name

Station
Name

Before 6:00 23:00–24:00

Entry
Count *

Exit
Count * Subtotal

. . .. . .

Entry
Count

Exit
Count Subtotal

Line 1 Zhushan Road 66 6 72 17 133 150

Line 2 Xinjiekou 29 17 46 225 59 284

Line 3 Daxingong 11 3 14 35 19 54

Line 4 Longjiang 73 3 76 2 109 111

. . .. . .

* Entry (exit) count indicates the number of passengers entering (leaving) the station during this period.

2. POI data

POI data within the 800 m PCA were obtained from the Amap Development Platform.
The POI data were categorized into 19 types, such as business and residence, accommo-
dation services, and catering services, totaling 222,147 points of interest. A data sample is
presented in Table 2.

Table 2. Example of POI data.

POI_NAME POI_ID
WGS84

Type
Longitude Latitude

Jiuxinglou Tavern B0FFL87K4W 118.6224 32.4880 Catering
services

Lingfeng Temple B0FFF3557D 119.0232 31.5590 Tourist
attractions

Shengxiang Hotel B00190COI9 118.9905 31.3962 Lodging
services

. . .. . .

3.1.2. Data Preprocessing

The big data processing in this study mainly consisted of two parts: restructuring the
entry and exit passenger flow data into time series, standardizing it, and reclassifying the
POI data.

1. Passenger flow data

According to the requirements of the time-series clustering method for the dataset,
the entry and exit passenger flow data of urban rail stations were reconstructed based on
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“weekday entry—weekday exit—weekend entry—weekend exit.” This restructuring was
performed to create a 1-dimensional time series for each rail station, with a length of 76, as
shown in Equation (1):

Xj =
{

x1
j , . . . , xn

j

}
(1)

where Xj represents the time series corresponding to the urban rail station j, and xn
j repre-

sents the passenger flow data at the n-th time point for rail station j, where n = 76.
Due to the low passenger flow at some urban rail stations in the initial stages of

construction, and to avoid the influence of occasional changes in passenger flow, urban
rail stations with a daily passenger flow below 500 people per day were excluded from the
dataset. To reduce the impact of random factors, the average entry and exit passenger flow
for urban rail stations on weekdays (Monday to Friday) and weekends (Saturday to Sunday)
were calculated. This provided the average passenger flow for weekdays and weekends at
each station. In the end, 172 valid time series were obtained. Due to significant differences
in passenger flow at different urban rail stations, and to mitigate the impact of passenger
flow magnitudes on the data waveforms, this study used percentage normalization to
standardize the data. The calculation method for the percentage normalization was

pi
j =

xi
j

m
∑

i=1
xi

j

(2)

where pi
j represents the proportion of entry (exit) passenger flow during the i-th operational

hour to the total entry (exit) passenger flow on the j-th day, xi
j represents the entry (exit)

passenger flow during the i-th operational hour, n represents the total number of operational
hours per day for the rail station, and m = 19.

Comparing Figure 1, it can be observed that by removing the influence of the data mag-
nitudes, percentage normalization had the same effect as Z-score normalization. Z-score
normalization assigns no practical meaning to the numerical values corresponding to each
time point, whereas percentage normalization represents the contribution of each oper-
ational hour to the total daily entry (exit) passenger flow. The utilization of percentage
normalization preserves the substantive meaning of the data, thereby augmenting the
interpretability of the clustering outcomes.
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2. POI data

To comprehensively represent land features, a reclassification of the POI data was
performed based on the specific attributes of the land. As delineated in Table 3, the POI



Sustainability 2024, 16, 3568 7 of 20

data obtained from the Amap development platform were systematically categorized into 6
distinct classes, namely, commercial services, public services, tourist attractions, residential
areas, office spaces, and transportation services.

Table 3. Reclassification of POI data.

