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Abstract: The railway plays an essential role in urban and intercity transport of goods and people.
Intercity and urban rail transit infrastructures contribute to the economic and environmental sus-
tainability of global economies. Those infrastructures can be modeled as complex networks, so that
we can evaluate system properties of the network structure. This stream of research has focused
on the topological analysis of global network structure, but little research exists that examines how
local network structures affect system properties. The local structure of complex networks can be
examined with network motif analysis, as those network motifs are the building blocks of networked
systems. Nevertheless, there has been scarce attention given to local network properties in rail transit
networks. We contribute to covering this gap in the literature with a literature review of motif analysis
research and its application to weighted and unweighted rail transit networks, also covering the
current state-of-the-art of network motif decomposition and analysis. We demonstrate that network
motif analysis is not only applicable, but also beneficial for the design and planning of rail transit
networks, enhancing their sustainability by improving efficiency, reducing environmental impact,
and optimizing resource allocation. Based on our findings, we propose future research directions
that involve applying motif analysis to enhance the sustainability features of both unweighted and
weighted rail transit networks.

Keywords: rail transit; complex networks; motif analysis

1. Introduction

Railway systems are vital to the infrastructure networks that support human societies,
akin to telecommunications, transportation, and electricity, with significant implications
for sustainable urban development [1]. With the continuous and rapid development of
the economy and constant urbanization, traffic volume within and between large and
medium cities has increased sharply and railway systems have contributed to handle it [2].
However, railway systems often encounter challenges such as passenger flow stagnation
and low operational efficiency due to their highly networked operations and the complex
interplay of various factors [3,4]. These challenges highlight the need for robust and
efficient rail transit infrastructures, like railway corridors, which are instrumental in the
sustainable development of global economies by facilitating the movement of goods and
people [5]. For instance, it is crucial to determine if connecting two stations with more
than one path would lead to improved travel efficiency from a global standpoint, or if it
would result in a wastage of resources. This challenge is also evident in subway network
planning, where identifying the optimal location for a new station requires examining
the network from a structural viewpoint. Furthermore, in the event of an emergency
at a specific subway station, it is vital to swiftly and efficiently reconfigure the subway
line, necessitating a structural approach to studying these issues. Against this backdrop,
to enhance the overall operational capabilities of public transport and ensure its safety
enhancing network robustness [6–9], it is essential to examine the efficiency and functional
layout of rail transit networks.
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The integration and forecasting of passenger flow in multi-level rail transit networks
are critical for enhancing connectivity between different transport modes, thus contributing
to the sustainability of urban transport systems [10]. Evaluating the importance of urban
rail stations in a topology network considering traffic characteristics can further improve
the reliability and performance of urban rail networks, essential for sustainable urban
development [11]. This emphasizes the need for robust methodologies that can effectively
assess and optimize the structural health and operational efficacy of railway systems.

The development of complex network theory has helped us better understand phe-
nomena in multiple fields, such as biochemistry, neurology, ecology, sociology, engineering,
and transportation [12–16]. A real-world network structure is the evolving result of the
forces shaping it, and this structure certainly affects the network’s properties [17]. This
relationship between network structure and properties has been acknowledged in rail-
way systems research [18]. Some of the properties examined in rail transit networks are
vulnerability [19–21], topology analysis [22–24], robustness [2], optimal scheduling [25],
centrality [26], and community detection [27]. These studies form the basis of planning
and operational strategies that directly influence sustainability outcomes in railway sys-
tems [28,29].

A common feature of the studies mentioned above is that they focus on the global
properties of the network. Examples of these global properties are degree distribution,
average shortest path length, and average clustering coefficient. However, networks
that are similar in terms of global topological properties may noticeably differ at a local
level [30]. In spite of this, few studies have analyzed how local structures affect network
properties [31]. Local properties of complex networks can be analyzed through network
motif analysis. The concept of network motifs, for instance, offers a powerful tool for
uncovering local structural insights that could significantly enhance the resilience and
sustainability of rail transit networks [14,32].

Though network motifs have gathered much attention as a concept to uncover struc-
tural design principles of complex networks in multiple fields in recent years, there is very
limited research on its application to rail transit networks. The proposed study aims to
apply network motif analysis to rail transit networks, bridging a critical research gap and
contributing to the theory of rail transit networks by analyzing local properties through
a sustainability lens.

2. Materials and Methods

To accomplish the research aims, we proceeded to undertake a systematic literature
review. This study followed the original guidelines for systematic literature reviews
proposed by [33]. General quality criteria for a systematic review include transparency,
reproducibility, and systematic methods [34]. Our review specifically aims to integrate
sustainability into the examination of network motifs within rail transit networks, a topic
that holds substantial potential for advancing sustainable urban mobility. To initiate
a concept-centric study, the first step is to conduct research on the problem and carefully
choose relevant keywords before searching for literature across various databases.

