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Abstract: Multi-temporal interferometric synthetic aperture radar (MT-InSAR) techniques are well
recognized as useful tools for detecting and monitoring Earth’s surface temporal changes. In this
work, the fundamentals of error noise propagation and perturbation theories are applied to derive
the ground displacement products’ theoretical error bounds of the small baseline (SB) differential
interferometric synthetic aperture radar algorithms. A general formulation of the least-squares
(LS) optimization problem, representing the SB methods implementation’s core, was adopted in
this research study. A particular emphasis was placed on the effects of time-uncorrelated phase
unwrapping mistakes and time-inconsistent phase disturbances in sets of SB interferograms, leading
to artefacts in the attainable InSAR products. Moreover, this study created the theoretical basis
for further developments aimed at quantifying the error budget of the time-uncorrelated phase
unwrapping mistakes and studying time-inconsistent phase artefacts for the generation of InSAR
data products. Some experiments, performed by considering a sequence of synthetic aperture radar
(SAR) images collected by the ASAR sensor onboard the ENVISAT satellite, supported the developed
theoretical framework.

Keywords: small baseline (SB); ground displacement; interferometry; phase unwrapping

1. Introduction

Differential synthetic aperture radar interferometry (DInSAR) [1–4] is a consolidated
methodology for the detection and constant monitoring of Earth’s surface ground dis-
placements and the surveillance of infrastructures damage [5–15]. In recent years, the
growing availability of RADAR images collected by constellations of synthetic aperture
RADAR (SAR) satellites, which operate at different electromagnetic frequency bands and
complementary acquisition modes, led to the flourish of a variegated series of DInSAR
applications and novel technological developments. In particular, over the last twenty
years, the DInSAR technology gradually evolved towards new advanced multi-temporal
interferometric SAR (MT-InSAR) techniques [16–35], for the generation of ground dis-
placement time-series. In this context, the two main classes of the Persistent Scatterers
(PS) [21,36] and the Small Baseline (SB) [16,25–27,37–39] methods emerged, and were prin-
cipally used for the detection of the displacements affecting point-wise persistent scatterers
(PS) and distributed scatterers (DS) on the terrain, respectively. On the one hand, the
PS methods analyzed the displacement of SAR scenes’ radar pixels, at the single-look
resolution scale, characterized by a dominant scatterer that maintained its phase stability
over the entire SAR data time-series. On the other hand, the SB methodologies allowed
the analysis of the ground displacement of DSs on the ground, which might be affected
by spatial and temporal decorrelation [40,41]. For this purpose, the SB methods select
multiple-master InSAR data pairs characterized by short temporal and spatial baselines,
thus preserving their coherence and facilitating the extraction of useful information on
the phase history of distributed targets on the scene. Furthermore, the SB interferograms
are usually multi-looked (complex averaged) [3] to mitigate the decorrelation phase noise
effects.
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More recently, with the scope of maximizing the total number of correctly investigated
DS pixels, novel MT-InSAR techniques, based on the processing of long sequences of
optimized multi-looked DInSAR interferograms, also emerged, such as SqueeSAR [22],
CAESAR [23], and other alternative methods [29,32,42]. Some cross-comparison anal-
yses of the different, developed MT-InSAR techniques [43–47] were also carried out to
quantitatively assess their mutual performances. Moreover, in the last seven years, the
InSAR community was primarily focused on adapting the available MT-InSAR codes to
process large sequences of SAR data collected by the new constellations of SAR satellites.
In particular, a significant role was played by the Sentinel-1A/B (S-1) twin satellites of
the European Union Copernicus initiative [48]. The free and open access policy of the
S-1 data and the weekly repetition frequency of the observations contributed to InSAR
technology’s evolution to afford the challenges of the present-day, big-data era. New
developments are required to adapt the existing processing codes to handle Interferometric
Wide (IW) Swath S-1 SAR data. These were collected through the Terrain Observation
with Progressive Scans (TOPS) mode [49], which is the principal acquisition mode of S-1
over lands. In this context, several studies were performed to demonstrate the S-l SAR
data’s potential for global mapping and the effective processing of large sequences of TOPS
SAR data [50–52]. Despite the high capability of the MT-InSAR techniques to measure
displacement phenomena, there are still open questions to be theoretically addressed. For
instance, it is worth mentioning the recent developments based on the use of InSAR data,
at different polarizations, for the extraction of additional information on some underlying
geophysical phenomena, such as for the retrieval of soil-moisture parameters of the imaged
scenes from InSAR data [53–56].

