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Abstract: The increasing occurrence of severe weather phenomena presents substantial difficulties
for electricity distribution systems. This study investigates the integration of hydrogen production
plants (HPPs) into power distribution networks to bolster resilience against the increasing frequency
of extreme weather events. It highlights the innovative use of hydrogen, generated from renewable
sources, as an energy storage medium to ensure a stable power supply during disruptions. By
employing stochastic optimization, the study aims to effectively manage hydrogen production and
utilization, considering uncertainties in disaster scenarios and energy demands. It addresses critical
research gaps, such as the lack of focus on pre-disaster preventive scheduling using hydrogen, the
under-explored application of stochastic optimization in such contexts, and the predominance of real-
time response strategies over pre-emptive measures. This approach significantly advances current
understanding by proposing novel strategies that leverage hydrogen production and sophisticated
optimization to enhance the resilience of power networks against extreme weather events. In some
scenarios, using our method can reduce the cost of pre-disaster prevention by approximately 15.68%
while ensuring that the disaster recovery effect remains unchanged.

Keywords: hydrogen production plants; power distribution networks; extreme weather events;
resilience; renewable energy; pre-disaster preventive scheduling

1. Introduction
1.1. Motivation

Given the increasing frequency of extreme weather events against the backdrop of
global warming [1,2], the unpredictability of meteorological disasters and corresponding
weather forecasts presents significant challenges to power distribution networks, spotlight-
ing the critical need for resilient and stable energy supplies. In the face of such events,
maintaining uninterrupted power is not just a matter of convenience but a necessity for
preserving essential services and minimizing societal disruptions.

In this case, the integration of hydrogen production plants (HPPs) into power dis-
tribution networks emerges as a forward-thinking solution aimed at bolstering network
resilience. Hydrogen, when produced through renewable energy sources, stands out as an
efficient energy storage medium. Its capacity to be swiftly deployed in the event of power
outages positions it as a pivotal asset in enhancing energy network robustness against
extreme weather phenomena. This study delves into the strategic incorporation of hydro-
gen production and utilization within power distribution networks, specifically during
periods of extreme weather events. By leveraging hydrogen’s potential as a renewable
energy storage medium, this study aims to optimize hydrogen production and utilization
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in power networks during extreme disasters, using stochastic optimization methods to
address uncertainties in disaster scenarios and energy demands.

1.2. Literature Review

The critical importance of enhancing the resilience of distribution systems (DSs) in
the face of extreme weather disasters is both a complex technical challenge and a strategic
imperative. This task requires a comprehensive approach that spans the planning, response,
and restoration phases deeply embedded in a substantial body of literature. The pioneering
works of Nan Yang [3,4] have provided insightful perspectives on managing power grids
amid uncertainties, offering a foundational context for further research in this area. Ref. [5]
proposes a goal programming model to optimize operational decisions in hybrid energy
systems, including different types of conventional and renewable resources. These papers
form the backbone of power distribution network resilience research.

In particular, the resilience of DSs can be substantially improved by using several strate-
gies. Modifying the DS topology [6,7] is a pivotal method, as it can minimize the impact of
weather-related disruptions. Stationary storage solutions [8,9] offer vital backup during power
outages while incorporating renewable energy sources [10,11] reduces dependence on vulner-
able traditional power lines. These methods have been practically applied, demonstrating
their effectiveness in enhancing power system robustness in extreme weather conditions.

The analysis of resilience under extreme temperatures [12,13] and the study of networked
microgrid architecture [14] highlight the need for DSs that are robust and adaptable. This
adaptability is essential for maintaining an uninterrupted power supply and facilitating quick
recovery post-disaster, particularly under severe and fluctuating environmental conditions.

The concept of transportable mobile power sources (MPSs), or “energy-on-wheels”,
represents a significant shift in disaster resilience strategies. Their flexibility, coupled with
the emerging “Vehicle-to-Grid (V2G)” technology [15], allows for a dynamic response to
power system challenges [16]. MPSs aid in congestion relief [17], effective load shifting [18],
rapid outage recovery [19], and reducing energy losses [20]. Their importance escalates
when traditional power infrastructures are compromised due to extreme weather events.

Technological advancements in energy systems, as explored by Binxin Zhu et al. [21],
Xun Shen et al. [22], and the innovative use of LNG tube trailers [23,24], open new pathways
for enhancing system efficiency and safety. These developments represent transformative
changes, redefining the operational and interactive dynamics of energy systems with other
infrastructural elements.

Renewable energy sources are integral to this transformation journey. The research
in Ref. [25,26] and the study on optimal dispatch strategies [27] highlight the role of
sustainable energy in improving grid resilience. The focus on hydrogen production from
renewable sources is aligned with the global shift towards a resilient and sustainable energy
future. Ref. [28] explores the potential of using hydrogen energy systems and fuel cells for
multi-energy system operation and demand responses. Ref. [29] develops a cutting-edge
hydrogen-battery hybrid energy storage system to guarantee the safe operation of the whole
system. These techniques lay the foundation for using HPPs for resilience enhancement
when facing extreme meteorological disasters.