Given the nascent stage of research on network motifs in the field of transportation,
particularly from a sustainability perspective[35], our keyword strategy was divided into
two main areas: “rail transit network and network structure” and “network motif and
transportation”. This approach ensured a comprehensive search, capturing both direct
and tangential literature relevant to our sustainability-centric research aims. We conducted
searches across several databases renowned for their extensive coverage of sustainabil-
ity and transportation research, including Science Direct, Web of Science, EBSCOhost,
ProQuest, and Emerald.
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Our search did not limit the temporal scope but was naturally inclined towards
studies published after the pioneering work by [14] on network motifs. A systematic
literature review involves identification, screening, eligibility, and inclusion processes [36].
The process adhered to the PRISMA framework [36], ensuring a rigorous and reproducible
methodology, as depicted in Figure 1. We included studies that specifically tackled themes
around the optimization of rail transit networks through the lens of sustainability, such as
energy efficiency, emission reductions, and enhancement of service quality. We conducted
an initial search using broad search terms to identify relevant articles. After obtaining the
full text of the relevant articles, we review their reference lists to identify additional sources.
These are the ones under the group “Additional records identified through other sources”.
It is worth noting that, apart from utilizing Science Direct, Web of Science, EBSCOhost,
ProQuest, and Emerald databases, we gathered further records through both forward and
backward search methods and through related references and keyword searches.

Figure 1. Sequencing of the phases of the systematic literature review.

While screening the literature search, we adhered to specific inclusion and exclusion
criteria. We focused on articles that not only discuss rail transit networks or related topics
like urban transportation and network optimization, but also explicitly considered the
sustainability impacts of these systems. Articles were required to discuss rail transit
network motifs or topology and be peer-reviewed or published by reputable industry
sources known for sustainability studies. Articles that did not meet these criteria were
excluded from consideration.

The journals where the final sample of articles was published more frequently are
listed in Figure 2. The journals with the most sample articles published were Physica A,
Transportation Research Part E, and the Journal of Transport Geography. While the first
journal is a frequent outlet for complex network theory contributions, the other two are
focused on transportation analysis. This confirms the multidisciplinary role of this field
of study.
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Figure 2. Main peer-reviewed journals where the selected articles are published.

Once the selected articles were identified, we grouped them into three large subgroups:
articles dealing with intercity and urban rail transit (Section 3), articles describing advances
in rail transit networks as complex networks (Section 4), and a final group presenting
contributions related to network motif analysis (Section 5). The examination of these three
streams of literature allowed us to define a research agenda on the application of network
motif analysis in rail transit networks. By analyzing these motifs, our study aims to propose
methods that enhance the operational efficiency, resilience, and environmental footprint of
urban rail systems, thereby aligning with the goals of sustainable urban development.

3. Intercity and Urban Rail Transit

Rail transit consists of the transportation of passengers and goods using wheeled
vehicles that travel along rail tracks. Rail transit systems include intercity and urban rail
transit systems, with different characteristics according to transportation purpose and
distance range [37]. Rail transit systems provide a remedy for urban traffic congestion,
delivering frequent and secure journeys to a large number of passengers [38]. The rail
transit network focuses on the topological structure formed by the interaction between
stations in the entire complex system, which is the basis for understanding the complex
system’s nature and function. Weighted and unweighted rail transit networks reflect
different characteristics of rail transit. Different types of weight could provide different
information, which could help understand the operation of the rail transit system.

3.1. Intercity Rail Transit

Intercity rail transit refers to the passenger rail transit with high speed, public transport,
and large capacity between major central cities in economically developed and densely
populated urban agglomerations or within a large city’s rail transit commuter circle [37,39].

The railway transportation system began in European countries [40]. Thus, inter-
city rail transit has developed early and matured in Europe. The rail transit system in
continental Europe is closely connected, and passenger transportation efficiency is high.
For example, intercity rail transit in Germany and France has precise functional position-
ing and division regarding line setting, operating speed, service objects, and application
functions. In Japan, rail transit has formed a complete network system at all levels, and its
operation mode and market scale are very mature [41]. In China, the development of
high-speed railways and urban rail transit is becoming increasingly mature, while the inter-
city rail transit, which is connects a trunk line and urban rail transit, has just started [42].
The construction of intercity rail transit in many large urban agglomerations has achieved
great success, and world-class metropolitan areas such as Tokyo, New York, and London
have emerged. Intercity rail transit is the product of the continuous development and
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expansion of urban agglomerations and is also an essential part of the regional rail transit
system of urban agglomerations. Since the layout of intercity rail transit is relatively mod-
elized, it is also necessary to pay more attention to its coordination and connection with
urban agglomeration planning and other transportation network planning.

Intercity rail transit has a large volume, high speed, high efficiency, safety, reliability,
is fast and convenient, low-carbon, and energy-saving, which is the most suitable way of
public transportation to connect all nodes and micro-centers in the metropolitan area [43]. It
can connect network elements within the existing urban agglomeration, greatly change the
accessibility of the regional space, and guide industrial spatial reorganization and rational
population distribution [41]. It is conducive to promoting the regional transformation
of economic development modes, optimizing resource allocation, improving land-use
efficiency, and promoting regional integration and urbanization development [44]. The lay-
out of intercity rail transit is closely related to the size of passenger flow, travel purpose,
and travel distance [43].

Based on the differences in the development mode of the regional spatial structure
of the urban agglomeration and the objectives and layout characteristics, intercity rail
transit can be divided into four layout modes: radial type, pendulum type, bead type,
and network type [45]. The structural design of intercity rail lines has commonly followed
a hub-and-spoke model, linking a central hub city to secondary cities acting as spokes. This
configuration aims to optimize track utilization and leverage network effects at the hub
city, facilitating frequent service to various destinations [46]. Authors of [47] built a general
equilibrium and showed that the construction of a subway system would not necessarily
result in reversing the trend toward suburbanization. The studies [48,49] illustrated the
relationship between spatial economy and transportation structure. The correlation be-
tween high-speed rail station location and urban spatial structure was investigated in [50];
the results show that the location of the stations has an important impact on the urban
layout and households’ location choices.