New Category Names Amap Categories Example Names for POI Data

Commercial services

Car services Ping An Car Rental

Car sales Wuling Baojun Automobile

Car maintenance Longteng Automobile Maintenance
Service Center

Motorcycle services Wuji Moto Service

Catering services Bao Family Restaurant

Retail services Lao San Convenience Store

Lifestyle services China Sports Lottery

Recreation Gaochun Cinema and Theater

Lodging services Mingfa Jiangwan Hot Spring Hotel

Public services

Healthcare Gubai Central Health Center

Government agencies and social organizations Guihua Village Committee

Scientific, educational, and cultural services Xilian Primary School

Public facilities Banqiao New Town Emergency Shelter

Tourist attractions Tourist attractions Wuxiang Temple Scenic Area

Residential areas Commercial residential Wujiang Community

Office spaces
Financial institutions China Construction Bank

Companies Jiangsu Gangxia Group

Transportation services
Transportation facilities Sichakou Bus Stop

Roadside infrastructure Cuiping Mountain Service Area

3.2. Research Framework

This study transformed the station entry and exit passenger flow data into time-series
data, preprocessed the data using percentage normalization as a standardization method,
and then conducted cluster analysis within the framework of the K-means clustering
algorithm. The different clustering effects of the ED, DTW, and SBD were compared using
evaluation indices: the Calinski–Harabasz (CH) index, Davies–Bouldin (DB) index, and
S_Dbw index. The optimal clustering result was selected to label the station categories.
This result, along with a feature set comprising 6 land features characterized by POI
data and 3 network features calculated from the rail transit network, formed the input for
the XGBoost model. The feature importance calculated by the model was then used to
analyze the impact of each feature on the station categorization. The research framework is
illustrated in Figure 2.
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3.3. Methodology
3.3.1. Time-Series Clustering Model

The K-means clustering algorithm is a partitioning-based clustering algorithm that
relies on a collection of samples. The fundamental steps are as follows: Step 1 involves
randomly selecting k samples as the initial cluster centers. In Step 2, each sample is assigned
to the cluster whose center is closest in distance. Following this, Step 3 entails recalculating
the center of each cluster by taking the average of its samples. Step 4 iteratively repeats
these procedures until the cluster centers no longer change or a predefined number of
iterations is reached. In K-means clustering, a similarity measurement function is employed
to compute the distance between each data point and the cluster center, facilitating the
assignment of data points to the nearest cluster center. This study adopted the ED, DTW,
and SBD as the similarity measurement functions in the model.

1. ED

When employing the ED to assess the similarity of two time series, it is essential to
establish a one-to-one correspondence between the time nodes of the two sequences and
compute the distance at each corresponding time node, as illustrated in Figure 3. Due to
the inherent limitation of the ED in capturing the similarity of time-series shapes, clustering
based on this metric may lead to the grouping of two sequences with substantially different
curve shapes but a relatively small ED.
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2. DTW

DTW is commonly used to measure the similarity between two time series of different
lengths. As shown in Figure 4, when using DTW to measure the similarity between a time
series An = (a1, a2, . . . , an) of length n and a time series Bm = (b1, b2, . . . , bm) of length m,
it is necessary to find a continuous correspondence that includes all points in both time
series. Initially, a matrix of size n × m is constructed, where the element in the i-th row
and j-th column represents the distance wij (typically the ED) between the point ai in time
series An and the point bj in time series Bm. Then, the objective is to find a monotonically
increasing, continuous diagonal path in the matrix with the minimum sum of distances
(Ddtw), which represents the optimal alignment. The calculation formula Ddtw is as follows:

Ddtw =

p
∑

k=1
wk

ij

p
(3)

where Ddtw represents the DTW, wk
ij represents the matrix element value corresponding to

the k-th point in the path, and p represents the number of points in the path.
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3. SBD

The SBD is an improvement proposed based on the ED, taking into account the
characteristic that amplitude scaling and translation do not alter the waveform trend
of time series. As shown in Figure 5, when measuring the similarity between time
series Am= (a1, a2, . . . , am) and time series Bm= (b1, b2, . . . , bm) using the SBD, Bm is
progressively slid over Am at each time point. The inner product between Am and Bm
is calculated at each step, resulting in a sequence of inner product values denoted as

Cω= (c1, . . . , cω), ω ∈ (1, 2m − 1), with a length of 2m − 1. Finally, the maximum
value in the sequence Cω is selected to calculate the SBD, as expressed in Formula (6):

B(s) =


(

|s|︷ ︸︸ ︷
0, . . . , 0, b1, b2, . . . , bm−s), s ≥ 0

(bm+s, . . . , bm−1, bm,

|s|︷ ︸︸ ︷
0, . . . , 0) s < 0

(4)

In the equation, B(s) represents the time series when sliding with a step size s: s denotes
the number of sliding steps from the alignment start point, where a positive value indicates
rightward sliding, a negative value indicates leftward sliding, and s ∈ [1 − m, m − 1].

