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Abstract: The Three Seas Initiative (3SI) is still an under-researched area and is particularly important
due to historical circumstances and economic backwardness. A study was carried out to assess the
impact of renewable energy and production made by the agricultural sector on CO2 emissions in 3SI
countries between 2008 and 2020. The study used panel data analysis based on the two-step system’s
generalized method of moments (GMM) and the Dumitrescu–Hurlin panel causality test. The results
show that a 1% increase in the value added generated by agriculture increased CO2 emissions in
the countries studied by 0.11%. In contrast, a 1% increase in GDP led to a 0.29% increase in CO2

emissions. Conversely, when renewable energy consumption increased by 1%, CO2 emissions fell by
0.25% in the countries studied. One way to reduce CO2 emissions from agricultural production in the
short term is to increase the share of renewables, which incidentally is in line with EU action.

Keywords: agricultural production; agriculture; GMM system; renewable energy; Three Seas Initiative

1. Introduction

Climate change represents one of the most significant challenges currently facing the
European and global economy today. In the context of ongoing change and geopolitical
tensions, volatile energy and food prices have the potential to significantly impact global
economic growth [1]. The concepts of energy, food production, agriculture and climate
change are inextricably linked and must be considered together, particularly in the context
of a globalized environment [2].

The global challenges of combating global warming while maintaining economic
growth are prompting many countries to take joint initiatives. The Three Seas Initiative (3SI)
is a platform for regional cooperation established in 2016 by representatives of 12 European
Union member states: Austria, Bulgaria, Croatia, the Czech Republic, Estonia, Hungary,
Latvia, Lithuania, Poland, Romania, Slovakia and Slovenia. The area encompassed by the
3SI accounts for almost one third of the total area of the European Union, and its population
is more than 112 million people.

The 3SI is designed to facilitate deeper European integration and reinforce the co-
hesion of the EU, including through the development of communication infrastructure,
the reinforcement of energy security and the promotion of the digital economy in Central
Europe [3]. The 3SI member countries face a number of significant challenges, including
the need to enhance energy security through the establishment of a robust and efficient
energy market and to diversify their energy sources and suppliers [4].

The energy sector is a significant contributor to greenhouse gas emissions, including
CO2. Consequently, substantial investment is required to ensure climate protection and
the implementation of sustainable development policies. Therefore, the choice between
renewable and non-renewable energy sources has become a critical decision for all countries
worldwide [5,6]. In turn, agricultural production is of paramount importance in ensuring
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food security. However, agricultural activities are also associated with the emission of
significant quantities of N2O and methane (CH4) into the atmosphere [7,8].

There is a two-way relationship between the broader agricultural sector and climate [9]. On
the one hand, agriculture is dependent on the presence of optimal climatic conditions (tempera-
ture, sunshine, precipitation and other aspects of climate that affect agricultural productivity).
On the other hand, agricultural production is responsible for at least 9% of global greenhouse gas
(GHC) emissions [10]. The primary sources of these emissions are gases from soil management
practices, livestock production and the consumption of fossil fuels [11].

The adoption of rigorous standards by European Union countries to reduce greenhouse
gas emissions by 2050 could present a significant challenge for the agricultural sector.
However, the agricultural sector has the potential to emerge from the energy transition
through participation in renewable energy generation and the utilization of low-carbon
agricultural production techniques [12].

In light of the aforementioned considerations, the objective of this study was to assess
the impact of renewable energy and production generated by the agricultural sector on CO2
emissions in 3SI countries for the 2008–2020 period. The following research hypotheses
were established for the study:

H1: Agricultural production and economic growth both contribute to the release of CO2 emissions
in the short term in the Three Seas Initiative region.

H2: The utilization of renewable energy in 3SI countries is associated with a reduction in CO2
emissions in the short term.

To achieve the stated objective and verify the research hypotheses, the two-step system
of the generalized method of moments (GMM) was proposed by Arellano and Bover [13]
and Blundell and Bond [14], as this method provides consistent and robust results for short-
term panel data. The two-step GMM procedure allows the results to be highly dependable,
even in the presence of endogenous regressors. In addition, a causality analysis based on the
Dumitrescu–Hurlin panel test was applied [15] to classify variables and select instruments
in an appropriate manner.