Complex network theories have been used widely on intercity rail transit. In [51], a re-
view of the literature on the application of complex network theory to high-speed railway
systems at different spatial and temporal scales was undertaken. These systems present
different configurations regarding the weight of the edges in a weighted network. Authors
of [52] applied complex network theory to assess the structural vulnerability and interven-
tion of high-speed rail transit networks, which are fragile to severe external disturbances,
and they discovered that the Japanese high-speed rail transit network has better global
connectivity than that of China and the US. However, the Chinese high-speed railway has
better local connectivity than Japan and the US. The study [53] used complex network
analysis to explore how the spatial structure of a high-speed rail transit network evolves
at a local level. The findings illustrate the progression of station placements, community
organization, and the interconnections among stations on a regional scale. Additionally,
they demonstrate the local effects of high-speed rail transit network development within
core cities on structures and connectivity. Additionally, authors of [54] studied the reliabil-
ity and topology structure of the high-speed rail transit network and discovered that key
stations play an essential role in improving the whole network’s reliability. Together, these
studies indicate that structural principles greatly impact the intercity rail transit system.

3.2. Urban Rail Transit

The term “urban rail transit” encompasses a wide range of local rail systems that offer
passenger services to urban or suburban areas. These systems include tram, commuter
rail, light rail, monorail, funicular, and cable car. Occasionally, there is overlap, as certain
systems or lines may incorporate aspects of multiple types [55]. Rapid transit, known as rail
transit, has high passenger capacities and frequency of service in an urban area, fulfilling
the needs of the growing population’s mobility [56].

Urban rail transit adapts to the urban structure where it is located and has played
a considerable role in promoting the development of the urban economy and society [57].
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Since the world’s first subway was completed and opened to traffic in London, England,
in 1863, the construction of rail transit has become essential for major cities to improve urban
traffic problems [55]. After World War II, the construction of rail transit declined. However,
with the excessive use of cars, urban traffic problems have become increasingly severe, so
urban rail transit has developed again, and many new technologies and processes have
emerged during rail transit construction [58]. Now, urban rail transit has developed from the
single subway in the past to light rail, monorail, and other forms [59]. However, the commuter
travel circle has expanded without restriction. The rail transit network expanded to the
metropolitan area according to the traditional subway model, and many radial expressways
support the space of the metropolitan area, making the transportation system in the peripheral
areas inefficient [55]. The traffic corridor congestion problems are prominent, and the traffic
organization and operation of the metropolitan area have hidden dangers [60]. Therefore,
the rail transit rational layout is highly relevant to urban construction.

4. Rail Transit Networks

The application of complex network theory has proven to be a valuable approach in the
study of transportation systems. The introduction of the small-world model by [61] triggered
many studies on various transportation networks, such as rail transit networks [27,38,62],
airline networks [63,64], and bus networks [22,65]. Focused on the rail transit network,
many researchers have discussed the network topology characteristics in different cities,
such as Beijing [2,27,66], Shanghai [67], Chengdu [68], Nanjing [19,69], Shenzhen [70,71],
Xi’an [20], Chongqing [72], Boston [62], Amsterdam [73], Delhi [74], and Leicester [28].
Different cities’ rail transit networks show similar global properties: small-world and scale-
free degree distribution [75]. There are also distinct types of rail transit network studies,
including vulnerability analysis [21,76], topology analysis [22–24], robustness analysis [2],
behavior analysis [77], node importance analysis [78–80], risk analysis [3,72], rail transit
system planning [28,73,81], and community detection [27]. All of these studies shed light
on the importance of the rail transit network.

As a complex system, urban rail transit can be conceptualized as a network involv-
ing the interaction of stations and lines, exerting a substantial impact on passenger and
logistics circulation [82]. In this rail transit network model, stations are represented as
nodes, and physical railway connections as links [65]. Various types of connectivity give
rise to specific rail transit networks. For instance, the rail transit line network has nodes
representing lines connected if there is at least one route between them. Other example is
the the rail transit station network, which features nodes representing stations connected
if there are consecutive stops on a given route [70,83]. Some examples of networks have
weighted links, such as operation timetable [38], passenger flows [27,71], and geographical
distances between stations [84] dynamically influencing rail transit network. Unweighted
and weighted representations offer different insights into its operation. The relationship
between complex network topology, traffic behavior, and the dynamics of maximally
connected networks was studied in [85]. The authors of Ref. [86] integrated topological
properties with socio-economic data, such as population and income, to explore the corre-
lation between traffic volume and topological structure in a weighted network. Optimal
traffic network structures, considering congestion costs, were identified by [87] who found
the star structure to be effective. The growth model of complex networks proposed in [88]
includes a model of urban rail transit networks, connecting nodes with a preferential
attachment rule, thus obtaining a scale-free network with node degree distribution follow-
ing a power law. In article [89], the clustering coefficient, average path length, and node
average degree of Boston and Vienna urban rail transit networks were compared, finding
that both networks have the small-world property. Authors of [90] used the number of
lines passing through each node as the node’s degree, conducted a network modeling
analysis of the topological characteristics of thirty-three urban rail transit networks from
different cities, finding that most of them are scale-free networks. These studies have



Sustainability 2024, 16, 3641 7 of 21

explored the correlation between urban rail transit network structure and system from
different perspectives.

Analyzing the relationship between global and local structure and network properties
is one of the main aims of complex network analysis. In this section, we introduce network
efficiency and average path length as examples of global structure measures and then
introduce the study of local structures on the rail transit network.