SBD = 1 − max(Cω)√
m
∑

i=1
a2

i ×
m
∑

i=1
b2

i

(5)
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In the equation, the SBD is the shape-based distance, Cω is the sequence of inner
product values, and ai and represents the i-th elements of the time series Bm.
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4. Evaluation Indices

This study utilized the CH index, DB index, and S_Dbw index as evaluation metrics
to assess the clustering performance of various time-series clustering models.

The CH index measures the clustering effectiveness by calculating the ratio of the
between-cluster covariance to the within-cluster covariance. A higher CH index indicates
a better clustering performance, where a smaller within-cluster covariance and larger
between-cluster covariance contribute to a higher CH index.

The DB index measures the clustering effectiveness by calculating the ratio of the
average distance between two points within a cluster to the distance between the cluster
centers. A smaller DB index indicates better clustering performance, with smaller average
distances between points within a cluster and larger distances between cluster centers
contributing to a smaller DB index.

The S_Dbw index measures the clustering effectiveness by calculating the sum of
compactness within clusters and the density between clusters. A smaller S_Dbw index
indicates a better clustering performance, and the clustering results are independent of the
algorithm used. The equations for calculating the S_Dbw index are as follows:

SS_Dbw = Scat + Dens_bw (6)

Scat =
1
k

k

∑
i=1

∥σ(Ai)∥2
∥σ(E)∥2

(7)

Dens_bw =
1

k(k − 1)

k

∑
i=1

k

∑
j=1,i ̸=j

density(cij
)

max(density(ci), density(cj))
(8)



stdev = 1
k

√
k
∑

i=1
∥σ(Ai)∥2

d(x, ci) =∥x − ci∥2

f(x, ci) =

{
0 d(x, ci) > stdev
1 d(x, ci) ≤ stdev

density(ci) = ∑
x∈Ai

f(x, ci)

density(cij) = ∑
x∈(Ai∪Aj)

f(x, cij
)

(9)

In these equations, SS_Dbw is the S_Dbw index, Scat is the compactness within clusters,
Dens_bw is the density between clusters, k is the number of clusters, Ai is the dataset of
cluster i, E is the dataset of samples, ci,j is the centroid of clusters i and j, and cij is the
midpoint of the centroids of clusters i and j.
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3.3.2. XGBoost Model

This study placed a significant emphasis on feature extraction from both the rail
network and station land use. The goal was to construct a comprehensive feature set to
delve deeply into the relationship between the passenger flow distribution at urban rail
stations and these features. To meet the requirements of supervised learning on the dataset,
the urban rail stations underwent labeling using clustering algorithms.

In terms of the network features, three key metrics were selected: degree centrality,
betweenness centrality, and closeness centrality. Degree centrality gauges the importance
of nodes directly within the network, while betweenness centrality reflects station usage
frequency through the shortest path count. Closeness centrality unveils the proximity of
nodes to other nodes.

In the realm of land-use features, the focus centers on two crucial elements: the
land-mixing degree derived from POI data and the proportional representation of distinct
land-use categories. The quantification of the land-mixing degree utilizes information
entropy, providing valuable insights into the heterogeneous composition of land use in the
vicinity of stations. Additionally, detailing the percentage distribution of diverse land-use
types offers a comprehensive overview of the spatial arrangement of various land uses
surrounding these stations.

The choice of the XGBoost model for feature analysis was rooted in its exceptional
performance with complex datasets and its ability to capture intricate inter-feature relation-
ships. As a gradient-boosting algorithm, XGBoost assembles a robust ensemble model by
combining multiple weak learners, making it well-suited for high-dimensional data and
nonlinear associations. The introduced regularization terms prevent overfitting, contribut-
ing to its outstanding performance on the medium-sized dataset in this study. Furthermore,
XGBoost’s built-in feature importance evaluation enhances the understanding of each
feature’s impact on model predictions, thereby improving the model interpretability.