Finally, the integration of stochastic optimization in power systems [30], along with
real-time monitoring and co-ordination strategies [31,32], represent advanced approaches to
managing uncertainties during extreme weather events. In this work, two-stage stochastic pro-
gramming was used to better describe the uncertainties. Two-stage stochastic programming
is a crucial optimization technique used in the planning and operation of power systems to
address uncertainty in demand and renewable energy sources. In the first stage, decisions are
made before the uncertainty is revealed, such as investments in capacity or preventive mainte-
nance scheduling. The second stage involves operational decisions that adapt to the actual
situations, such as the dispatch of generation units and load shedding [33,34]. This approach
helps in devising robust power system frameworks that can efficiently handle variations
in power generation and consumption, thus ensuring reliability and cost-effectiveness [35].
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Two-stage stochastic programming has been effectively applied to areas such as unit commit-
ment [36], economic dispatch [37], and grid expansion planning. This method is the key to
making informed decisions, ensuring that power systems are not only prepared for the initial
impact of disasters but are also capable of a swift and efficient recovery.

1.3. Contributions

Despite extensive research, several gaps remain:

• There is a scarcity of research focusing specifically on pre-disaster preventive schedul-
ing using hydrogen production in power networks.

• The application of stochastic optimization in pre-disaster scenarios, particularly for
hydrogen-based systems, is not adequately explored.

• Most current research on power system resilience is focused on real-time response
strategies, with less emphasis on pre-emptive measures that can be taken before a
disaster strikes.

In order to fill these gaps, a prevention method is proposed. The contribution is
three-fold:

• Our study addresses this by developing strategies for pre-disaster hydrogen produc-
tion at HPPs. We focus on creating a buffer of renewable energy storage, which is
crucial for maintaining power supply during emergencies.

• We introduce an innovative approach using a two-stage stochastic optimization model
tailored to pre-disaster planning. This model factors in the unpredictability of disaster
scenarios and optimizes hydrogen production and storage in anticipation of potential
power disruptions.

• Our research fills this gap by integrating advanced technologies and predictive meth-
ods to formulate a comprehensive pre-disaster scheduling strategy. This proactive
approach is designed to bolster the power network’s resilience, ensuring efficient
energy distribution and preparedness for extreme weather events.

In summary, our study extends beyond the existing body of knowledge by proposing
novel pre-disaster preventive scheduling strategies. These strategies leverage strategic
hydrogen production and advanced stochastic optimization techniques to enhance the
resilience of power distribution networks against extreme weather events.

2. Problem Description

In this section, the pre-disaster strategy of the HPP is introduced first. The pre-disaster
measurements to enhance the distribution network’s resilience, the scenario reduction,
and the corresponding optimization techniques are given as follows. The flowchart in
Figure 1 shows the relations of each part of this work. The load and renewable profiles were
collected and sent for scenario analysis. Then, the analysis results and system configuration
were delivered to the two-stage optimization process to determine the optimal prevention
strategy using HPPs.

Input

System configurations

Load profiles

Weather forecasts

Two-stage 

optimization
Scenario analysis

Prevention strategy 

of HPP

Pre-disaster stage 

Figure 1. Flowchart of setting pre-disaster prevention strategy.



Sustainability 2024, 16, 3636 4 of 18

2.1. Pre-Disaster Operation

For a hydrogen-dominated power distribution system, an HPP plays a crucial role
when facing extreme meteorological disasters. When such disasters strike, the power
distribution network is at risk of losing its electricity supply. In order to mitigate this, the
HPP must be proactively scheduled to produce and store sufficient hydrogen. This hydro-
gen will then be used to generate electricity, ensuring a continuous power supply despite
the disruption caused by the disaster. The process involves closely monitoring weather
forecasts and disaster warnings, enabling the plant to ramp up hydrogen production well
in advance of the impending disaster. This proactive approach ensures that the power
distribution network remains resilient and capable of sustaining essential services during
critical times.

2.2. Load/Renewable Forecasting and Clustering

Before determining how much hydrogen needs to be produced prior to a disaster, it is
essential to forecast both the renewable energy required for hydrogen production and the
load demands on the power distribution network. These forecasts encompass hundreds of
potential scenarios. In theory, predictions should be made for every possible scenario, but
this leads to a “scenario explosion”, making the optimization problem intractable. In order
to address the issue of excessive scenarios, clustering techniques were employed. Here, we
plan to use the K-means clustering method.

The K-means clustering method offers significant benefits in this context. It simplifies
the complexity by grouping similar scenarios, reducing the overall number of distinct cases
to be analyzed. This approach not only makes the problem more manageable but also
retains the diversity and representatives of the scenarios. By clustering, we can identify the
most representative scenarios that capture the key characteristics of the entire scenario set.
This allows for a more focused and efficient pre-disaster prediction and planning process.
Consequently, the optimization of hydrogen production becomes feasible, ensuring that
the power distribution network remains operational during extreme disasters.