4.1. Global Rail Transit Network Structure

Various representations exist for a rail transit system within the framework of com-
plex networks theory. The most direct approach involves nodes representing stations and
links indicating physical connections [65]. Three approaches for defining the topology of
transportation systems were extensively discussed in [62]. The space of changes disregards
physical distance, linking stations when at least one vehicle stops at both. The space of stops
connects two stations if they are consecutive stops on a route. Lastly, the space of stations
links stations directly without any intermediary stops, reflecting real-life infrastructure.
This categorization results in two main classes of rail transit network modeling: Space-P
and Space-L [70,83]. In Space-P, nodes are connected if there is at least one route between
them, while in Space-L, nodes are connected if they are consecutive stops on a given route.
Many studies use either Space-L or Space-P to analyze rail transit networks. For example,
Ref. [23] employed Space-P to construct a rail transit network, evaluating characteristics
such as degree, clustering coefficient, and average path length. They also assessed the basic
functional unit based on transfer times, coverage intensity of attraction zones, and load of
transfer stations. Similarly, Ref. [66] modeled the unweighted Beijing rail transit using both
Space-P and Space-L, demonstrating its small-world and scale-free network properties.
A topological analysis based on Space-P and Space-L of the Shenzhen metro was carried
out in [70], which also showed that both models have the properties of scale-free and
small-world, and Space-P shows more evident small-world properties than Space-L. In the
study [91], the topological network by Space-P was obtained and the improved local-world
evolving model was also developed to reflect the real characteristics of the transporta-
tion network. The Space-wise methods are not only used in the rail transit network, but
also in other transportation networks. For instance, in [92], an unweighted compound
network of subway and bus transport networks was established by using Space-P and
Space-L separately, and compared the topology characteristics of the compound network
and each sub-network, which shows that the compound network also has properties of
small-world and a scale-free network. Space-P and Space-L were also used in [68], building
unweighted subway networks, bus networks, and subway-bus networks separately. Over-
all, the Space-wise method makes a major contribution to the analysis of transportation
networks. However, most Space-wise studies only pay attention to the unweighted rail
transit networks. Considering different kinds of weight, such as operation timetable [38],
passenger flows [27,71], geographical distances between stations [84], average one-way
fares [93], or other weighted elements, a research gap in the Space-wise rail transit network
still exists.

Many studies of the rail transit network combine different networks, which can be
mainly classified into multilayer networks and multiplex networks. A multilayer network
is a network made up of multiple layers, each of which represents a given operation
mode, like a rail transit network with a passenger flow layer and timetable layer [94].
The multiplex transportation network is a network with different layers representing
different transportation modes, such as the air-transportation network and bus-subway
network [95]. Authors of [92] built the multiplex network between a subway network and
bus network and comprehensively analyzed the characteristics of the multimodal network,
paying special attention to transfer status. In the [24] study, the multiplex network of road
and rail transport networks of the third-ring road of Beijing was constructed. Results show
that the multiplex network, with a higher network capacity, has properties of both random
and scale-free network models. A topology and invulnerability analysis of a multiplex
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network of Chengdu’s rail transit and bus network was carried out by [68]. They found
that the invulnerability of the subway–bus multiplex network is higher than both the
subway and bus transit networks. A multilayer model of train and passenger flows was
presented in [38], with the aim to analyze patterns of traffic flows in the rail transit network,
which elucidates fundamental differences between the traffic flows. Previous studies offer
important insights into the research in multilayer and multiplex networks. However,
the universality of much-published research on this issue is problematic. Many studies
mixed the definition of multilayer and multiplex. Besides, due to the limitation of data,
especially weight data for a network, multiplex weighted networks still require further
study, like topology analyses, robustness analyses, and other types of analyses.

Global and local network efficiency were firstly introduced by [84]. They used global
efficiency to measure the transmission efficiency in urban rail transit networks and local
efficiency to measure network fault tolerance. The study [96] evaluated the rail transit
network performance with average path length, global efficiency, and local efficiency and
studied the relationship among network efficiency and transfer nodes proportion, transfer
nodes connecting lines, and transfer nodes distribution. Global and local efficiency of the
subway network and bus networks were compared in the [92] study. While some research
has been carried out on efficiency analysis, there is still little scientific understanding
of rail transit network performance. Authors of [97] did a performance analysis of the
Beijing rail transit network comparing characteristic values. However, as there is not
a unique definition of network performance, systematic research on network performance
is still necessary.

4.2. Local Rail Transit Network Structure

A complex network is an abstraction and simplification of a complex system, which
supports several kind of studies, like topology analysis [22], robustness analysis [2], and risk
analysis [3], among others. The common feature of these studies is that they pay attention
to global properties. A fruitful stream of research in complex networks theory proposes the
existence of a hierarchical structure of complex networks, presented in the pyramid theory
of complex networks [98]. At the apex of this pyramid lays the large scale organization of
the network. Global network properties like degree distribution, network efficiency, and
the small-world property are examined at this level. At the second level of organization lay
at the functional modules. The nodes of each module have a tighter connection between
them than with nodes of other modules. Conversely, each of the modules contains small
subsets of nodes with similar structure. Each of the possible structures of a small subset of
nodes are the network motifs, known as the “building blocks” of the complex network [16].
Network motifs are the local structure of the complex network. Differences at the local
structure level may explain why networks with a similar global structure have different
properties [99]. Network motif analysis is an emerging method developed in recent years
to uncover the structural principles of complex networks, which have been widely used in
multiple fields [100].