The novel aspects of this study can be summarized as follows. First, this study analyzes
the countries of the 3SI initiative, which is a new venture in Europe, and examines aspects
of the group’s functioning that have not been analyzed before. At the same time, this study
is intended to stimulate discussion about this initiative and contribute to future research.
Secondly, this study analyzes the links between agriculture and economic emissions for
European countries, providing new evidence in this area. To date, the majority of the
research on agriculture, energy and the environment has focused on countries in Asia
and Africa. However, agriculture plays a significant role in European countries, and the
challenges facing the sector in the context of the energy transition are an important political
and economic issue.

Secondly, the model used in this study, the two-stage panel GMM, has an advantage
over other approaches previously employed thus far in that it allows not only the study
of causality but also the study of the absolute impact of factors in the short term. This
represents a significant extension, as causality studies in the Granger sense alone do not
necessarily provide information on the direction of the relationship. The GMM approach is
further enhanced by identification of the interaction between agricultural activity and CO2
emissions. Finally, to the best of our knowledge, no previous studies have considered the
impact of renewable energy and agricultural production on CO2 emissions in the Three
Seas Initiative countries.

This article is structured in four sections. Following the introduction, a review of
the literature is presented. Section 3 describes the variables in detail and the model
specifications and gives a description of the econometric method. The empirical results and
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discussion are presented in Section 4. Finally, the conclusions and practical implications
are presented in Section 5.

2. Literature Review

Over the past decade, researchers have increasingly focused on the relationship be-
tween pollution and broad economic categories. The scientific community’s collective
work is expected to contribute to the development of emission reduction strategies. The
literature focuses on many aspects of the relationship between CO2 emissions and human
economic activity. Carbon dioxide has been identified in most studies as the main cause of
global warming [16,17]. The global economic downturn that accompanied the pandemic
period also provided new insights into the relationship between the economy and pollu-
tion. While the downturn was only for few months, it resulted in a significant decrease
in greenhouse gas emissions worldwide. This suggests the importance of reducing fossil
fuel consumption and reducing emissions in the economy. However, this decrease was
only temporary, and the return to a state of normal economic activity resulted in a sharp
increase in emissions [18].

The relationship between economic development and environmental degradation or
quality can be broken down into three distinct effects: scale effects, composition effects and
technical effects. As production increases, environmental pressures also increase, but these
pressures can be counteracted by the other two effects [19,20]. The majority of studies use
the environmental Kuznets curve (EKC), which illustrates the relationship between CO2
emissions and economic growth [21].

The research on the EKC can be divided into two categories. The first category exam-
ines the causal relationships between economic development and environmental pollution,
utilizing a high level of generalization due to the data aggregates [22]. The second aspect
focuses on the relationship between economic parameters and energy consumption. It is
widely acknowledged that greenhouse gas emissions are mainly caused by the economic
use of natural resources, including fuels [23].

This area has been the subject of numerous works which have increasingly detailed
analyses. They all share a focus on the EKC as the main cause of environmental degradation
in various aspects of human activity. To date, the impact of macroeconomic determinants
such as globalization on CO2 emissions has been analyzed and determined by econometric
methods [23], population growth [24], urbanization [25] and investment [26]. The last
strand of research, based on global trends related to the energy transition, addresses the
impact of renewable energy sources and sustainable production practices on environmental
pollution [27]. Some researchers have combined economic growth, CO2 emissions and the
use of conventional and renewable energy sources [25,26,28,29].

Their findings indicate that in developing economies, there is a positive relationship
between the GDP and CO2 emissions [30]. In contrast, developed countries experience
a negative impact from economic growth on pollution, as evidenced by the U-shaped
EKC curve [31]. The utilization of contemporary econometric techniques, such as NARDL,
has corroborated the nonlinear and asymmetric effects of economic growth and economic
variables on CO2 emissions [32,33]. The researchers have observed that technological
advancement, educational attainment and globalization can serve to mitigate the adverse
consequences of pollution resulting from economic development [34–36].

The majority of studies concur that non-renewable energy has a positive effect on the
growth of emissions from human economic activity [28,37]. Researchers posit that ensuring
both economic growth and adequate energy supplies lies in the deployment of renewable
energy [27,38,39]. To gain a deeper understanding of the impact of renewable energy on
CO2 emissions, studies are continuously being conducted using updated data resources
and modern econometric methods. However, contradictory results are often found, and
specific conclusions depend on the region analyzed and the econometric method used [40].