2.3. Two-Stage Stochastic Optimization

After establishing the need for a pre-disaster mitigation strategy, specifically the ad-
vanced production of hydrogen by the HPP, and deciding on a scenario-handling approach,
we employed a two-stage stochastic optimization method to determine the pre-disaster
hydrogen production plan. This method is divided into two phases.

In the first stage, the optimization focuses on determining the pre-disaster hydrogen
production strategy. This involves calculating how much hydrogen needs to be produced
and stored before a disaster occurs based on various forecasts and risk assessments.

The second stage of optimization is contingent on the outcomes of the first stage and
the scenarios that unfold during a disaster. This stage involves optimizing the operation of
the power distribution network during the disaster, taking into account the available hy-
drogen resources and the specific demands and challenges posed by the disaster scenarios.

The two-stage stochastic optimization approach has several advantages. It allows for
more accurate and flexible planning by incorporating uncertainty and variability directly
into the decision-making process. This method effectively handles complex and dynamic
environments, such as those encountered during disasters, by allowing adjustments based
on evolving scenarios. Moreover, it provides a balanced approach between proactive
planning and reactive adjustment, ensuring that the power distribution network remains
resilient and efficient in the face of unforeseen events. This methodical approach ensures
that the HPP can adequately support the power network during critical times, maintaining
essential services and mitigating the impact of disasters.

3. Mathematical Model

In this section, we first introduce the mathematical model of system operations when
facing extreme meteorological disasters.



Sustainability 2024, 16, 3636 5 of 18

In this work, the optimization problem consists of two stages, namely pre-disaster
prevention in the first stage and in-disaster operation in the second stage. In the first
stage, the HPP determines a preventive operating strategy for the electrolyzer. Prevention
strategies will then be used in the second stage of system operation under various scenarios
to support the operation of the equipment, including power distribution networks and
fuel cells. A flowchart is given in Figure 2 to elaborate more details. For the mathematical
models, please refer to the following subsections.

Pre-disaster prevention

First stage

In disaster operation

Second stage

Electrolyzer operation

Hydrogen storage operation

Hydrogen storage operation

Power network operation

Fuel cell operation

Prevention 

strategy

Operational 

results

Figure 2. Flowchart of setting pre-disaster prevention strategy.

3.1. Hydrogen Production and Consumption Model

Hydrogen production and consumption play a very important part in this resilience
case. Hence, it is necessary to model the electrolyzer, fuel cell, and storage.

3.1.1. Electrolyzer Operation

The efficiency of an electrolyzer is typically related to temperature [38], but the system
is usually maintained at a stable temperature during operation. Hence, the efficiency, ηHP,
of hydrogen production is regarded as a constant in the following modeling process.

Here, we assume that the energy consumed by electrolyzers at time t is from the
renewable energy and grids, denoted as Et

H1. The corresponding power consumption is
denoted as Pt

H1. The time interval is denoted as ∆t, ∆t = 15 min. The energy stored in the
hydrogen produced in each ∆t is defined as Et

H2, while corresponding power consumption
is denoted as Pt

H2. According to these definitions, we have the following constraints:

Pt
H1 = Pt

H2/ηHP∀t (1a)

Et
H1 = Pt

H1 · ∆t, ∀t (1b)

Et
H2 = Pt

H2 · ∆t, ∀t (1c)

where Equations (1a)–(1c) reflect the relations of electrolyzer operations in the HPP.

3.1.2. Fuel Cell Model

Fuel cells, often integral to HPPs, play a crucial role in converting the chemical energy
of a fuel, typically hydrogen, into electricity through an electrochemical reaction. Unlike
conventional power generation methods, fuel cells do not burn the fuel, making the process
cleaner and more efficient.

This process is scalable; multiple cells can be stacked together to increase power output.
The efficiency and cleanliness of fuel cells make them attractive for various applications,
including backup power and transportation and they form part of the renewable energy
systems in HPPs, where they can use the produced hydrogen efficiently. In this paper, we
focus on the proton-exchange membrane fuel cell (PEM).

Denote the energy conversion efficiency of PEM as ηFC.

Pt
H3 = Pt

H4/ηHP, ∀t (2a)

Et
H3 = Pt

H3 · ∆t, ∀t (2b)

Et
H4 = Pt

H4 · ∆t, ∀t (2c)
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where Pt
H3 and Pt

H4 are the power consumed by the hydrogen (from hydrogen storage) and
the power generated by the fuel cell, separately. Et

H3 and Et
H4 are the energies corresponding

to power. Equations (2a)–(2c) describe the energy consumption relations between storage
and the fuel cell.