While most of the research on rail transit networks has been carried out at the global
level, some studies have examined local properties. The study [23] summarized and
analyzed the two-, three-, and four-line units of the urban rail transit network, finding
that the most frequents are ring, cross, and radiation. Triangles with a ring, triangles
with triangles, and multiple triangles are relatively ideal complex forms in rail transit.
The article [27] reported a study of network substructures by identifying sub-networks
with dense internal connections and sparser external connections to the rest of the network
based on distribution of travel patterns and demand. In a recent study, [101] examined the
topological structure of the station and line networks of the Beijing metro, at the global and
local subgraph levels.

Although there is a growing interest in discovering structural principles of complex
networks analyzing network motifs, there is still little research on rail transit using this tech-
nique. Authors of [82] detected the characteristics of motifs and super-families for several
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national critical transportation networks in China, and primarily analyzed the four-node
subgraph concentrations, and the results showed that the concentration of subgraphs with
low connectivity is less than the concentration of subgraphs with high connectivity. In their
work, Ref. [102] characterized urban transportation networks through the examination of
network motifs, focusing on describing and comparing the frequency and distributions
of motifs of different sizes. In a related vein, Ref. [103] emphasized algorithms in motif
analysis, introducing a convolution-inspired mechanism to vectorize nodes in multi-graphs
(subway, bus, and road networks). Notably, they calculated link weights with attributes
instead of directly extracting motifs from established networks. Additionally, Ref. [104]
utilized large-scale smart card data to showcase temporal motifs for travel pattern analysis.
The temporal motif variations among travelers using different public transportation modes
unveiled distinctions in travel behavior, highlighting variations in functionality and service
across transit modes. This underscores the significance of motifs in the analysis of public
transportation networks, enabling a quantitative exploration of the network organization
modes in transportation.

Up to now, there are still no systematic network motif studies on the rail transit
network, and existing research has been descriptive in nature. According to the current
studies, for unweighted rail transit networks, Space-L and Space-P methods could be
considered to build a complex network and perform a Space-wise network motif analysis.
For a weighted rail transit network, considering different types of weight could provide
a new sight of the rail transit network and uncover local network principles.

5. Network Motif Detection and Analysis

In order to facilitate the exploration of local properties within complex networks,
Ref. [14] introduced the concept of network motifs. These motifs refer to patterns of
interconnections observed at frequencies significantly higher than those found in random-
ized networks.

A network motif is formed by connecting a few nodes: three- and four-node motifs are
relatively more common. For example, a non-directed graph composed of three nodes has
only two different connectivity motif structures (V and triangle), and a non-directed graph
with four nodes has six different motif structures, as shown in Figure 3. Furthermore, there
are 13 different connection modes in a directed graph composed of three nodes, as shown
in Figure 4. As reported in [105], each network motif can perform particular information
processing functions. Network motif analysis has been widely used to understand local
network structures in multiple fields, such as biochemistry, neurology, ecology, sociology,
engineering, and transportation [12–16,106]. Motif research studies can be categorized into
three types: network motif detection, motifs in different fields, and motif patterns.

Figure 3. Three-node motifs and four-node motifs of non-directed networks. (Source: [14]).

Figure 4. Possible directed connected triads for networks.
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Network motif detection is an essential step of motif research [14]. Several motif detec-
tion algorithms have been defined in recent years, such as Kavosh [107], G-Tries [108],
QuateXelero (QX) [109], FSM (fast and scalable network motif discovery) [110], and
MODA [111]. Currently, popular network motif detection and analysis tools include
Mfinder [112], MAVisto [113], Pajek [114], and Fanmod [115,116]. Mfinder supports three-
node to eight-node motif detection using enumeration and random sampling. The output
of the Mfinder is a text document, which can be displayed visually only with the work
tool mDraw. Additionally, as the number of nodes increases, detection becomes slower.
MAVisto (Motif analysis and visualization tool) visualizes the network motifs with the force-
directed placement algorithm [117], which primarily works on three-node to five-node
motifs. With the increase of subgraphs, the detecting speed becomes slower. Pajek is a tool
for analyzing and visualizing large networks in different areas, but some motif analysis
limitations still exist. It can explore three-node motifs, but it is insufficient to support sub-
graph enumeration and random graph analysis. Fanmod uses the RAND-ESU algorithm
to enumerate and sample subgraphs, efficiently exploring eight-node motifs. Network
motif detection algorithms and tools have been improved throughout the years, despite
the limitation in the motif size, runtime, interface, and memories. Therefore, increasing
the detectable motif size with a friendly interface and reducing memories is still worth
studying. The details of current motif detection tools and motif detection algorithms are
shown in Table 1.

Table 1. Motif detection methods.

Motif Detection Methods Motif Detection Size References

Motif detection tools

Pajek Three-node motifs [114]
Mfinder 3–7-node motifs [112]
MAVisto 3–5-node motifs [113]
Fanmod 3–8-node motifs [115]

Motif detection algorithms

NeMoFinder 3–12-node motifs [118]
LaMoFinder 3–20-node motifs [119]

Grochow-Kellis 3–15-node motifs [120]
MODA 3–9-node motifs [111]
Kavosh No restrictions [107]
G-Tries 3–9-node motifs [108]

NetMODE 3–6-node motifs [121]
Acc-MOTIF 3–4-node motifs [122]
QuateXelero 3–13-node motifs [109]

FSM 5–8-node motifs [110]