This research study aimed to investigate, from a theoretical perspective, the error
bounds of the ground deformation InSAR products, e.g., mean displacement maps and
relevant ground deformation time-series, obtained using the small baseline (SB) methods.
The different contributions of the unwrapped phases of the identified set of SB InSAR data
pairs were thoroughly investigated, focusing on the decorrelation of noise sources. The
role of the time-correlated and time-uncorrelated disturbance phase terms in the set of
SB interferograms was also discussed, to study how these terms could affect the quality
of the reconstructed ground deformation time-series via the multi-temporal SB InSAR
techniques. Indeed, the time inconsistencies in the set of unwrapped SB interferograms
might lead to erroneous InSAR products. Nevertheless, in the case of the Small Baseline
Subset (SBAS) [25] algorithm, the temporal coherence is typically used as a quality index
of the retrieved ground deformation time-series [57]. In particular, the temporal coherence
values could be used to eventually identify a group of reliable and well-processed SAR
pixels after the SBAS inversion. Invoking the principles of error noise propagation [58]
and perturbation theory [59–62], the ground deformation InSAR products’ relative error
was eventually retrieved. It was mathematically and statistically demonstrated that this
error depends on the properties of the SB unwrapped phases and the design matrices
of the identified networks of SB interferograms. This work also put the basis for future
investigations assessing the potential and efficiency of SB methods in recovering additional
geophysical information on the imaged scene’s state. The algebraical and statistical prop-
erties of the inversion procedures adopted by the SB algorithms to recover the wanted
ground deformation products were addressed to this aim.

This paper is organized as follows. Sections 3–5 quantify the error budget of SB
methods for the ground displacement of InSAR products. Section 6 presents the results of
some experiments performed to support the recovered theoretical outcomes. Finally, a short
discussion on the study outcomes and future perspectives are presented in Sections 7 and 8.

2. The SB InSAR Framework

In this section, the basic rationale of SB methods and the SB multi-looked phase
characterizations are provided. First, let us consider a set of N + 1 SAR images collected



Remote Sens. 2021, 13, 557 3 of 28

at times ti, i = 0, 1, . . . , N, which are adequately re-sampled on the same reference image
grid, and let d be the complex data vector:

d(P) = [d0(P), d1(P), d2(P), . . . , dN(P)]T (1)

where d1(P) is the complex reflectivity of the i-th SLC image computed at the generic radar
pixel P, and T is the transposition operator. Starting from the available SAR images, and
for every radar pixel P, the sample covariance data matrix [63] could be calculated as:

C(P) = E
[
d · dH

]
=

1
|Ω| ∑

Q∈Ω
d(Q) · dH(Q) (2)

where E[·] is the expectation operator, Ω is the group of samples in the neighborhood of
the given radar pixel P used for the computation of the expectation value in (2), and |Ω|
represents the cardinality of Ω; note also that H is the complex Hermitian operation. Some
recent advanced methods [22,64–66] for the proper, spatially-adaptive identification of
a set of statistically homogenous pixels (SHPs), could also be employed for the efficient
computation of the sample covariance data matrix, see Equation (2).

Remarkably, the off-diagonal elements of the upper (lower) triangular matrix derived
from the covariance matrix C(P) corresponded to the entire set of M = (N + 1)N/2
possible complex multi-looked interferograms that could be generated from the set of
available SAR images. Specifically, the (i, j)-th element of the covariance matrix C(P) was
given by:

Ci,j(P) =
√

E
[
|di(P)|2

]
· E
[∣∣dj(P)

∣∣2] · γi,j(P) · exp
[
j∆φi,j(P)

]
∀i = 0, 1, . . . , N; j = i, i + 1, . . . , N

(3)

where ∆φi,j(P) is the (wrapped) multi-looked interferogram related to the (i, j) SAR data
pair and γi,j(P) is the coherence [41,67] of the relevant (i, j) interferometric SAR data pair.
Moreover, let ∆Bi,j = B⊥,i − B⊥,j i = 0, 1, . . . , N; j = i, i + 1, . . . , N and ∆ti,j = ti − tj i =
0, 1, . . . , N; j = i, i + 1, . . . , N be the perpendicular and temporal baselines of the (i, j)-th
interferometric SAR data pairs.

Among the vast amount of interferometric SAR techniques developed in almost the
last thirty years to study the Earth’s surface displacements, the class of small baseline
(SB) methods, see for instance [25,27,31,33,37,38], is widely used. The SB methods were
principally developed to investigate the ground displacement signals of distributed targets
(DS’s), which correspond to spatially-distributed objects on the ground with no dom-
inant point-wise scatterers that are affected by the spatial and temporal decorrelation
phenomena [40].

To partially circumvent the phase decorrelation problems, efficiently, the SB meth-
ods select only the differential SAR data pairs with short temporal and geometric base-
lines. As an example, Figure 1a shows a distribution of SB interferograms in the tempo-
ral/perpendicular baseline plane.