4. Results
4.1. Selection of Similarity Measurement Functions

The K-means clustering algorithm required determining the number of clusters before-
hand. The silhouette coefficient method was employed to determine the number of clusters.
As shown in Figure 6, the silhouette coefficient was relatively ideal when the number of
clusters was 4. Therefore, the number of clusters was chosen as 4.
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In the analysis of the Nanjing rail system data, evaluation indices for clustering results
using various similarity measurement functions were computed. As shown in Table 4,
clustering results based on DTW outperformed other similarity measurement functions,
exhibiting superior values in the CH index, DB index, and S_Dbw index compared with
the ED and SBD. Consequently, the preference was for the K-means clustering model using
DTW as the similarity measure function for station clustering in this case data.
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Table 4. Result of model.

Indexes
K-Means Algorithm Framework

DTW ED SDB

CH index 64.779 63.981 62.899

DB index 1.446 1.461 1.476

S_Dbw index 0.664 0.681 0.670

4.2. Spatiotemporal Features
4.2.1. Temporal Features

The clustering results, which are illustrated in Figure 7, reveal distinct temporal
patterns in passenger flows for the four clusters. Notably, weekdays showed a greater
fluctuation in the flow curves compared with weekends. Additionally, variations existed in
the temporal distribution of entering and exiting passenger flows.
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Cluster 1: On weekdays, the distribution curves of entering and exiting passenger
flows exhibited a “balanced” double-peak pattern. The morning peak for entering the
passenger flow was from 7:00 to 8:00, and the evening peak was from 17:00 to 18:00. For
the exiting passenger flow, the morning peak was from 7:00 to 9:00, and the evening peak
was from 18:00 to 19:00. The contribution of each peak’s passenger flow was around 20%.
On weekends, there were no distinct peak values in the distribution curves for the entering
and exiting passenger flows.

Cluster 2: On weekdays, the distribution curves of the entering and exiting passenger
flows showed a “size” double-peak pattern. The morning and evening peaks for the
entering and exiting passenger flows were the same as in cluster 1, but compared with
cluster 1, the morning peak for the exiting passenger flow and the evening peak for the
entering passenger flow had higher peak values. The contribution of the morning peak
in the exiting passenger flow was around 25%. On weekends, there were no distinct
peak values in the distribution curves for the entering and exiting passenger flows, and
compared with cluster 1, there was greater fluctuation in the passenger flows.

Cluster 3: On weekdays, the distribution curves of the entering and exiting passenger
flows showed a single-peak pattern. The peak for the entering passenger flow was from
7:00 to 8:00, and the peak for the exiting passenger flow was from 18:00 to 19:00. The
contribution of the passenger flow during peak hours was around 25%. On weekends,
the distribution curves of the entering and exiting passenger flows showed a skewed
peak pattern, similar to weekdays. The entering passenger flow was concentrated in the
morning peak, and the exiting passenger flow was concentrated in the evening peak. The
contribution of passenger flow during peak hours was around 10%.

Cluster 4: On weekdays, the distribution curves of the entering and exiting passenger
flows was somewhat similar to cluster 3, but the peak for the entering passenger flow
was from 6:00 to 7:00, 1 h earlier than in cluster 3, and the peak value was lower than in
cluster 3. On weekends, the distribution of entering and exiting passenger flows showed a
certain double-peak trend, with the passenger flows mainly concentrated in the morning
and evening peak periods. The contribution of the passenger flow during peak hours was
around 10%.