Recent research has also examined the impact of individual industries on CO2 emis-
sions and the development of applied economic policies. Moreover, studies on the impact
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of agricultural activities on CO2 emissions have also emerged. Global warming may have a
negative impact on farm operations and agricultural production [41,42], while agriculture
contributes to greenhouse gas emissions [43]. In light of the aforementioned considerations,
the majority of studies conclude that there is bidirectional causality between agriculture
and CO2 emissions [34]. Jebli and Youssef [38], based on African countries, indicated that
increased production in agriculture reduces CO2 emissions in the long term. Conversely,
using Pakistan as an example, Waheed et al. [9] indicated that an increase in agricultural
production leads to an increase in CO2 emissions. The relationship between agriculture
and CO2 emissions has been confirmed by numerous studies, including those conducted
by Florea et al. [44] on CEE countries; Zafeiriou and Azam [45] on Mediterranean countries;
Yan et al. [46] on European Union countries; and Jeremiás on large non-EU countries [47].

Furthermore, farming has been shown to influence soil degradation by increasing the
surface area of agricultural land at the expense of forested areas and grasslands [48]. Mu
et al. [49] indicated in the United States that there are bidirectional relationships between
CO2 emissions and agricultural land area [24]. Wu et al. [50] used China as an example to
show that an increase in agricultural land area has a positive effect on the increase in GHC
emissions. Similar conclusions were also obtained in studies on European countries [50].

Moreover, it is important to note that the majority of scientific studies identify potential
for sustainable and low-carbon agriculture in terms of renewable energy sources [51].
Previous studies have shown that renewable energy has an impact on CO2 reduction and
has a positive impact on the volume of agricultural production [9,38,44]. Numerous studies
also have found causal relationships between the agricultural sector’s production volume
and the share of renewable energy in total energy consumption. For instance, in Tunisia,
bidirectional causal links have been observed between agricultural production volumes,
renewable energy use and per capita carbon dioxide emissions [52]. Similarly, a sample of
BRICS countries (Brazil, Russia, India, China and South Africa) found unidirectional causal
links running from renewable energy to CO2 emissions [53]. A multitude of research studies
have demonstrated the significance of integrating renewable energy into agricultural
practices. This integration is crucial for addressing environmental concerns, promoting
sustainability and countering the effects of climate change [54].

Previous studies on the linkage between agricultural production, renewable energy and
environmental pollution have used a wide range of panel econometric methods, including
ARDL, the GMM and FMOLS [55]. However, an analysis of the literature reveals that
comprehensive econometric studies in this area on European countries, including those in
Central Europe, are still lacking. This study, therefore, contributes to the literature in three
ways. Firstly, to the best of our knowledge, there have been no studies on the relationships
between agricultural sector activities, renewable energy production, economic development
and environmental pollution in 3SI countries. Secondly, this is the first study in which a
two-stage system of the GMM is used for the identified countries. Thirdly, this study adopts a
novel approach with instrumental variables and examines impacts in the short term.

Furthermore, the authors were motivated to examine the relationships between agri-
cultural sector activities, renewable energy production, economic development and envi-
ronmental pollution in 3SI countries due to the realization that some of these countries
are among the top European countries with the worst air quality. At the same time, the
agricultural sector occupies a unique economic and social position in these countries. Re-
newable energy, on the other hand, is still not widely used within the available possibilities.
Therefore, it is essential to examine the factors discussed and present relevant conclusions
and policy implications for the future.

3. Materials and Methods

The empirical study used data obtained from the World Bank’s database (World
Development Indicators) on the 13 countries comprising the Tri-Seas Initiative countries
for the period of 2008–2020. The choice of the period was influenced by the availability of
data and important events affecting CO2 emissions in the surveyed countries. Firstly, in
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2008–2009, there was a global financial crisis, which according to research had an impact on
economic activity and CO2 emissions [56]. Secondly, immediately after this time, there was
a debt crisis in the eurozone, which also affected economic activity and thus environmental
pollution. In 2015, the Paris Agreement was adopted, which redefined global climate policy.
Finally, in 2019, the global pandemic of COVID-19 broke out, which again contributed to
changes in CO2 emissions due to the suspension of many economic and social activities [57].

The variables were selected based on previous research for other countries and re-
gions [49,52,53,55]. A panel dataset encompassing both time series and cross-sectional
data were used in the process of developing the model development process. This study
used CO2 emissions as the dependent variable, with economic growth, renewable en-
ergy consumption, agricultural land area, agricultural growth and value-added serving
as explanatory variables. To ensure normal distribution and stability, the variables were
log-transformed. The variables employed in the study, along with their respective sources,
are presented in Table 1.