Let ∆Φ(SB)(P) =
[
∆ϕ

(SB)
0 (P), ∆ϕ

(SB)
1 (P), . . . , ∆ϕ

(SB)
M(SB)−1

(P)
]T

and ∆Ψ(SB)(P) =[
∆ψ

(SB)
0 (P), ∆ψ

(SB)
1 (P), . . . , ∆ψ

(SB)
M(SB)−1

(P)
]T

be the data vector of the wrapped and un-
wrapped SB multi-looked interferograms, computed at the generic pixel P. Note also that
the subsequent SB interferograms’ inversion procedures are applied to every SAR pixel,
independently. For this reason, the dependence on the coordinates of the given radar pixel
P of the considered data vectors is not explicitly mentioned in this paper, from here on.
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Figure 1. Examples of SB InSAR data pair distributions in the temporal/perpendicular baseline
domain. (a) SAR data collected by the ERS/ENVISAT sensors in Yellowstone, U.S. (track 41, frame
2709) region. The applied thresholds on the maximum geometrical and temporal baselines are 800 m
and three years, respectively. (b) A triangular-shaped network of SB interferograms related to a SAR
data set collected by the ENVISAT sensor (ascending orbit, VV polarization) in the area of Pearl River
Delta, China, from 2006 to 2010.

The different SB methods proposed in the literature have individual peculiarities; how-
ever, a unified representation must analyze their performances. Specifically, in this research
paper, the general representation adopted in [44] is recognized as valuable and extensively
adopted. The different implementations of the SB methods are unified considering that a
linear transformation that relates the vector of the unwrapped SB interferograms, namely

∆Ψ(SB) =
[
∆ψ

(SB)
0 , ∆ψ

(SB)
1 , . . . , ∆ψ

(SB)
M(SB)−1

]T
, with a model of unknown parameters of the
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ground deformation, is implemented. The adopted unified representation of the SB linear
transformation is, hence, given by:

A ·M = ∆Ψ(SB) (4)

where A is the M(SB) × Nm design matrix of the linear transformation and M is the Nm × 1
vector of the model parameters values, with Nm being the number of independent parame-
ters that describe the adopted model. For instance, if we consider the pioneered small base-
line subset (SBAS) algorithm [25], the model parameters are the velocities between consecu-

tive time acquisitions, specifically M =
[
m0 = φ1−φ0

t1−t0
, m1 = φ2−φ1

t2−t1
, . . . , mN−1 = φN−φN−1

tN−tN−1

]T
,

and the design matrix A has the following expression [25]:

Ai,j =

{
ti − ti−1 IMi ≤ j ≤ ISi

0 otherwhise
(5)

where IMi and ISi are the indices of the master and slave images of the i-th SB multi-
looked interferogram, respectively, where it is assumed that tISi > tIMi∀i. Again, for the
SBAS case, the application of constraints on the maximum allowed temporal and spatial
baselines of the interferograms can generally lead to the available SAR scenes clustered in
the data subsets, separated by large baselines. In this case, the system of linear Equation (4)
was solved in the least-squares (LS) sense, by decomposing the design matrix A with the
singular value decomposition (SVD) method [68,69]. As anticipated earlier in [44], a unified
schema for the processing chain of four selected different implementations of SB methods
were introduced, and the performances of the four methods were quantitatively compared.
In particular, they mentioned the SB implementations developed in the StaMPS/MTI
toolbox, and three independent implementations provided by the Giant toolbox.

In this research study, the author investigated the linear transformation’s algebraic
properties of the system of linear Equation (4), intending to recover the theoretical upper
bounds of the relative errors of the InSAR products’ measurements obtained using the SB
methods. The dependence of those bounds on the selected threshold on the maximum
allowed perpendicular baseline of the SB interferograms was also explored. Finally, for the
SBAS method, the accuracy of the measurements as a function of the SB interferograms’
coherence and the temporal coherence of the generated InSAR products [57] was derived.

Let us start by introducing the statistical properties of the sequence of the M(SB) un-

wrapped SB phase values ∆Ψ(SB) =
[
∆ψ

(SB)
0 , ∆ψ

(SB)
1 , . . . , ∆ψ

(SB)
M(SB)−1

]T
. The i-th component

of the vector of unwrapped phases ∆Ψ(SB) could be expressed as [67,70]:

∆ψ
(SB)
i = ∆ψ

(SB),de f
i + ∆ψ

(SB),APS
i + ∆ψ

(SB),topo
i + ∆ndecor

i + ∆nuncor
i + 2πKerror

i (6)

where:
∆ψ

(SB),de f
i is the proper (wanted) phase component related to the ground displacement

that occurred between the two passes of the radar sensor over the illuminated scene,
related to the i-th interferometric SAR data pair. In particular, if the ground deformation is
assumed to be linear, with a mean displacement rate v, this term could be approximated
∆ψ

(SB),de f
i

∼= (4π · v · ∆ti)/λ to, where λ is the operational radar wavelength and ∆ti is the
temporal span of the i-th SB InSAR data pair.