4.2.2. Spatial Features

According to the information shown in Figure 8, the spatial distribution of the four
types of urban rail stations can be observed as follows: The stations in cluster 2 were mainly
concentrated in the central area of the rail network, i.e., the core region of the city. The
stations in cluster 1, on the other hand, were primarily distributed in the peripheral area
of cluster 2. Even when the stations from both cluster 2 and cluster 1 appeared in the
outer regions of the rail network, they were still in relatively central parts. The stations in
cluster 3 were mainly found in the suburban areas of the city, while the stations in cluster 4
were primarily situated in the outermost regions of the rail network, i.e., the far outskirts of
the city. Overall, the four types of stations exhibited a characteristic spatial distribution,
gradually transitioning from the city’s core to its outskirts.
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4.3. Feature Importance

XGBoost model’s feature importance analysis results are shown in Figure 9, and the
statistical analysis results of the feature values for each cluster of stations are illustrated
in Figure 10. Regarding the network features, the cluster-to-cluster differences were most
significant for the feature with the highest importance, which was the closeness centrality.
It exhibited a decreasing trend in the order of cluster 2, cluster 1, cluster 3, and cluster
4, indicating that stations in cluster 2 had the shortest average distance to other network
stations, followed by cluster 1 and cluster 3, while the stations in cluster 4 had the longest
average distance to other network stations. The betweenness centrality with a feature
importance of 0.08 showed relatively small inter-cluster differences, following a similar
trend to the closeness centrality. The degree centrality had a feature importance of 0, and
the average degree centrality was essentially the same for all four cluster types of stations.
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In terms of the land features, the inter-cluster variability was highest for the feature
with an importance of 0.17, which was the proportion of commercial services. The stations
in cluster 3 had the highest average proportion of commercial services, followed by cluster 1
and cluster 2, while the stations in cluster 4 had the lowest average proportion of commercial
services. The features with an importance around 0.1, such as the proportions of tourist
attractions, public services, office spaces, and residential areas, exhibited relatively large
inter-cluster differences. The stations in cluster 2 had the highest proportions of tourist
attractions and office spaces, while the stations in cluster 1 had the highest proportions of
public services and residential areas. The features of the transportation service proportion
and land-mixing degree had a lower importance, and their inter-cluster differences were
also smaller. The stations in cluster 4 had the highest transportation service proportion,
and the stations in clusters 1 and 2 had higher average land-mixing degrees.

The statistical analysis of different cluster features validated the rationality of the
XGBoost model feature importance analysis and provided explanations for the impact of
each feature on the station classification. In terms of the network features, the importance
of the closeness centrality was the highest, indicating its significant influence on the station
classification. The trend of closeness centrality variations for the four clusters of stations
was also validated in the spatiotemporal characteristics of stations. The stations in cluster 2,
which had the highest closeness centrality, were mainly located in the core area of the rail
network, while the stations in cluster 4, which had the lowest closeness centrality, were
situated in the outermost regions. Additionally, their maximum average distance to other
stations explained why the peak entry of this cluster occurred one hour earlier on weekdays
compared with the other clusters. The betweenness centrality had a lower importance,
with a variation pattern similar to the closeness centrality, but with smaller inter-cluster
differences. The degree centrality had an importance of 0, indicating that whether a rail
station was a transfer station did not affect the station classification.

In terms of the land-use features, various features had a certain impact on the station
classification: the stations in cluster 2 and cluster 1 had the highest proportions of office
services and public services, which explained why these two types of stations exhibited
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peaks in the morning outbound passenger flow and evening inbound passenger flow. The
double-peak trend in the weekend passenger flow for stations in cluster 4 may have been
related to their lowest proportion of commercial services. However, unlike the network
features, the relationships between the land-use features were more complex, requiring
further in-depth research into their impact on the classification of stations. Moreover, due to
the lack of consideration for area in the POI data, the proportion of the POI data for a certain
land-use attribute may not necessarily reflect the true land-use proportion. For example,
the stations in cluster 4 and cluster 3 were located in the outskirts where land prices were
relatively lower than in the core area. The same type of POI in the outskirts could occupy a
larger area compared with the core area. Perhaps this was why the proportion of residential
areas was lower for the stations in cluster 3 and cluster 4, but the peak values during
the weekday morning rush hour were higher compared with the stations in cluster 2 and
cluster 1.