Table 1. Variables and sources.

Variables Symbol Measure Dataset Source

Carbon dioxide emissions CO2 per capita metric tons WDI
Agriculture value-added AGDP % of GDP WDI
Gross domestic product GDP per capita USD constant (2015) WDI

Renewable energy consumption REW % of total energy consumption WDI
Agricultural land share ALS % of land area WDI

Source: authors’ research.

This study uses the GMM model developed by Arellano and Bover [13] and Blundell
and Bond [14]. The choice of the GMM method was dictated by its robustness to endogene-
ity and heterogeneity. The model estimation framework uses lagged instrumental variables
in the model for endogenous variables. The additional rationale for opting for the system
GMM over ordinary least squares (OLS) lies in its ability to control bias and inconsistency,
particularly the risk of omitting unobserved time-invariant country effects [58]. The system
GMM offers a more reliable and effective estimation technique in regression models, which
helps to ensure robustness by accounting for correlated errors between past and present
observations. In our view, GMM estimations represent a more systematic and proficient
approach compared with other GMM estimation methods [52].

Instruments are variables that are used to enhance parameter estimation in models,
particularly in instances of endogeneity or other issues associated with an incomplete
set of independent variables. Instruments are utilized to eliminate correlations between
independent variables and model errors. Instruments can also be variables that are lagged
in an appropriate manner. These instruments thus permit testing of the effect of the
independent variables on the dependent variable.

The GMM model is particularly suited to the estimation of panel data, where the
number of cross-sectional units is greater than the number of periods, and there are au-
tocorrelation and heteroscedasticity issues. Based on both the theoretical and empirical
evidence, it is not possible to apply panel data models with fixed effects or random effects
when the aforementioned time series imperfections are present.

This study uses a systematic two-stage GMM model. The system GMM is more effi-
cient and robust to heteroskedasticity and autocorrelation than the single-stage model [59].
A dynamic panel model utilizing a system GMM has an advantage over a difference GMM
model in the case of random walk-type variables, which frequently occur when describing
macroeconomic phenomena. Furthermore, orthogonal moment conditions are employed to
counteract the situation where past levels convey little information about future changes.
Consequently, the GMM-SYS technique, in conjunction with the transformation of forward
orthogonal deviations instead of differentials, produces more efficient and precise estimates
than the difference GMM method. Moreover, dynamic GMM solutions yield more accu-
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rate estimates than OLS models [60]. The general form of the model under study can be
presented as follows:

CO2 = f(GDP, AGDP, ALS, REW) (1)

The following equation can be derived from the above:

CO2, it = α + β1GDPit + β2AGDPit + β3ALSit + β4REWit + ε it (2)

where α is the intercept, i and t represent the countries and time, respectively, β1... and β4
are the coefficients of the independent variables and ε is the error term.

After a logarithmic transformation to eliminate multicollinearity, the analytical form
of the model was determined as follows:

lnCO2,it = α + β1lnGDPit + β2lnAGDPit + β3lnALSit + β4lnREWit + ε it (3)

A two-stage GMM system was used to analyze the relationships between the selected
variables empirically. For the dynamic panel model using the system GMM, the analytical
form of the model is as follows:

lnCO2,it = α + Φ1lnCO2i,t−1 + β1lnGDPit + β2lnAGDPit + β3lnALSit + β4lnREWit + ηi + λt + εi,t (4)

where α, β and Φ are the coefficients of the model, λ is the time-invariant country effect, η
is an unobservable time effect, ε is a residual term and t is a time interval.

Subsequent to the estimation, verification was conducted through utilization of the
Hansen test and the Diff-in-Hansen test, with the objective of ascertaining the robustness
of the outcomes attained and the legitimacy of the instruments employed [61]. In addition,
an Arellano–Bond test for serial correlation was also performed [62].

In order to guarantee the consistency and stability of the model, a robustness check was
conducted in accordance with the methodology proposed by Bond and Windmeijer [63].
This check entails verifying that the estimated coefficient of the Φ of the lagged variable falls
between the values obtained by estimating the pooled ordinary least squares (OLS) model
as the upper bound and the fixed effect (FE) model as the lower bound. Furthermore, a
control estimation of the random effects (RE) model and the Diff-GMM was also performed.