∆ψ
(SB),APS
i is the phase artefact related to the differential atmospheric phase screen

(APS) between the two SAR images forming the i-th interferogram. Several studies al-
ready addressed the problem of studying and characterizing this phase contribution (see,
for instance, [39,71,72]), both for satellite and ground-based radar systems, considering
the atmosphere’s physical properties. These phase contributions are due to the inhomo-
geneities of the medium within the used electromagnetic waves propagation. Note that
the spurious APS signals in a sequence of SAR data are almost spatially correlated and
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temporally uncorrelated, and the tropospheric contribution depends on the topography of
the scene [70,72].

∆ψ
(SB),topo
i is the spurious contribution in an interferogram due to a non-perfect

removal of the topographic phase term, during the differential interferogram forma-
tion [25,73]. It is related to the errors of the used digital elevation model (DEM) of the
scene ∆z as: ∆Ψ(SB),topo

i
∼= (4π · ∆B⊥i · ∆z)/(λ · r · sin ϑ), where ∆B⊥i is the perpendicular

baseline of the i-th interferogram, r is the sensor-to-target range distance and ϑ is the local
incidence angle of the electromagnetic waves on the terrain.

∆ndecor
i is the decorrelation phase, which could be categorized as due to geometrical,

temporal, and volumetric effects and the radar instrument noise; see the works of [40,41,67]
for a comprehensive review of the decorrelation causes and the methods developed to
analyze and filter out these spurious phase terms in the generated (multi-looked) inter-
ferograms. Note that the scatterers’ phase noise correlates with interferograms having
common SAR acquisitions. Accordingly, this phase noise contribution takes into account
the temporally correlated noise, exclusively. It means that, ideally, for the phase noise term
attained, a single redundant network of SB interferograms (see Figure 1) contains the same
information as any other connected graph of the interferogram. Accordingly, this kind of
phase noise contributions is representative of a temporally-conservative field.

∆nuncor
i , on the other hand, is the contribution of the phase noise that is time-uncorrelated.

Hence, these phase components are temporally inconsistent. It means that considering a triplet
of SB interferograms generated from three SAR images (namely A, B, C), and forming a closed
loop (namely AB, BC, CA), the sum of the relevant uncorrelated phase noise contributions
differs from zero, namely

〈
∆nuncor

AB + ∆nuncor
BC + ∆nuncor

CA
〉
−π,π 6= 0 [22,24,32,70], where the

symbol 〈·〉−π,π is the wrapping operator (see Figure 2). This phase term is the composite
effect of small random alterations that determine the temporal-inconsistency of statistical
operations, such as those involved in the generation of multi-looked SB interferograms or
due to systematic errors in the operations of co-registration and noise filtering of every
single data pair, when these operations are independently applied to every single inter-
ferogram. Unlike these statistical inconsistencies, this phase noise contribution also takes
into account a lack of consistency related to underlying physical reasons connected to the
electromagnetic waves’ different scattering mechanisms with the imaged objects. Some
recent works [53,74,75] investigated this problem from the statistical and physical point of
view, shedding light on the potential application of these inconsistencies to retrieve some
parameters of interest of the underlying physical phenomena.

Figure 2. Pictorial representation of the lack of temporal phase consistency among a set of three
images A, B, and C. The terms ∆nuncor

i and Kuncorr
i are the time-uncorrelated phase alterations and

the time-uncorrelated phase unwrapping mistakes, respectively.
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Finally, the term 2πKerror
i accounts for the errors, due to the incorrect phase unwrap-

ping operations, where Kerror
i is an integer representing the number of phase cycles that

were incorrectly estimated during the phase unwrapping operations. It is worth empha-
sizing that phase unwrapping mistakes could be decomposed as the sum of two terms:
2πKerror

i = 2πKcorr
i + 2πKuncorr

i . The former contribution, namely Kcorr
i , considers the phase

unwrapping mistakes that are temporally consistent. It means that considering the three
A, B, C images pictorially shown in Figure 2, Kcorr

AB + Kcorr
BC + Kcorr

CA = 0. On the contrary,
the second component Kuncorr

i considers the temporally uncorrelated phase unwrapping
mistakes, for which the following relation Kuncorr

AB + Kuncorr
BC + Kuncorr

CA = KABC 6= 0 holds.
It is also worth mentioning that some existing 3-D or hybrid phase unwrapping operations
(e.g., [57]) can handle/manage/correct these uncorrelated phase unwrapping mistakes.