5. Discussion

Through the analysis of the clustering results, it was observed that different types
of urban rail stations exhibited variations in passenger flow distribution characteristics.
Additionally, urban rail stations of the same type showed differences in passenger flow
distribution patterns on weekdays and weekends. Due to the diverse network and land-use
characteristics of urban rail stations, the passenger flow presented distinct distribution
features. Essentially, these differences arose from variations in urban spatial layout and land
development intensity, leading to the phenomenon of separation between work and resi-
dence. Therefore, the urban rail stations were classified into the following four categories:

“High traffic attraction stations” (cluster 2): This type of rail station was mainly located
in the core area of the city, surrounded by mature land development and a significant
number of office spaces. It had a certain volume of traffic and high traffic attraction.
The weekday passenger flow distribution exhibited a “dual peak” characteristic, with
significant peaks in the morning and evening rush hours. Due to the high mix of land
use around the urban rail station, the overall passenger flow on weekends was relatively
stable. Operational strategies for these stations should prioritize efficient passenger flow
management during peak hours. In the morning, efforts should focus on streamlining exit
routes from the station, while in the evening, entrance facilitation should be emphasized.
Given the weekend stability, a consistent but adaptable management resource allocation
is necessary to cater to varying demands. Incorporating real-time data analytics can
optimize resource distribution, ensuring swift adjustments to passenger flow changes.
Additionally, enhancing station accessibility and connectivity with surrounding areas will
further improve the passenger experience and station efficiency.

“Balanced station” (cluster 1): This type of urban rail station was predominantly
situated in the peripheral regions surrounding the city’s core area. The land development
exhibited a certain level of maturity, featuring both office spaces and residential areas. These
urban rail stations demonstrated a balanced traffic attraction and occurrence volume. On
weekdays, their passenger flow distribution displayed “balanced” bimodal characteristics,
while remaining relatively stable during holidays. Management strategies should equally
distribute focus between morning and evening peaks by ensuring resource availability that
matched the balanced passenger flow. The introduction of flexible staffing and dynamic
signage can help to manage the fluctuation in passenger numbers. During weekends,
maintaining a steady level of operational management will accommodate the consistent
traffic, with special attention to facilitating community events or leisure activities that
might influence station use.

“Suburban strong traffic occurrence stations” (cluster 3): This type of urban rail
station was mainly located in the suburbs of the city, with the surrounding land primarily
consisting of residential areas and supporting commercial facilities. There were fewer office
spaces compared with the first two types of stations, but the occurrence of traffic was higher.
The weekday passenger flow distribution exhibited a single-peak characteristic. Although
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there were numerous supporting commercial facilities, the absence of tourist attractions
resulted in a more skewed distribution of passenger flow on weekends. For such stations,
we can learn from the resource allocation strategy of road traffic for tidal traffic flow and
provide more entering service facilities in the morning peaks on weekdays and more exiting
service facilities in the evening peaks. At the same time, we should also strengthen the
development of plots around the stations; increase the office spaces, tourist attractions, and
commercial services; improve the traffic attraction ability; and lift the operational efficiency
of the stations.

“Distant suburban strong traffic occurrence stations” (cluster 4): Predominantly lo-
cated in the city’s outskirts, these stations were surrounded by residential land and bol-
stered by nearby commercial facilities. Despite having fewer office spaces, they witnessed
higher traffic occurrences. On weekdays, the passenger flow distribution displayed a
single-peak characteristic. Compared with the “suburban strong traffic occurrence sta-
tions”, the more distant location and longer commuting distances led to an earlier morning
peak. This station type exhibited the lowest average land-mixing degree, lacking nearby
commercial and tourist attractions, resulting in a somewhat dual-peak trend in passenger
flow on weekends. Such stations need to pay attention to the early arrival in the morning
peak when allocating operational and management resources. The challenge of lower
land-mixing degrees and the lack of commercial and tourist attractions necessitates a fo-
cused strategy on community and commercial development to stimulate weekend and
off-peak usage. Initiatives could include establishing park-and-ride facilities, enhancing
connectivity with local transit options, and promoting the station area as a destination
through the development of leisure and retail complexes.

The differences in the characteristics of passenger flow changes between weekdays
and weekends were mainly due to the different purposes of passenger travel on these days.
On weekdays, the peak passenger flows for various types of stations were mostly in the
morning and evening rush hours, with the morning peak higher than the evening peak.
This was because the primary purpose of weekday passenger travel was commuting, and
the commuting times to work were relatively fixed, while the times for returning home
were more dispersed. On weekends, there were no significant features in the changes
in the passenger flow at stations. This was because the primary purpose of weekend
passenger travel was leisure and entertainment, and the travel times were more flexible.
However, due to the different rail networks and land-use characteristics of various station
types, there were variations in the passenger flow changes on weekends. Therefore, when
allocating resources for station operation management, it is necessary to select different
resource allocation strategies according to the passenger flow distribution of rail stations,
to realize the efficient utilization of rail station resources and the sustainable development
of rail transit.