The objective of the present study is to estimate the model parameters and capture
the causal relationships between variables. To achieve this objective, Dumitrescu and
Hurlin’s [15] causality test was used, which is appropriate for heterogeneous panel data
models and based on Granger causality tests [64]. The Dumitrescu and Hurlin test assumes
the null hypothesis of homogeneous non-causality and estimates the parameters using
an individual Wald statistic. This statistic converges sequentially to a standard normal
distribution and a semi-asymptotic distribution of the mean statistic, which is characterized
for a fixed sample T. The results of the causality test for the GMM method can also be
used to group the variables of the model appropriately in terms of their exogeneity and
endogeneity [65].

4. Results and Discussion

Table 2 presents the summary descriptive statistics for the study variables. The dataset
consisted of 237 observations of time series data from 2008–2020 for Tri-Seas Initiative
countries. The descriptive statistics indicate that in the surveyed countries between 2008
and 2020, the average CO2 emissions decreased, while the area of agricultural land and
agricultural production in the GDP decreased concurrently. However, the GDP and the
share of renewable energy consumption increased.
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Table 2. Descriptive statistics.

Variables
CO2 REW AGDP ALS GDP

2008 2020 2008 2020 2008 2020 2008 2020 2008 2020

Mean 7.315 5.264 16.631 25.902 3.244 2.902 42.220 40.458 16,455.309 18,053.381
Min 3.723 3.564 7.630 14.760 1.342 1.086 21.392 23.042 6465.270 7963.310
Max 13.074 8.304 33.710 43.750 6.302 4.336 64.612 56.713 44,440.211 43,455.817
SD 2.734 1.399 8.492 9.325 1.395 1.020 13.515 10.317 9385.169 8239.371

Source: authors’ research.

The correlation analysis is presented in Table 3. The correlation results revealed
moderate correlations between the REW and ALS, between the AGDP and GDP and
between the AGDP and CO2. This result thus indicates that agricultural production has
an impact on CO2 emissions in the Triangle countries. Furthermore, there was a strong
correlation between lnGDP and lnAGDP, indicating that when one variable increases, the
other tends to decrease, and vice versa.

Table 3. Correlation matrix.

Variable lnCO2 lnAGDP lnALS lnGDP lnREW

lnCO2 1.000 –0.442 –0.139 0.420 –0.388
lnAGDP –0.442 1.000 0.306 –0.798 –0.108

lnALS –0.139 0.306 1.000 –0.291 –0.599
lnGDP 0.420 –0.798 –0.291 1.000 0.293
lnREW –0.388 –0.108 –0.599 0.293 1.000

Source: authors’ research.

In the initial phase of the study, the potential for endogeneity was assessed by deter-
mining the causal relationship between the study variables. For this purpose, a test based
on the Dumitrescu–Hurlin panel data test was applied, the results of which are presented
in Table 4. The results obtained indicate that there is bidirectional causality between the
variables: CO2 ↔ GDP, CO2 ↔ ALS and REW ↔ GDP. In contrast, unidirectional causality
occurs between the variables CO2 → AGDP, CO2 → REW, ALS → GDP, GDP → AGDP,
GDP → REW and ALS → REW.

To select an appropriate generalized method of moments model estimation, two models
were estimated: OLS with fixed effects and pooled OLS. The results of both models are
presented in Table 5, and an estimation of the random effects model was also carried out to
confirm robustness. The F-test statistic for the fixed effects test was estimated to be 2.52 and
was found to be statistically significant at the 1% level. This implies that the fixed effects were
nonzero, thereby rejecting the pooled model in favor of the fixed effects model. Furthermore,
the results of the Hausman test indicate that at the 1% significance level, the fixed effect model
should be preferred over the random effect model in the estimation. Consequently, the fixed
effects model was employed to assess the robustness of the GMM estimation results, and the
error component was not correlated with the independent variables.

Table 4. Pairwise Dumitrescu–Hurlin panel causality tests.

Causality W-Stat. Zbar-Stat. Prob.

GDP → CO2 3.558 3.563 0.000
CO2 → GDP 2.511 1.920 0.055
ALS → CO2 2.404 1.753 0.080
CO2 → ALS 2.807 2.386 0.017

AGDP → CO2 0.671 –0.964 0.335
CO2 → AGDP 3.868 4.049 0.000
REW → CO2 1.274 –0.019 0.985
CO2 → REW 2.483 1.877 0.061
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Table 4. Cont.