Of great concern for this investigation are the effects of the uncorrelated phase un-
wrapping mistakes Kuncorr

i and the uncorrelated noise phase terms ∆nuncor
i on the linear

system’s solution of Equation (4). Indeed, if the adopted model in Equation (4) is time-
consistent, the time uncorrelated components are those responsible for the residuals of the
relevant least-squares problem. On the contrary, the remaining time-correlated phase con-
tributions ∆ψ

(SB),de f
i ,∆ψ

(SB),APS
i , ∆ψ

(SB),topo
i , ∆ndecor

i and 2πKcorr
i , although representative

of distortions in the final solution, belong to the co-domain of the linear transformation
(4) and, thus, they do not produce any phase residual after the LS optimization. To bet-
ter clarify this relevant issue, let m(de f ) : A ·m(de f ) = ∆Ψ(SB),de f be the actual (wanted)
signal, and m(APS) : A ·m(APS) = ∆Ψ(SB),APS, m(top_err) : A ·m(top_err) = ∆Ψ(SB),topo,
m(decorr) : A ·m(decorr) = ∆ndecorr, m(unwr_corr) : A ·m(unwr,corr) = 2πKuncorr.

It is known that the solution of the LS problem in Equation (4) can generally be
obtained as:

^
m = A† · ∆Ψ(SB) (7)

where A† is the (left) pseudo inverse of the design matrix A obtained by applying SVD [69]:

A† =
(

ATA
)−1

AT (8)

with
A = U · S · ZT (9)

where U is an M(SB) × Nm orthonormal matrix, Z is an Nm × Nm orthonormal matrix,
and S = diag(σ0, σ1, . . . , σNm−1), where the elements on the diagonal of S represent the

singular values of the matrix A and σ0 > σ1 > . . . > σNm−1. The obtained LS solution
^
m

guarantees that the vector of residues has a minimal norm, i.e., min
(∥∥∥∥A · ^

m− ∆Ψ(SB)
∥∥∥∥

2

)
.

More specifically, if the matrix A has full rank, i.e., when the interferometric SAR data

pairs are selected to form one single data subset, there exists one single data vector
^
m

that minimizes the norm of the residual vector. That residual vector must necessarily be
orthogonal to the space spanned by the linear transformation (see Figure 3).

Conversely, when the matrix A has a rank-deficiency, there are infinite LS solutions
with a minimal norm, and the application of SVD allows one identifying that LS solution

with minimal two-norm residues and minimal norm, i.e., min
(∥∥∥∥ ^

m
∥∥∥∥

2

)
.
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Figure 3. Vectorial representation of the least-squares problem discussed in Equation (4). The grey
area identifies the co-domain of the linear transformation given by Equation (4).

A few remarks concerning the temporal coherence factor [57] usually adopted by the
SBAS algorithm are now discussed. As said, for the SBAS case and similar SB methods,
the time-uncorrelated phase terms ∆nuncor

i and the time-uncorrelated phase unwrapping
errors Kuncorr lead to temporal inconsistencies in the final solution. For the SBAS algo-
rithm [25], the temporal coherence factor was initially introduced in [57] to expressively
quantify the effects of such temporal inconsistencies; hence, the temporal coherence factor
represents a quality index of the ground displacement time-series reconstruction. Over
the years, the temporal coherence was extensively used in several SBAS investigations,
see for instance [76–79], to identify the reliable pixels after SBAS inversion. The temporal
coherence factor was mathematically defined as:

ρ =
1

M(SB)

∣∣∣∣∣∣
M(SB)−1

∑
k=0

exp[jrk]

∣∣∣∣∣∣ (10)

where R =
[
r0, r1, . . . , rQ−1

]T is the vector of the residues R = A · ^
m− ∆Ψ(SB) of the LS so-

lution of the system of Linear Equation (4). Accordingly, the significant uncorrelated phase
terms and phase unwrapping mistakes translated to low values of temporal coherence.
Thus, those pixels with values of the temporal coherence below a fixed threshold (e.g., 0.7)
were discarded from the consequent analyses.

For subsequent analyses, it is worth remarking that, given a real-valued vector
X =

[
X0, X1, . . . , XQ−1

]T of Q random samples, the two-norm of the vector X [58] is
given by:

‖X‖2 =
[

E
(

X · XT
)]1/2

=

[
Q−1

∑
k=0

E
(

x2
k

)]1/2

(11)

3. Relative Error Bounds of Ground Deformation Measurements via the SB Methods

Let us now compute the relative error bounds of the InSAR product measurements
via the SB methods. Invoking the principles of perturbation theory [60–62], it is known that
the upper bound of the relative error for the (unknown) model parameters in the system of
Equation (4), is generally given by:

εm =

∥∥∥∥ ^
m− ¯

m
∥∥∥∥

2∥∥∥∥¯
m
∥∥∥∥

2

≤ ε

[
2κ(A)

cos η
+ tan η · κ2(A)

]
+ O

(
ε2
)

(12)
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where
¯
m is the vector of the (unknown) true model parameters, κ(A) = σ0/σmin is the

condition number of the design matrix A, σmin is the non-zero smallest singular value of
the matrix A, ε =