6. Conclusions

This study was based on the AFC data of the Nanjing urban rail system, which were
turned into time-series data. This study then utilized the K-means clustering algorithm for
cluster analysis and employed the XGBoost model to analyze the feature importance. The
main conclusions of this study are as follows:

First, this study conducted a comparative analysis of clustering results using different
similarity measurement functions within the K-means framework. The results demonstrate
that selecting an appropriate similarity measure function was crucial for enhancing the
clustering performance. Specifically, when applied to the AFC data of the Nanjing Metro
system, the DTW method emerged as the most suitable for this dataset. This was evidenced
by its superior performance in terms of the CH index, DB index, and S_Dbw index. These
metrics not only evaluated the quality of clustering but also indicate that the time series
extracted from AFC data were well-suited for clustering analysis, with the DTW method
yielding more optimal results.



Sustainability 2024, 16, 3568 18 of 20

Second, this study delved into station features from the dual perspectives of rail
network and land use, resulting in the construction of a comprehensive feature set. By inte-
grating the classification results of the clustering model, a feature analysis was conducted
using the XGBoost model. This analytical approach facilitated a systematic evaluation of
the importance of each feature, enabling a clear understanding of its impact on station
classification. In comparison with other studies, the proportion of commercial services
was also identified as a significant factor affecting station classification. However, with
the inclusion of network feature analysis, this study uncovered a more critical feature,
closeness centrality, which had a greater impact on the passenger flow distribution at the
stations. Furthermore, the importance score of the degree centrality being zero indicated
that being a transfer or terminal station was not a significant factor that influenced the
distribution of passenger flow at urban rail stations. This finding provided a deeper insight
into the relationship between these features and the distribution patterns of passenger flow
at the stations, highlighting how specific characteristics influenced station categorization
and passenger flow distribution.

Finally, the analysis of the instance results, as supported by comprehensive AFC data
and feature analysis derived from POI and rail network data, reveals that the 171 urban rail
stations could be classified into four distinct categories based on the distribution character-
istics of the passenger flow entering and exiting the stations. These categories were “high
traffic attraction stations”, which were characterized by a high volume of incoming and
outgoing passengers and located in the city’s core area with mature land development; “bal-
ance stations”, where the incoming and outgoing passenger flows were relatively balanced
and were typically situated in the peripheral regions surrounding the city’s core; “suburban
strong traffic occurrence stations”, which were predominantly located in suburban areas
with a strong influx of passengers, featuring residential areas and supporting commercial
facilities; and “distant suburban strong traffic occurrence stations”, which were further
away from the city center and exhibited a significant concentration of passenger traffic
and primarily surrounded by residential land. The classification was validated by the
features calculated from the POI and rail network data, demonstrating the rationality of
this categorization. Based on the unique passenger flow distribution patterns observed
in each category, targeted operational management strategies were proposed to address
the specific needs and challenges of each station type, thereby contributing to the efficient
utilization of rail station resources and the sustainable development of rail transit.

The contribution of this study is to enhance the clustering effect of urban rail stations
by selecting appropriate similarity measurement functions and to analyze the influencing
factors of station passenger flow distribution in terms of both land use and network fea-
tures. Leveraging big data, this study employed time-series clustering algorithms and the
XGBoost model to provide a comprehensive understanding of how these factors impacted
the passenger flow distribution. This research offers targeted operational and management
strategies based on the distinct characteristics of station passenger flow distribution, thereby
contributing to the optimization of urban rail systems. By enhancing the efficiency and
reducing resource waste, these strategies support the sustainable development of urban
transportation networks.

In this study, POI data were mainly used, but there was a lack of consideration for land
area. At the same time, only rail-network-related features were selected for the influencing
factors of network features, and there were no road-network-related indicators, such as the
number of intersections and road length, which can be considered in subsequent research.
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