Note: In this article, we assume that the energy conversion efficiencies of the elec-
trolyzer and the fuel cell are a constant value. Our assumptions are based on the prevailing
data and models, indicating relatively stable efficiency within certain operational tempera-
ture ranges [39,40]. Energy conversion efficiency may vary, but the variation is often not
significant. In addition, if we need to refine the energy conversion efficiency, we can use
piece-wise linearization techniques to characterize changes in efficiency.

3.1.3. Hydrogen Storage

Hydrogen storage is a key component in HPPs, as it addresses the challenge of
maintaining a stable supply of hydrogen for various uses, including fuel cells.

There are several methods for storing hydrogen. In this work, we focus on compressed
hydrogen gas storage. Compressed hydrogen gas storage is a widely used method in hy-
drogen production facilities due to its simplicity and efficiency. In this approach, hydrogen
is stored at high pressures, typically ranging from 350 to 700 bar, to maximize the amount
of hydrogen that can be stored in a given volume. This method’s key advantages include its
relative straightforwardness in terms of technology and infrastructure requirements, as well
as the fast kinetics for charging and discharging, making it highly suitable for applications
that require rapid hydrogen uptake and release. Compressed hydrogen gas storage is a
critical component in the hydrogen energy infrastructure, especially in applications where
space efficiency and rapid gas delivery are essential.

In this paper, we adopt a simplified model for the hydrogen storage device, wherein
we do not utilize the stored gas but merely consider the amount of remaining hydrogen in
the storage device based on the stored energy. A simple illustration is given in Figure 3.

Hydrogen 

storage devices
Electrolyzer PEM Fuel Cell

𝑃𝐻1
𝑡 𝑃𝐻2

𝑡 𝑃𝐻3
𝑡 𝑃𝐻4

𝑡

Figure 3. The operation of hydrogen storage.

According to Figure 3, we can have the following constraints:

SoCt = SoCt−1 + Pt
H2 − Pt

H3, ∀t (3a)

SoC ≤ SoCt ≤ SoC, ∀t (3b)

where SoCt is the state of charge (SoC) of the hydrogen storage at time t. SoC and SoC are
the lower and upper bounds of the SoC of the storage, respectively. Equations (3a) and (3b)
illustrate the energy balance of storage operations during extreme meteorological disasters.

3.2. Energy Balance Model

In the normal operation of power distribution systems, the energy between supplies
and demands should also keep balance, not mention to the extreme scenario. Therefore,
this section will focus on building an energy balance model of the system to describe its
energy flow.
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3.2.1. Topology Constraints

First of all, the active and reactive power flow balances should be given. In this work,
the LinDistFlow model is used [41]. The relations can be found as follows:

∑
(ij)∈L

Pt
ij = PG

i,t − PL
i,t, ∀t, i (4a)

∑
(ij)∈L

Qt
ij = QG

i,t −QL
i,t, ∀t, i (4b)

vt
i − vt

j =
RijPt

ij + XijQt
ij

V0
, ∀(ij), t (4c)

Equation (4a) shows that for every t and node i, the sum of active power, P, flowing
through the lines, (ij), equals the difference between the generated active power, PG

i,t, and
the load active power, PL

i,t, at node i. Equation (4b) shows a similar relationship from
a reactive power perspective. As for Equation (4c), it shows that the voltage difference
between nodes i and j is determined by the resistance, Rij, and reactance, Xij, of the line,
and the active, P, and reactive, Q, power flows through it, normalized by a base voltage, V0.

3.2.2. Load Constraints

When extreme meteorological disasters occur, the actual demand of user loads should
be guaranteed as much as possible. Therefore, it is necessary to analyze different types
of networks in the system. In our case, there are different types of loads, including point
of power coupling (PCC), normal load, and a node equipped with an HPP. The value of
the active/reactive loads, PL

i,t/QL
i,t, and active/reactive energy supplies, PG

i,t = QG
i,t, are

introduced below.
Usually, the PCC node can provide both active and reactive energy to load nodes.

However, in our case, the system is disconnected from the main grid. Hence, we have the
following constraint for the PCC node:

PL
i,t = QL

i,t = 0, ∀i, t (5a)

PG
i,t = QG

i,t = 0, ∀i, t (5b)

For normal load nodes in the power network, the power supply should satisfy the
user’s needs. In this case, the forecasts of loads, PF

i,t, are used to estimate the power
supply at each node, i, at time t. Considering that some load losses might occur during
a meteorological disaster, the real power supply could be less equal to the forecast value
since we have the following constraints:

PL
i,t ≤ PF

i,t, ∀i (6a)

QL
i,t = tan

(
cos−1 φi

)
PL

i,t, ∀i, t (6b)

PG
i,t = QG

i,t = 0, ∀i, t (6c)

where φi is the power factor of node i.
Apart from the PCC and load nodes, the node with an HPP also needs to be considered.