Typical local subgraphs found in transportation networks are star, line, Y-shaped, ring,
and fully connected subgraphs [123,124]. In the rail transit station network, a star subgraph
appears when several unconnected stations converge at a central station. In the line
network, star subgraphs appear when several unconnected lines are be linked via another
central line for transfers. In the station network, a line subgraph represents sequentially
connected stations without forming a ring. In line network, a line subgraph represents
multiple lines connected in sequence, allowing transfers between them, although not all
lines within the subgraph are interconnected. In the station network, a Y-shaped subgraph
implies that three unconnected stations converge at a central station, with one of the
three stations leading to several connected stations subsequently. In the line network,
the Y-shaped subgraph consists of three unconnected lines linked to another central line,
with one of the three lines gradually leading to several other lines. A ring subgraph in the
station network appears when several stations are connected sequentially forming a ring.
In the line network, the ring subgraph allows for the gradual transfer from the original line
back to the starting line. Figure 5 presents the typical five-node subgraphs.
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Figure 5. Typical five-node subgraphs of a transportation network.

While network motif analysis has been applied in several fields for almost twenty
years, it is only in the last decade that it has been considered in management science. Net-
work motif analysis was introduced by [15], examining the Escherichia coli transcriptional
regulatory network. Network motifs were also detected by [125] in several large-scale
scientific collaboration networks. They also analyzed the characteristics of different types
of motifs. The multi-scale network collaboration patterns and behavior mechanisms of
the scientist collaboration network were researched by [126] using network motif analysis.
Authors of [13] examined the distribution of network motifs in several social networks like
Twitter, Facebook, and Google Plus. In [127], the local structure properties of an automobile
cooperative network were examined at the motif level, also analyzing the influence of the
motif distribution on the whole network structure. The study [128] built the collabora-
tion network of teams working in response to the emergency triggered by the Wenchua
earthquake and detected the network motifs to analyze its microstructure and construction
mechanism, which verified that the combination of motifs obeys specific rules from bottom
to top. The local structures of national emergency organizational collaboration networks
of China and America were compared in [18], and it was found that the building blocks
are characterized by homogeneous types of motifs, as well as heterogeneous distribution
of motifs. The study [129] examined networks of critical infrastructures the properties of
superfamilies and motifs. In [130], two motif-based techniques were introduced to extract
the functional backbones from complex networks. They validated these techniques on
a transportation reachability network and on the US airport network. The hubs and net-
work motifs of the global terrorism network were identified in [131]. Star structures were
prevalent in the network, meaning that a single source can attack multiple targets or that
a single target is possibly targeted by multiple sources. The study [132] conducted a motif
analysis of China’s Passenger Airline Network, offering insights applicable to the motif
analysis of rail transit networks. Through motif concentration curves, they categorized
thirty-seven airline companies into three development stages: mono-centric divergence
companies, transitional companies, and multi-centric and hierarchical. These groups of
companies correspond with the low-level, intermediate, and advanced developement
stages, respectively This classification can be used a basis for optimizing airline networks
by adjusting the appropriate number of network motifs. In [133], the local properties of
the container shipping network were examined through network motif analysis. In [134],
the impact of seasonality on systems like bike-sharing networks was analyzed through
network motif analysis. The resilience of subgraph structures within the air traffic network
were examined in [12]. They identified lower-connected, medium-connected and a few
higher-connected subgraph structures, aimed at enhancing the overall network capacity.
Additionally, Ref. [30] concentrated on motif-based analyses of network resilience and
reliability under different intentional attacks, shedding light on the local dynamics and
vulnerability of networks. In a recent study, authors of [135] use a clustering method to
detect network motifs in attributed road networks. Most studies of the motif are about bio-
chemistry and neurology, some studies focus on collaboration networks, and fewer studies
draw on transportation networks. In fact, the network motif provides a new perspective
for all of these studies, not only for air traffic networks, but also bus networks, subway
networks, and multiplex networks.

There is relatively little literature concerned with motif patterns and properties in
networks. To study the similarity in the local structures of networks, Ref. [136] illustrated
the significance profile (SP) of small subgraphs of motifs in the network compared to
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randomized networks and also proposed the definition of superfamily, which is used to
group into the networks with similar characteristic profiles. The significance profile (SP) is
usually a metric to evaluate the network motif. Besides, the concept of superfamily gives
a new way to classify the different types of networks. The study [137] exemplified the
interwoven structure of the network of communities and explored the overlapping commu-
nity structures. Community is a local structure and property of a network, and a network
motif could be used to decompose the community and analyze the community’s properties.
In [123], group structures were discussed by dealing with the space consisting of collections
of cells and distinguished patterns of communication within a structure into three types:
the innermost region of a structure, the central region of a structure, and the peripheral
region of a structure. The authors of [138] focused on the precise relationship between
network motifs and the global structure and function of networks. They demonstrated
that, in some real networks, the global structure is statistically influenced by the probability
of connections within motifs of a size of three nodes or less. Structure communication
patterns were grouped by [124] into four broad types in the order circle, chain, Y, and wheel.
In [139], the family classification and characteristics of scientists’ cooperative networks
of different scales and fields were systematically identified, which also studied the sub-
graph ratio profile method based on complex network family identification, the subgraph
combination strength, and the subgraph concentration ranking method. Subgraphs were
classified by [129] into three categories: necessary, unnecessary, and characteristic sub-
graphs, which could be used to have a better understanding of the network structure.
In the [140] study, authors presented a mobility prediction model, where human behavior
is modeled through motif-preserving paths. The [141] study detected networks motifs
in urban mobility through a non-negative tensor decomposition. Although extensive re-
search has been carried out on the importance of subgraphs and motif patterns, no single
study exists that focuses on decomposing the motif based on typical subgraphs. Therefore,
the study gap about a network motif decomposition still exists, which could be used to
analyze both unweighted and weighted networks.