∥∥∥∆Ψ(SB) − ∆Ψ(SB),de f
∥∥∥

2
/
∥∥∥∆Ψ(SB),de f

∥∥∥
2

is the relative error of the (input)

vector of the SB unwrapped phases, and R = A · ^
m-∆Ψ(SB) is the vector of the residues of

the LS solution of Equation (4). Moreover, η is the angle between the vector ∆Ψ(SB) and the

vector A · ^
m and measures whether the residual vector ‖R‖2 is large (i.e., near

∥∥∥∆Ψ(SB)
∥∥∥

2
)

or small (near zero). The application of straightforward geometrical relationships allows
the further manipulation of Equation (12) to obtain the following bound (see Figure 3):

εm =

∥∥∥∥ ^
m− ¯

m
∥∥∥∥

2∥∥∥∥¯
m
∥∥∥∥

2

≤ ε

2κ(A) ·
∥∥∥∆Ψ(SB)

∥∥∥
2

‖A‖ ·
∥∥∥∥ ^

m
∥∥∥∥

2

+
‖R‖2

‖A‖2 ·
∥∥∥∥ ^

m
∥∥∥∥

2

· κ2(A)

+ O
(

ε2
)

(13)

From Equations (6) and (11), the relative error of the input data (i.e., the vector of the
unwrapped phase data) in Equation (13) could be expressed as:

ε =
‖∆Ψ(SB)−∆Ψ(SB),de f‖2
‖∆Ψ(SB),de f‖2

≤ ‖∆Ψ(SB),APS‖2+‖∆Ψ(SB),topo‖2+‖∆ndec‖2+2π‖Kcorr‖2+‖∆nuncorr‖2+2π‖Kuncorr‖2√√√√M(SB)−1
∑

k=0
E
[∣∣∣∆Ψ(SB),de f

k

∣∣∣2]
(14)

It is worth noting that the knowledge of the unwrapped phase vectors’ total covariance
matrix C∆Ψ(SB) would allow the comprehensive characterization of the output data vector
m statistical properties. Indeed [68]:

Cm = A† ·C∆Ψ(SB) ·A†T (15)

where the elements on the diagonal of Cm get an estimate of the variance of every consid-
ered model parameter. Considering the different components of the unwrapped phases
given by Equation (6), the total covariance matrix of the unwrapped phases C∆Ψ(SB) could
be suitably derived as:

C∆Ψ(SB)
∼= Ccorr + Cuncorr = C∆ΨAPS + C∆Ψtopo + C∆ndecor + C∆nuncorr + Cunwr (16)

where C∆ΨAPS , C∆Ψtop_error ,C∆ndecor ,C∆nuncorr ,Cunwr are the covariance matrices for the atmo-
spheric phase screen, the residual topography, the decorrelation noise, the time-uncorrelated
phase signals, and the phase unwrapping mistakes, respectively. Equation (16) assumes
the validity of the hypothesis of the statistical independence of the different components
of the unwrapped phase vector ∆Ψ(SB); this assumption is reasonable for the first three
terms in Equation (16), which represent the unrelated physical processes, whereas the
phase unwrapping mistakes could however be reasonably correlated to the decorrelation
noise and the time-inconsistent phase signals in Equation (6). Remarkably, some noise
models [70,80] were developed to compute C∆ndecor and characterize the covariance matrix
components of the time uncorrelated phase artefacts [53]. However, further efforts are still
required to estimate the covariance matrix of the phase unwrapping mistakes Cunwr from
the data. This investigation makes it evident, from the mathematical and statistical point of
view, that the residual phase vector depends on the time uncorrelated phase components
of the unwrapped phases, i.e., ∆nuncor and 2πKuncorr, and, hence, the temporal coherence,
see Equation (10), could be effectively used as a proxy to derive, at least, the covariance
matrix of the time uncorrelated phase components. Nonetheless, even though the total
covariance matrix C∆Ψ(SB) is of difficult estimation, an upper bound of the relative error of
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the model parameters could still be retrieved by merely making a profit from the algebraical
properties of the system (4) and using Equations (13) and (14).

4. How Do the Relative Error Bounds Depend on the Perpendicular Baseline
Threshold of the SB Interferograms?

Let us evaluate how the input data vector’s relative errors ε critically depend on the
applied threshold on the selected SB interferograms’ maximum perpendicular baselines.
To this aim, let us first consider the idealized case that (i) the APS and topographic phase
components are not present, (ii) no phase unwrapping errors were committed during the
phase unwrapping operations, and (iii) the uncorrelated phase terms were not relevant.
Moreover, to study the dependence of the errors on the perpendicular baseline, exclu-
sively, let us assume that the geometric decorrelation noise was the dominant contribution
of the time-correlated phase component ∆ndec. In this idealized case, Equation (14) is
particularized as:

ε ∼=

√
M(SB)−1

∑
k=0

var
[
∆ndec

k
]