In the event of a disaster, especially when parts of the grid experience outages, fuel cells
are employed to utilize the hydrogen stored in hydrogen storage facilities. These fuel
cells, in conjunction with renewable energy sources, work collaboratively to ensure a
continuous and reliable power supply. At that time, renewables will be used to conduct
power supply rather than produce hydrogen since it is more efficient. This integrated
approach leverages the sustainability of renewable resources and the high energy density
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of hydrogen, providing a resilient solution to maintain electrical services in the face of
disaster-induced disruptions. We have the following constraints:

PL
i,t = QL

i,t = 0, ∀i, t (7a)

PG
i,t = PRF

i,t + Pt
H4 (7b)

QG
i,t ≤ QG

i,t ≤ QG
i,t, ∀i, t (7c)

It is important to emphasize that the reactive power, QG
i,t, can be efficiently generated

by fuel cells equipped with advanced smart inverters. Additionally, renewable energy
sources can also contribute to providing this reactive power through the utilization of
converters. Equation (7c) restricts the range of reactive power generation at that node.

3.2.3. Capacity Limitations

Apart from the operational constraints, safety constraints should also be considered in
the optimization model, which is shown as follows:

(Pt
ij)

2 + (Qt
ij)

2 ≤ (Sij)
2, ∀(ij), t (8a)

vt,HPP
i = V0 (8b)

vi ≤ vt
i ≤ vi, ∀i (8c)

where Equation (8a) gives the line capacity constraints; Equation (8b) sets the reference
value of the voltage for the node with an HPP; Equation (8b) limits the voltage range of
each node in the grid.

3.2.4. Overall Model

After we formulate all the constraints, the objective functions should be further de-
signed. In this work, the objective functions include two parts: the cost of pre-disaster
prevention, CPRE, and the cost/loss of in-disaster operation, CIN . CPRE is measured by
the total electricity consumed to produce hydrogen before the disaster. The decision to
retain hydrogen, initially earmarked for sale, as a contingency resource for energy supply
in disaster scenarios leads to an opportunity cost, i.e., CPRE. CIN can be further calculated
using the power losses. Hence, we have

CPRE = ∑
t∈[0,T1]

Pt
H1 (9)

CIN = ∑
t∈[T1,T2]

ωt(PF
i,t − PL

i,t) (10)

where T1 is the moment that the disaster begins; T2 is the moment that the disaster ends;
ωt is the unit cost for load losses.

The total cost, CTOTAL, can be represented by

CTOTAL = CPRE + CIN (11)

In summary, the overall model of the pre-disaster prevention can be formed as follows:
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min CTOTAL (12a)

s.t. Electrolyzer constraints: Equations (1a)–(1c) (12b)

Fuel cell constraints: Equations (2a)–(2c) (12c)

Hydrogen storage constraints: Equations (3a) and (3b) (12d)

Topology constraints: Equations (4a)–(4c) (12e)

Load constraints: Equations (5a) and (5b), (6a)–(6c), (7a)–(7c) (12f)

Capacity limitations: Equations (8a)–(8c) (12g)

Cost constraints: Equations (9) and (10) (12h)

In this paper, we employ a two-stage stochastic programming approach to model the
inherent uncertainties encountered in disaster scenarios. These two stages are distinctively
aligned with the different phases of a disaster: the pre-disaster stage, focusing on hydrogen
generation, and the in-disaster stage, addressing immediate response and power supply.

In the original problem, Equations (12a)–(12h), we define the stage-1 decision vector as

x :=
{

Pt
H1, Pt

H2, Et
H1, Et

H2
}

(13)

and the stage-2 decision vector in scenario s as

ys :=
{

Pt
H3, Pt

H4, Et
H3, Et

H4, SoCt, Pt
ij, PG

i,t, PL
i,t, Qt

ij, QG
i,t, QL

i,t, vt
i

}
(14)

in which the scenarios are indexed by s.
Then, we have a compact form of the problem from Equation (12), as

min
x,{ys}

bTx + ∑
s∈S

pscT
s ys (15a)

s.t. x ∈ X (15b)

Asx + Bsys ≤ ds, ∀s ∈ S (15c)

where X represents the feasible region of the stage-1 decision vector x, As and Bs are
constant parameter matrices, and b, cs, and ds are constant vectors; ps is the probability of
scenario s.

4. Data-Driven Scenario Reduction
4.1. Scenario Generation

In the realm of meteorological disasters, predicting key indicators during disaster
events is crucial. This approach involves utilizing advanced forecasting methods to antici-
pate various aspects of weather-related disasters. By leveraging predictive data, targeted
pre-disaster system strategies can be meticulously crafted.

In our work, we focus on forecasting the output of renewable energy sources and
the operational load during disaster scenarios. This foresight is essential for effective
pre-disaster management and preparation.

However, relying solely on a single forecast trajectory to formulate pre-disaster sys-
tem strategies significantly overlooks the inherent uncertainty in meteorological systems.
This narrow approach could render the derived strategies impractical due to their failure
to encompass the wide range of possible outcomes. Specific drawbacks include the in-
ability to adapt to unexpected changes in weather patterns, leading to potential resource
misallocation and inadequate preparedness measures.