6. A Research Agenda of Network Motif Analysis in Rail Transit Networks

There are different advantages and disadvantages in the layout methods of rail transit
hubs in different cities, but the existing methods are poor in subjectivity, freedom, and im-
plementability [142]. Complex networks are indeed a mature research area that focuses
on the study of complex systems as networks of interconnected elements [143]. Network
motifs, which are recurring patterns of connections within a network, are considered to
be important building blocks of complex networks and play a central role in shaping
their structure and function [14]. The primitive structure can reasonably fill the research
gaps in the current layout methods. Network motif analysis provides a new perspective
for studying the local structure of complex networks. However, there is no systematic
motif research on rail transit networks yet. On the one hand, network motif analysis can
reveal the network structure from the perspective of primitives. On the other hand, it
can also present the connection preferences of the sites and explore the rationality of the
public transportation network structure. Due to the cost of station construction, technical
requirements, and geographical constraints, rail transit stations have to be compromised
on location in the initial stage of the construction. However, setting up rail transit network
nodes reasonably and maximizing resource utilization is still a problem. The structure of
rail transit networks at the global level adopted by different countries can be either centered
in a large hub city, or can be designed as a grid network where the centrality of hubs is
less salient. Spanish and French railway networks are highly centric, centered in Madrid
and Paris, while countries like Germany and Poland have adopted grid railway network
designs. Those differences are also present at the local level, where mono-centric and
poly-centric agglomerations can appear. Network motif analysis can show the connection
structure and mode between sites for each of these types of rail transit networks. This
analysis can not only analyze the reliability and stability of the network but also help to
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optimize the layout of the transportation network [136]. Therefore, it is necessary to assess
the structural properties of public transportation network motifs.

The discussed studies offer significant insights into both the global and local structures
of rail transit networks. Network motif analysis emerges as a practical and valuable
approach to unveil the local structure and illustrate stations’ connectivity preferences.
Through motif analysis, the specific relationships among stations are revealed, enabling
the analysis of network resilience and reliability. Utilizing motif analysis aids in gaining
a deeper understanding of existing rail transit networks, thereby facilitating optimization
of network layout.

Due to the limitation of data availability, many rail transit studies focus on unweighted
rail transit networks, yet weighted rail transit networks could show more accurate infor-
mation. There is a significant research gap in the rail transit network on network motif.
Additionally, the current motif research is mainly about motif detection algorithms, but
seldom pays attention to motif decomposition, which could be used to analyze detected
motifs and get the relationship between global and local structures, and reveal the connec-
tivity of the local rail transit network. Therefore, we propose three lines of future research:
unweighted rail transit motif analysis, weighted rail transit network motif analysis, and net-
work motif decomposition and analysis.

6.1. Unweighted Rail Transit Network Motifs Analysis

Network motifs have an enriching application in different networks, but less research
focuses on the transportation network. Based on previous studies on rail transit networks,
we propose using Space-P to build the rail transit line network [70,83] and rail transit station
network using Space-L. Though some studies have paid attention to the unweighted rail
transit network, the space-wised network motif is still a research gap. Therefore, the motif
detection algorithms could be used to discover the motifs and uncover the local structural
properties of the rail transit network to analyze the resilience and reliability of rail transit
networks, helping to improve the performance of the entire rail transit system.

In addition, multiplex networks make a significant contribution to research on trans-
portation networks, in which each network is independent but interacts with the other.
For unweighted multiplex networks, topological analysis [22–24] and robustness analy-
sis [2] can be assessed through the global structure of a network. However, details could
make a difference. The local structure has a non-negligible influence on the network
properties. Therefore, it is necessary to get the local structure and analyze the building
blocks of multiplex networks with network motifs. For example, for subway–bus multiplex
networks, detected motifs include subway station nodes and bus stop nodes. Combined
with the particularity and the connectivity of the motif, the structural principle can be
obtained. With these results, the location of the bus or subway stations, route connectivity,
node preference, and the rationality of the current layout can all be analyzed.

Additionally, network efficiency has been proposed to evaluate the network, and the
significance profile is the metric to assess the network motif. What is the relationship
between efficient networks and significant motifs? Are there any intersections and how do
they affect each other? All of these are practical issues that need to be further researched.

To summarize, we propose to undertake new lines of research related to the examina-
tion through network motif analyses of resilience, reliability, and efficiency of the following:

• Rail transit station networks, built with the Space-L representation.
• Rail transit line networks, defined with the Space-P representation.
• Multiplex transportation networks including rail transit, examining specifically net-

work motifs related to transfers between means of transportation.

6.2. Weighted Rail Transit Network Motif Analysis

The significance of the weighted rail transit network has yet to be examined in previous
research. However, the analysis of local properties of the weighted rail transit network
still is a significant research gap. Different weights show different characteristics of global
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structure. For instance, the operation timetable [38] could reflect each origin and destination
stations’ start time and end time. The cohesion of different line times is a critical topic.
Analyzing the rail transit network with an operation timetable could help to understand
the rationality of the existing schedule and provide more reasonable travel time advice.
Passenger flows [27,71] are another significant weight for a rail transit network. Both rail
transit congestion or passenger behavior can be analyzed from the weighted network.
Similarly, geographical distances between stations [84] could show the layout of the current
rail transit network, directly affecting travel time. Then, applying the network motif to
weighted networks, we can get the details of the weighted rail transit local structure.
For instance, if the weight is the operation timetable, the balance of the local structure needs
to be considered. Based on the basic local structure patterns, whether the time between any
two nodes in a local structure is too long or too short is a problem that needs attention. What
kind of local structures does the passenger flow weighted network prefer? How do different
types of local structures affect the resilience and reliability of the rail transit system? With
different kinds of weights, there will be different results and conclusions. Hence, local
structure analysis on weighted rail transit networks needs to gain more attention.