Causality W-Stat. Zbar-Stat. Prob.

ALS → GDP 7.891 10.354 0.000
GDP → ALS 2.030 1.168 0.243

AGDP → GDP 1.647 0.567 0.571
GDP → AGDP 2.900 2.531 0.011
REW → GDP 12.183 17.083 0.000
GDP → REW 3.109 2.859 0.004
AGDP → ALS 1.440 0.242 0.809
ALS → AGDP 2.076 1.239 0.215
REW → ALS 1.121 –0.258 0.796
ALS → REW 2.772 2.330 0.020

REW → AGDP 1.962 1.061 0.289
AGDP → REW 0.626 –1.034 0.301

Source: authors’ research.

Table 5. Random and fixed effects OLS estimation (robustness check).

Variable
Fixed Effect Random Effects Pooled

Coeff. Prob. Coeff. Prob. Coeff. Prob.

CO2 t−1 0.608 0.000 0.920 0.000 0.920 0.000
GDP 0.153 0.040 0.026 0.381 0.026 0.383
REW –0.282 0.000 –0.036 0.042 –0.055 0.043
ALS 0.058 0.729 0.005 0.280 –0.036 0.282

AGDP 0.145 0.008 –0.055 0.867 0.005 0.867
Const. –0.303 0.702 0.167 0.569 0.167 0.570

R2 0.826 0.958 0.958
Husman cross-section 24.570 0.02

Source: authors’ research.

The results obtained for the fixed effect model indicate that a 1% increase in the GDP
was associated with a 0.15% increase in CO2 emissions under this study. Conversely, a
1% increase in renewable energy consumption was associated with a 0.28% decrease in
CO2 emissions. The added value of agricultural production also had a significant impact
on CO2 emissions among the variables studied, with an increase of 1%, translating into a
0.14% increase in CO2 emissions.

It should be noted, however, that ordinary OLS models are not without flaws and may
fail to account for unobserved heterogeneity over time. Moreover, a significant proportion
of economic panel data do not satisfy the underlying assumptions of the OLS method,
including the absence of autocorrelation and heteroskedasticity. This can result in the
generation of biased estimation results. Utilization of the GMM, however, offers a more
consistent estimation approach.

To select an appropriate estimation method, according to Arellano and Bond (2001),
it is necessary to compare the coefficient ϕ for the dependent variable (CO2 t−1) with the
estimation results of the OLS models. When the Diff-GMM model’s ϕ is equal to or less than
that estimated by the fixed effects method, the GMM model estimation should be chosen
as the systematic method. In light of the above, the final GMM was estimated using the
two-step system method, and the results are presented in Table 6. Furthermore, to confirm the
robustness of the results obtained, the Diff-GMM model is presented in the table.

The results indicate that a 1% increase in the value-added generated by agriculture
was associated with a 0.11% increase in CO2 emissions in the countries studied, under
the assumption that all other variables remained constant. Given that a 1% increase in
the GDP was associated with a 0.29% increase in CO2 emissions, this result indicates that
higher agricultural production has a more negligible impact on CO2 emissions than other
sectors of the economy. Moreover, the model obtained did not confirm that the change in
agricultural land shares in the countries studied had a significant impact on CO2 emissions
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in the short term. Moreover, these results are consistent with those obtained using the OLS
method with the fixed effects and difference GMM methods, which further validates the
robustness of the estimated model. Thus, the results obtained provide positive verification
of hypothesis H1 and are comparable to those obtained in earlier studies by Dauda et al. [66]
for African countries, by Waheed et al. [9] for Pakistan and by Doğan [67] for China.

Table 6. Two-step difference and system of generalized method of moments estimation.

Variable
System Difference

Coeff. Std. Err. Prob. Coeff. Std. Err. Prob.

CO2 t−1 0.678 0.182 0.006 0.453 0.201 0.042
GDP 0.297 0.070 0.004 0.261 0.113 0.038
REW –0.247 0.155 0.097 –0.387 0.150 0.023
ALS 0.482 0.395 0.037 0.417 0.475 0.397

AGDP 0.107 0.096 0.149 0.208 0.116 0.097
Const. –3.436 1.314 0.006
AR (1) 0.092 0.078
AR (2) 0.206 0.196

Hansen p value 0.678 0.182 0.006 0.453 0.201 0.042
Sargan 0.297 0.070 0.004 0.261 0.113 0.038

Source: authors’ research.