In order to address this issue, we adopted the Monte Carlo simulation technique
to generate a variety of forecast trajectories. The advantages of using multiple forecast
trajectories include a more comprehensive understanding of potential disaster scenarios,
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which allows for more robust and flexible planning. This method helps to prepare for a
range of possible outcomes, thus significantly reducing the risk of unanticipated events.

In order to thoroughly account for uncertainties, we implemented a two-stage stochas-
tic programming approach. The benefits of this methodology lie in its ability to provide
a more realistic and practical framework for decision-making under uncertainty. This ap-
proach allows for the initial formulation of strategies that are adaptable, with adjustments
made as more information becomes available or as situations evolve, ensuring effective
resource utilization and an optimal response in the face of unpredictable weather events.

4.2. Scenario Reduction

This section introduces a scenario reduction methodology driven by data analysis.
Scenarios, reflecting possible probability distributions, play an important role in the usage
of stochastic optimization. When the stochastic model includes more scenarios, it portrays
uncertainty more accurately. However, too many scenarios can cause a “dimensionality
explosion”, making calculations complex and resource-intensive.

Assume we have a dataset, either historical or simulated, that contains a total number
of scenarios denoted as Sall . Our objective is to significantly reduce the size of the problem
and alleviate computational challenges by selecting S (the scale of S is much smaller than
Sall) representative scenarios from this dataset.

In this work, the K-means clustering method, a cornerstone technique in the field of
machine learning, is employed. The K-means clustering method emerges as a powerful
tool for scenario reduction owing to its simplicity, efficiency, and flexibility. This algorithm
is able to manage voluminous datasets, effectively minimizing within-cluster variance [42],
thereby ensuring that the reduced scenario set accurately mirrors the variability of the
original dataset. Such characteristics not only afford computational efficiency but also
maintain the integrity and interpretability of the scenario outcomes [43], which is critical
for informed decision-making. These attributes underscore K-means clustering’s role as
an indispensable technique for scenario reduction in stochastic programming [44] and
similar applications.

The proposed stochastic model in Equation (12) differentiates scenarios based on the
load profile and renewable generations, i.e., PF

i,t and PRF
i,t .

In practical applications, a considerable volume of historical/simulation data (PF
i,t

and PRF
i,t in this work) is represented as vc, c = 1, 2, . . . , C. The quantity of these historical

datasets, C, significantly exceeds the number of typical scenarios, S, which is to say, C � S.
Our task involves transforming vc into ws. Central to the K-means clustering approach is
the division of this historical data into S distinct clusters, each denoted as Cs, s = 1, 2, . . . , S.
Within this framework, the center of each cluster is identified as a typical scenario. That is,

ws =
1

Cs
∑

c∈Cs

vc (16)

where Cs is the cardinality of set Cs.
By utilizing the K-means clustering technique, we have developed an algorithm for

segregating historical data and constructing typical scenarios, which we refer to as Algorithm 1.
The convergence of the K-means clustering method is substantiated by Ref. [45].
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Algorithm 1 K-means clustering for scenario reduction
Input: Massive historical data vc, c = 1, 2, . . . , C, randomized initial typical scenarios

ws, s = 1, 2, . . . , S, and empty clusters Cs = ∅, s = 1, 2, . . . , S.
Output: Typical scenarios ws and their probability distributions ps for s = 1, 2, . . . , S.
S1 (Partition): Clear the clusters Cs, ∀s ∈ S and then assign every historical data vc, c =

1, 2, . . . , C to the cluster with the nearest typical scenario, i.e.,

s∗c = arg min
s∈S
‖vc −ws‖2

Cs∗c ← Cs∗c ∪ {c}

S2 (Update): Recalculate the typical scenarios by

ws =
1

Cs
∑

c∈Cs

vc, ∀s ∈ S

and their probability distributions

ps =
Cs

C
, ∀s ∈ S .

S3 (Judgment): If there are no further changes in the partitions, conclude the iteration pro-
cess and present the most recent typical scenarios along with their respective probability
distributions. If changes still occur, proceed to S1.

5. Case Study
5.1. System Configuration

Numerical simulations were conducted using a revised IEEE 33-bus distribution
system, augmented with one HPP located at Bus #2. The solar panel is also installed on
that bus. The layout of this distribution system is depicted in Figure 4.

18159
1

2 3 4 5 6 87 10 11 1312

Distribution line

16

2827 29 30 31

2019 21 22

26

252423

3332

1714

Distribution nodes Hydrogen production plant

Figure 4. Layout of 33-bus test system.

We selected historical extreme meteorological disaster data (taking hurricanes as
an example) from a city on the southeastern coast of China for analysis. With all these
historical data, eight distinct scenarios representing the most likely possible power output
of PV panels and load profiles were derived using the K-means algorithm, as illustrated
in Figure 5. This algorithm is initiated by randomly selecting typical scenarios from the
historical data. We assume that the hurricane, in this case, will last for 1 day (24 h).