√
M(SB)−1

∑
k=0

E
[∣∣∣∆Ψ(SB),de f

k

∣∣∣2] (17)

Equation (17) could be further manipulated considering the Cramer Rao bound on
the phase decorrelation variance [41], which is given by:

var
[
∆ndec

k

]
=

1− γ2
k

2Lγ2
k

=
1

2L

(
1

γ2
k
− 1

)
(18)

where γk is the coherence of the k-th interferogram that could be expressed as a function of
the interferogram perpendicular baseline as:

γk = 1−
∣∣∆B⊥,k

∣∣
Bc

(19)

where Bc is the critical baseline [3]. Taking into account Equations (18) and (19), Equa-
tion (17) could then be re-expressed as follows:

ε ∼=

√
M(SB)

2L
·

√
E
(

1
γ2

)
− 1√

M(SB)−1
∑

k=0
E
[∣∣∣∆Ψ(SB),de f

k

∣∣∣2] (20)

Given a distribution of SAR images, one could infer the statistical distribution of
the absolute value of the interferograms’ perpendicular baselines. A previous work [81]
already addressed this problem, by using the Kolmogorov-Smirnov test [58] and showing
that, with a certain degree of confidence, the absolute value of the perpendicular baselines
might be inferred to as distributed with an exponential probability density function (pdf).
Additional investigations, carried out considering larger sets of SAR data acquired by the
ERS and ENVISAT sensors revealed that, by invoking the central theorem limit [58], the
baseline could be inferred to be distributed with a zero-mean normal density function.
Figure 4f shows the perpendicular baselines’ theoretical and empirical pdfs inferred from a
set of 237 SAR images collected by the first-generation ERS and ENVISAT European Space
Agency (ESA) sensors. The perpendicular baseline empirical pdf was directly derived
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from the data (black line), whereas the relevant theoretical pdf (red line) was inferred to be
distributed with a zero-mean normal distribution:

f∆B⊥(∆B⊥, α) =
1

α
√

2π
exp

(
−

∆B2
⊥

2α2

)
(21)

Figure 4. Study of the perpendicular baseline distribution of sets of SAR images collected by the
first-generation SAR sensors. (a–e) Representation in the temporal/perpendicular baseline plane of
relevant sets of SAR data acquired by the ERS and ENVISAT sensors on the five selected test-site
areas of Afar, Ethiopia, Abruzzi, Central Italy, San Andreas Fault region, U.S., the Mt. Etna zone,
Sicily Island, and the metropolitan area of the city of Naples in Italy. The data span the time interval
between 1992 and 2010. (f) Theoretical density probability function (pdf) (red line) and the empirical
(black line) density probability function of the whole potential set of interferometric perpendicular
baselines. Note that the theoretical pdf is drawn using Equation (21). In contrast, the empirical
pdf is computed by the data by merely drawing the (normalized) histogram of the SAR dataset
interferometric perpendicular baselines, see [58] for details on the probability distribution function of
a random variable.

This statement’s validity was inferred from the available data by applying the Kolmogorov-
Smirnov test [82] on the normality, where α, the standard deviation of the distribution, was
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equal to about 600 m in the experiments shown in Figure 4. Following Equation (19), there was
complete decorrelation when the perpendicular baseline value exceeded the critical baseline
value Bc.

For the practical implementation of an SB method, a threshold on the maximum
perpendicular baseline of the interferometric SAR data pairs ∆B⊥,max is imposed. This
circumstance leads to the conclusion that the successfully used InSAR data pairs had their
perpendicular baselines distributed with a truncated normal distribution (see Figure 5), as:

f∆B⊥

(
∆B⊥|∆B⊥,max

, α
)
=


1

α
√

2π
exp

(
−

∆B2
⊥

2α2

)
er f
(

∆B⊥,max
α
√

2

) |∆B⊥| ≤ ∆B⊥,max

0 otherwhise

(22)

Figure 5. Theoretical Distribution of the perpendicular baselines of the InSAR data. (A) Normal
distribution of the perpendicular baseline of InSAR data pairs. (B) Distribution of the perpendicular
baselines of the InSAR data pairs below the critical baseline boundary. (C) Distribution of the per-
pendicular baseline of the selected small baseline interferograms obtained by imposing a maximum
allowed absolute perpendicular baseline equal to Bmax.