The results indicate that an increase in renewable energy consumption led to lower
CO2 emissions in the 3SI countries studied. For every 1% increase in renewable energy
consumption, CO2 emissions fell by 0.25%. Therefore, the results obtained demonstrate
that reducing CO2 emissions in a relatively short time involves increasing the share of
renewables. Consequently, hypothesis H2 can be positively verified. These results are also
consistent with those reported by Naseem and Guang Ji [52] for the SAARC countries and
Liu et al. [53] for the BRICS countries.

In consideration of the diagnostic parameters of the model obtained, as evidenced
by the Arellano–Bond autocorrelation test, it is notable that the null hypothesis of no
first-order serial correlation in the first differences (AR (1)) was rejected. However, the null
hypothesis of no higher-order serial correlation in the first differences (AR (2)) was not
rejected. Consequently, the GMM estimator employed was deemed to be consistent.

The second type of test was the J Hansen test, which was used to ascertain whether the
instruments used were exogenous and whether the resulting GMM-SYS model estimates
were accurate. The results of the Sargan test of overidentification indicate that all the
instruments were valid. In conclusion, the results of the Hansen test and the difference-in-
Hansen test indicate that both the GMM instruments for the levels and the IV instruments
were valid and significant for the outcome variable.

Considering the results obtained and the property of the data to confirm robustness,
an estimation of the VAR model was carried out according to the method proposed by
Abrigo and Lovem [68]. It was similarly estimated by using the first differences to remove
the panel-specific fixed effects and to solve the orthogonality problem (Table A1). The two
lags were selected based on three criteria: the Bayesian information criterion (MBIC), the
Akaike information criterion (MAIC) and the Hannan and Quinn information criterion
(MQIC). All variables were used as GMM-type instruments. The validity of the model
was determined using the eigenvalue stability condition (Figure A1). Based on the model
produced, a Granger causality test was calculated (Table A2). The results appear to confirm
the observations made in the previous estimation with the two-stage GMM model. It seems
that renewable energy, agricultural land area and economic growth may all have a causal
effect on CO2 emissions.

To visualize the impact of the studied factors on CO2 emissions from agriculture,
an impulse response function (IRF) was estimated using the Cholesky orthogonalization
procedure and by estimating the standard errors and confidence intervals using a Monte
Carlo simulation with 800 iterations (Figure 1). The results of the estimation show that
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there is a positive relationship between the GDP and agricultural area for CO2 emissions.
This relationship was particularly evident in the short term. In contrast, an increase in
renewable energy consumption contributed to a decrease in carbon dioxide emissions.
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5. Conclusions and Policy Implications

This study delved into the interplay among renewable energy consumption, economic
growth, agricultural production, agricultural area and CO2 emissions within the countries
comprising the Three Seas Initiative from 2008 to 2020. Using both the OLS technique and
the two-step system of the generalized method of moments, the findings indicate that an
increase in the use of renewable energy sources is correlated with a reduction in carbon
dioxide emissions. Conversely, economic growth and agricultural production are positively
associated with CO2 emissions in the countries examined. These results underscore the
imperative to augment renewable energy adoption and diminish reliance on fossil fuels,
thus making energy transition pivotal for fostering a sustainable economy and aligning
with the Sustainable Development Goals.

This study advocates for agricultural and environmental policies in Three Seas Initia-
tive countries to prioritize maintaining economic growth and agricultural production while
curbing CO2 emissions. This necessitates the establishment of robust, coordinated legal frame-
works by individual governments to bolster air quality and foster long-term technological
innovations. Collaborative efforts, including funding for research and development, coop-
eration among research centers and international research consortia, are recommended for
creating and implementing low-carbon innovations in the agricultural sector.

It is imperative for 3SI governments to implement well-considered fiscal measures to
incentivize low-carbon and renewable agriculture, transitioning toward efficient and sustain-
able production practices. This shift aims to meet escalating consumption demands while
mitigating adverse environmental repercussions. Measures like introducing modern agrar-
ian technologies based on renewable energy sources and enhancing farmer education are
advocated for to enhance agricultural productivity and reduce emissions, including CO2.