The probability distribution of various scenarios is illustrated in Figure 6. Notably, we
employed K-Means clustering for scenario categorization, resulting in distinct probabilities
for each clustered scenario. This distribution reveals that the likelihood of each scenario
varies, highlighting our approach to addressing diverse uncertainties.
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Figure 5. Uncertainty of load and renewables under different scenarios.

Figure 6. Probability distribution of scenarios.

With these clustered scenarios and probability distributions, the parameters in the
formed stochastic model can be determined. Here, an open source optimization solver, CBC
(or, to give it its full name, COIN-OR branch and cut solver), is used to solve the problem.

We selected the CBC solver for our linear programming optimization due to its open
source and cost-effective nature, which fit our project’s limited budget and negates the
need for expensive commercial licenses. The performance of CBC, while potentially slower
for large or complex problems compared to commercial options such as Gurobi and CPLEX,
suffices for our research on pre-disaster prevention strategies, where optimization speed
is not critical. Despite the limitations of CBC in handling very large-scale or complex
problems, its advantages align with our project’s requirements.

The results can be found in the following sections.

5.2. Effect of Using Hydrogen to Restore Power Supply

In this section, we assume that the network was disconnected from the main grid, and
the load demands can only be supported by hydrogen. In Figure 7, we compare the cases
of load restorations with and without hydrogen.

In scenarios where there is no hydrogen supply, damaged power grids can lose all
their load in extreme disaster situations. However, if sufficient hydrogen has been stored
before the disaster, it can ensure that a significant portion of the load, approximately 50% to
80%, continues to receive energy supply. This demonstrates that in microgrids dominated
by hydrogen, if the hydrogen storage facilities and HPPS have adequate capacity, they
can provide sufficient energy support to the associated power grid in the face of extreme
meteorological disasters.
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Figure 7. Effect of using hydrogen for load restorations.

However, it is also important to note that increasing the capacity of hydrogen-related
facilities requires substantial investment. In this context, a comprehensive consideration of
the risk of disasters and the cost of investment and construction is necessary. This aspect,
while crucial, is not the focus of our current discussion and, hence, will not be explored in
further detail.

5.3. Comparison of Results Considering Uncertainty and Deterministic Optimization Situations

In order to elucidate the merits of stochastic programming, a comparative study was
conducted with deterministic optimization. The deterministic approach employs a sin-
gle forecast scenario in its optimization model, which enhances computational efficiency
but diminishes the model’s ability to adapt to unforeseen extreme events. In contrast,
stochastic programming incorporates multiple scenarios and probabilistic distributions,
inherently leading to increased computational demands. Specifically, the efficiency chal-
lenges in two-stage stochastic programming arise from the inclusion of numerous disaster
scenarios—eight in this study—as opposed to a single scenario in deterministic models.
This increase in scenarios results in an eight-fold expansion in the number of second-stage
optimization variables, directly impacting the computation time. Although there is a clear
correlation between the number of variables and the increase in computation time, optimiza-
tion theory does not provide a linear relationship between these two factors. Additionally,
it should be noted that deterministic optimization achieves optimal decision-making only
under conditions of perfect forecast accuracy. In the restoration of power supply after a
meteorological disaster, relying on overly optimistic forecasts can severely undermine the
effectiveness of the response efforts.

Figure 8 presents a comparison for this specific case.
Due to an overly optimistic assessment of the meteorological disaster, the pre-disaster

reserves of hydrogen gas were insufficient. As a result, during the disaster, only about 50–60%
of the load received support. This performance is significantly inferior when compared to
the outcomes achieved with stochastic planning. In the given scenario and throughout the
entire disaster recovery process, the highest load recovery ratio achieved by the deterministic
optimization was 58.7%, and the lowest was 40.9%, with an average of 48.6% of the load
being restored during the entire recovery period. In contrast, when using two-stage stochastic
programming, the highest load recovery ratio was 79.2%, the lowest was 41.6%, and, on
average, 71.3% of the load was restored throughout the recovery process. Hence, this method
highlights its effectiveness in optimizing resource allocation during the recovery process.
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Figure 8. Comparison of different optimization methods.

5.4. Impact of Renewable Capacity on Restoration

In this work, renewable energy plays two roles. One is to power the hydrogen
production of electrolyzers before a disaster occurs. The other is to directly supply power
to the grid during a disaster. In the standard scenario used in this case, the capacity of
the solar panel accounts for 25% of the total loads. When the capacity of the solar panel
increases, more energy can be provided during disasters, and the load loss will be smaller.

We have used the average load loss during the disaster as an indicator for further
analysis. By adjusting the capacity of the solar panel from 25% to 60%, it can be seen
from the results that when the capacity of the solar panel reaches 55%, load loss can be
completely avoided in the studied scenario. The trends can be found in Figure 9.