Weighted multilayer and multiplex networks can also be considered, symbolizing
the superposition of weights to some degree. Analyzing the multiplex networks from
multiple weight perspectives will help to understand transportation networks. Taking some
weights as examples, based on the local structure, the relationship between the operation
timetable [38,144], passenger flow [71,145], and transit fare [146] could be shown clearly.
There are more practical research issues. For example, does the geographical distance [84]
affect the passenger flow? How does the operation timetable influence passenger flow?
Does the basic local structure satisfy the communication among these weights? From this
point, “multi-motif” could be a new definition in the study for the weighted network local
structure analysis on multilayer networks or multiplex networks.

Therefore, we propose to examine the following through network motif analysis:

• Weighted rail transit station network.
• Weighted rail transit line network.
• Weighted multiplex transportation networks.

Regarding network weights, we propose lines of research examining, through network
motif analysis, the impact on passenger flow of the following:

• Operation timetable, including frequency of service and timestamps of departure
and arrival.

• Geographical distance between stations.
• Communication between different means of transportation in multiplex transporta-

tion networks.

6.3. Network Motif Decomposition and Analysis

Complex network structures can be modeled as layered combinations of local struc-
tures of small scale. The node’s degree plays a crucial role in the connectivity of the local
structure function. For a fixed number of nodes, higher degrees correspond to higher
connectivity in the local structure. Previous research on the local structure of rail transit
networks has progressed gradually, describing subgraphs from three to eight nodes using
three-node motifs [128]. However, being a common subgraph in all subgraphs, the three-
node subgraph possesses the same structure and functional connotation, which may not
adequately capture the actual function of the local network.

In previous studies on network motifs, most tended to focus on the motif detection
algorithm [14]. Two main problems are detecting larger-size motifs and speeding up the
detection. However, few studies have investigated the relationship among different size
motifs. Motifs are defined as subgraphs of a small number of nodes that occur at frequencies
significantly higher than in random networks. Analyzing detected motifs and decomposing
high and low motifs could help understand the motifs in depth.



Sustainability 2024, 16, 3641 15 of 21

A motif decomposition could be carried out based on the typical five-node network
motifs presented in Figure 5. In rail transit networks, each of the network motifs repre-
sents various connections between the lines or stations. Therefore, the following research
suggestions can arise:

• What is the impact of the potential prevalence of any of the five-node network motifs
on resilience, reliability, and efficiency on rail transit networks?

• How does the prevalence of any of the five-node network motifs impact on passen-
ger flows?

• What are the five-node network motifs that allow the most effective passenger flow
on multiplex transportation networks?

7. Conclusions

The objective of this review is to bridge the gap between two significant areas of
research: rail transit network analysis and the analysis of local network structures through
network motifs. Our review has led to the proposal of several promising lines of research,
each aimed at enhancing the sustainability of rail transit systems.

Unweighted rail transit networks can be constructed using either Space-P or Space-L
methods. The topology analysis results can reveal these two networks’ global characteristics
and differences. Besides, the motif detection algorithm helps discover the local structures,
allowing analysis of both networks’ local structural differences. It also can present the
specific relationship among stations. Therefore, we propose to analyze the resilience,
reliability, and efficiency of rail transit station and line networks. Regarding multiplex
transportation networks, we suggest focusing on network motifs present in transfers
between means of transportation. Enhancing these aspects can lead to more integrated and
sustainable urban mobility solutions.

For weighted rail transit networks, we have proposed several network weights,
the most relevant of which is the flow of passengers between each pair of nodes. Pas-
senger flow may depend on other network weights like geographical distance, timestamps,
and frequencies coming from operation timetable. As a result, weighted rail transit net-
works evolve over time, and so does the relationship between pairs of stations; therefore,
network properties evolve dynamically [147]. In this context, we propose to examine the
impact of local structures detected with network motif analysis on passenger flows, consid-
ering the impact of operational timetables and geographical distance. Understanding these
relationships can lead to more adaptive and sustainable network designs that respond
better to real-time changes and user demands.

Regarding network motifs decomposition and analysis, previous research has identi-
fied on five typical network motifs in transportation networks: the star, chain, Y-shaped,
ring, and fully connected subgraphs. In this field, we have proposed to undertake new
lines of research examining the impact of their potential prevalence on relevant properties
(resilience, reliability, and efficiency) for rail transit networks. The presence or prevalence
of these five network motifs can also be used as an explanatory variable for passenger
network flows in rail transit and in multiplex transportation networks.

Rail transit networks are transportation infrastructures that can significantly enhance
economic sustainability as facilitators of movement of goods and people, also contributing
to environmental sustainability using clean energy sources [148]. To deliver an effective,
efficient, and robust service, rail transit infrastructures must be planned carefully [149,150].
We believe that this review of extant research on the examination of local properties of
rail transit networks through network motif analysis can improve the planning of railway
infrastructures and, therefore, contribute to the overall sustainability of the transporta-
tion system.
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