Furthermore, coordinated efforts among 3SI countries in developing renewable energy
and leveraging the agricultural sector as a crucial component of the energy transition process
are emphasized. Collaboration in renewable energy production and sales, the establishment of
joint funds for renewable energy development and advocacy for increased financial support
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from entities like the European Union and the World Bank are recommended steps. In
transitioning toward low-carbon agriculture, measures such as abandoning traditional farming
techniques, reducing organic fertilizer and pesticide usage and stimulating investment and
technological progress through international cooperation are vital. Policy interventions should
aim to provide transitional protection for agricultural producers to mitigate adverse impacts
on economic development amid the energy transition.

This study has limitations that can be addressed in future research. The focus is
on the short-term relationship between economic growth, renewable energy, fertilizer
consumption and CO2 emissions from agriculture. Future studies could establish long-
term relationships using modern estimation techniques such as ARDL and QARDL. The
NARDL model could provide interesting evidence by examining the analyzed relationships
asymmetrically. To use the indicated estimation techniques, longer time series would be
required. Additionally, the set of variables was constrained by the objective of the study
and the capabilities of the estimator. Given that the objective of this study was to identify
the primary relationships, it might be beneficial to analyze other sets of variables using
multivariate techniques for more detailed studies.

Future research could also consider other determinants, such as trade openness,
financial development, foreign direct investment and organic farming. Further research
could also utilize other gases emitted by agricultural activities, such as nitrous oxide
or methane, as the dependent variable. Additionally, agricultural activities could be
categorized into crop and livestock production. This type of research would complement
the results obtained in this study, strengthening the scientific discussion on the energy
transition of the agricultural sector.
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Appendix A

Table A1. Main results of the PVAR model.

Independent
Variables

Dependent Variables

∆lnCO2 ∆lnREW ∆lnAGDP ∆lnALS ∆lnGDP

∆lnCO2(t − 1)
−0.432 *** −0.272 ** 0.572 *** −0.009 0.026

(0.093) (0.086) (0.119) (0.015) (0.031)

∆lnCO2(t − 2)
−0.507 *** 0.043 0.531 *** −0.008 −0.028

(0.092) (0.077) (0.131) (0.019) (0.030)

∆lnREW(t − 1)
−0.040 * −0.697 *** 0.316 ** 0.010 0.012
(0.068) (0.079) (0.096) (0.015) (0.030)
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Table A1. Cont.

Independent
Variables

Dependent Variables

∆lnCO2 ∆lnREW ∆lnAGDP ∆lnALS ∆lnGDP

∆lnREW(t − 2)
−0.129 * −0.431 *** 0.462 *** −0.037 −0.105 ***
(0.083) (0.104) (0.099) (0.023) (0.028)

∆lnAGDP(t − 1)
−0.008 0.055 −0.707 *** 0.002 0.003
(0.036) (0.053) (0.063) (0.009) (0.015)

∆lnAGDP(t − 2)
−0.035 * 0.086 −0.301 *** 0.009 0.012
(0.040) (0.055) (0.070) (0.007) (0.016)

∆lnALS(t − 1)
0.069 −0.474 −2.264 *** −0.657 *** 0.089

(0.167) (0.257) (0.367) (0.116) (0.074)

∆lnALS(t − 2)
0.301 * −0.092 −0.865 * −0.367 ** 0.106
(0.139) (0.184) (0.373) (0.135) (0.064)

∆lnGDP(t − 1)
2.063 *** −2.213 *** −4.187 *** 0.157 * 0.644 ***
(0.335) (0.390) (0.421) (0.068) (0.131)

∆lnGDP(t − 2)
−0.317 * −0.613 ** 0.532 −0.052 −0.350 ***
(0.153) (0.222) (0.274) (0.037) (0.055)

Notes: ∆ is the first difference operator. ***, ** and * indicate statistical significance at 1%, 5% and 10% levels,
respectively. Source: authors’ research.

Table A2. The results of the panel Granger causality test.

Dependent
Variable

Independent Variables

∆lnCO2 ∆lnREW ∆lnAGDP ∆lnALS ∆lnGDP

∆lnCO2 11.168 ** 29.759 *** 0.406 2.312
∆lnREW 2.463 * 23.116 *** 4.354 18.04 ***

∆lnAGDP 0.930 2.429 2.293 0.614
∆lnALS 5.575 * 3.711 40.4 *** 2.855
∆lnGDP 41.772 *** 35.349 *** 99.789 *** 10.788 ***

Notes: ∆ is the first difference operator. ***, ** and * indicate statistical significance at 1%, 5% and 10% levels,
respectively. Source: authors’ research.
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