Figure 9. Impact of solar panel capacity on load supporting.

However, we need to point out that the load recovery effect is affected by many aspects,
such as the capacity of the fuel cell and the reactive power capacity that can be provided in
the grid. At the same time, whether it is economical to install such a large-capacity solar
panel also needs to be considered.

5.5. Impact of Scenario Probability Distribution on Load Recovery

The probability distribution of scenarios significantly impacts the efficacy of the pre-
disaster prevention strategy and its corresponding load recovery outcomes. In our revised
study, in Figure 10, we present the load recovery effects of the prevention strategy across
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the eight different scenarios used in our case. Our results affirm that the methodologies
and models developed are robust, providing substantial support for load recovery during
the disaster-stricken power grid process.

Figure 10. Comparison of the load recovery effects under different scenarios.

It is critical to highlight that we utilized a scenario reduction method that modified
the probability distributions of these scenarios. Our analysis shows that the prevention
strategies we derived inherently favor scenarios with a higher likelihood of occurrence,
such as scenarios 1, 2, 4, and 7 (please refer to Figure 6), where we observed a higher ratio
of load recovery.

Moreover, Figure 11 also illustrates the load loss under each scenario with the same
probabilities. The findings suggest that although the prevention strategy with average
scenario probability distribution achieves some degree of load recovery, it lacks the speci-
ficity needed when compared to the strategy developed using our proposed methods.
Consequently, it falls short in effectively addressing scenarios that have a higher probability
of occurrence, potentially limiting its practical applicability in real-world settings, where
targeted and adaptive responses are crucial.

Figure 11. Comparison of the load recovery effects under different scenarios with the same probabilities.

5.6. Impact of Probability Distribution on Hydrogen Allocation

In this section, we employed both scenario generation and reduction techniques to
identify key scenarios. The final optimization results were adjusted based on the selected
scenarios and their corresponding probability distributions. Our goal in this section was to
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analyze the impact of probability distributions on the optimization outcomes further. In a
new simulation, we set the probability for all eight scenarios to be equal. The simulation
results indicated that under the current parameter settings of the algorithm, using a uniform
probability distribution resulted in a 15.68% increase in optimization costs compared to the
probability distribution shown in Figure 6. However, when we regenerated scenario pairs
to validate the optimization results for supporting grid operations during disasters, we
observed that the load loss did not significantly decrease. The load loss only decreased by
3.74%, highlighting that such results may vary across different scenarios. Nonetheless, it is
evident that the probability distribution influences scenario preference. Setting the same
probability for all scenarios might not effectively balance the realism of disaster occurrences
with economic considerations.

6. Conclusions

In the face of escalating extreme weather events, the resilience of power systems has
become a critical concern, necessitating innovative solutions for maintaining an uninter-
rupted energy supply. This technical journal paper presents a groundbreaking study on
the integration of HPPs into power distribution networks, a strategy aimed at enhancing
resilience against such unpredictable events. Recognizing the volatility and increasing
frequency of these disasters, the study proposes the use of hydrogen, generated from
renewable sources, as a dynamic energy storage medium to ensure stable power supply
during disruptions. Central to this approach is the application of stochastic optimiza-
tion methods designed to effectively manage hydrogen production and utilization while
accounting for the uncertainties inherent in disaster scenarios and fluctuating energy de-
mands. The research addresses significant gaps in the existing literature, particularly the
lack of emphasis on pre-disaster preventive scheduling using hydrogen and the utilization
of stochastic optimization in these scenarios. The paper’s contributions are three-fold:
we develop strategic pre-disaster hydrogen production methodologies, introduce an in-
novative two-stage stochastic optimization model tailored to pre-disaster planning, and
formulate a comprehensive scheduling strategy that integrates advanced technologies for
enhanced network resilience. This novel approach marks a significant advancement in the
field, proposing effective strategies that leverage hydrogen production and sophisticated
optimization techniques to fortify power distribution networks against the challenges
posed by extreme weather events.

Our methodology presents numerous benefits; however, its reliance on hydrogen
to enhance system resilience necessitates a careful evaluation of safety and practicality
considerations. Hydrogen, known for its high flammability and explosive characteristics,
demands stringent safety regulations governing its production, storage, and transporta-
tion. Such regulations are paramount and are typically enforced by agencies dedicated to
occupational safety and health. Furthermore, the involvement of local governments, distri-
bution system operators, and energy departments is imperative. Upon the establishment of
appropriate safety protocols and operational strategies, the implementation of this solution
can proceed through agreements with HPPs. Hence, the design of arrangements and
even contracts could be an interesting research direction in the future. This collaborative
framework promises mutual advantages for local governments, end-users, and HPPs.

However, we need to point out that the implementation of this method requires the
co-operation of many parties. In addition, the optimization requires the collection of data
from different data sources, such as HPP configuration data, grid operation data, and user
data. Data barriers will be one of the main obstacles to applying this approach.
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