After straightforward mathematical manipulations, it could be shown, for medium-to-
high coherence values, that a good approximation for the expected value of the term γ−2

was given by:

Π = E
[
γ−2

]
∼= 1 +

q

∑
k=1

(k + 1)
Bk

c
E
[
|∆B⊥|k

]
(23)
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where:

E[|∆B⊥|] =

√
2
π α

[
1− exp

(
− B2

⊥,max
2α2

)]
er f
(

B⊥,max

α
√

2

) (24)

E
[
|∆B⊥|2

]
= α2 − α

√
2
π B⊥,max exp

(
− B2

⊥,max
2α2

)
er f
(

B⊥,max

α
√

2

) (25)

E
[
|∆B⊥|k

]
= α

√
2
π (k− 1)αE

[
|∆B⊥|k−2

]
−
√

2
π αBk−1

⊥,max exp
(
− B2

⊥,max
2α2

)
er f
(

B⊥,max

α
√

2

) , k ≥ 3 (26)

Note that Equation (23) was obtained by a Taylor series expansion of the function γ−2,
see Equation (18), and q is the expansion’s order. Figure 6 shows the plot of Π− 1 versus the
selected maximum perpendicular baseline of the SB interferogram, numerically obtained
by considering a series expansion of order five, and different values of the perpendicular
baselines’ standard deviation.

Figure 6. The plot of the term Π− 1 in Equation (23) vs. the maximum perpendicular baseline of the
selected SB interferograms and various values of the standard deviation of the distribution of the
perpendicular baseline of the whole possible InSAR data pairs.

By substituting Equation (23) in Equation (20), the relative error of the input data is
retrieved in this idealized case, as follows:

ε ∼=
λ

4π · v

√
Π− 1

2L · E[∆t2]
(27)

where the following approximation ∆ψ
(SB),de f
i

∼= (4π · v · ∆ti)/λ was also considered.
From Equation (27), it could be seen that the relative error of the input data ε depended
on the operating wavelength λ and the mean deformation velocity v, as well as on the
selected maximum perpendicular baseline value B⊥,max. Figure 7 shows the plot of the
relative error versus the selected maximum perpendicular baseline for the different values
of the mean deformation velocity v of the given point on the ground, considering a SAR
platform operating at the C-band, with a wavelength of about 5.6 cm of the transmitted
signals, a multi-look factor L = 100, an InSAR temporal average root mean squared value
equal to

√
E[∆t2] = 1.5years, and a value of the standard deviation of the perpendicular

baseline equal to 300 m. The considered parameters were relevant to the first-generation
C-band SAR sensors, but similar calculations could be adapted to the new generation of
SAR sensors.
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Figure 7. The plot of the unwrapped phase’s relative errors vs. the selected maximum allowed
perpendicular baseline of the SB interferograms, for different values of the ground mean displacement
rate of the imaged scenes.

In this idealized case, it is essential to note that, as expected, the information related
to small ground deformation rates (smaller than 1 mm/year) could be recovered in the
generated interferograms but with higher relative errors. Short perpendicular baseline
values are preferable, even though very short baselines are not realistic in a conventional
case. Additionally, very short baselines, except for limited cases, could not be recommended
because design matrices A with higher condition numbers κ(A) were more likely to
characterize the SB interferograms’ relevant networks, which harm the estimated model
parameter vector’s correctness m.

As anticipated, the calculations provided here only took into account the geometrical
decorrelation effects. A more comprehensive estimate of the “input” errors of the system
of Linear Equation (4) that also considered the effects of other decorrelation noise sources
and the phase unwrapping mistakes is given below.

In more general case, the error bound of the (wanted) model parameters in Equation
(4) is given, see Equation (14), by:

εm =

∥∥∥∥ ^
m− ¯

m
∥∥∥∥

2∥∥∥∥¯
m
∥∥∥∥

2

≤ ε

2

∥∥∥∆Ψ(SB)
∥∥∥

2

σmin

∥∥∥∥ ^
m
∥∥∥∥

2

+
‖R‖2

‖A‖2 ·
∥∥∥∥ ^

m
∥∥∥∥

2

· κ2(A)

+ O
(

ε2
)

(28)

where

ε ∼= λ
4π·v

√
Π−1

2L·E[∆t2]
+ λ

4π·v
‖∆Ψ(APS)‖2√

M(SB) ·E[∆t2]
+ λ

4π·v
‖∆Ψ(SB),topo‖2√

M(SB) ·E[∆t2]

+ λ
4π·v
‖∆ndecor,temp‖2+√

M(SB) ·E[∆t2]
+ λ

2·v
‖Kcorr‖2√

M(SB) ·E[∆t2]
+ λ

4π·v
‖(∆nuncor+2πKuncorr)‖2√

M(SB) ·E[∆t2]

(29)

Some further remarks on the terms on the right-hand side of Equation (29) are now
addressed. As earlier said, the term Π only takes into account the geometrical phase
decorrelation effects in the generated interferograms. However, the total decorrelation is
quantified by the estimated coherence values of the M(SB) (multi-looked) SAR interfero-

grams, namely
[
γ0, γ1, . . . , γM(SB)−1

]T
, which could be factorized as [67]:

γk = γ
spatial
k · γtemporal

k · γthermal
k ∀k (30)
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where γ
spatial
k takes account of the spatial decorrelation, γ

temporal
k is the temporal decorrela-

tion, and γthermal
k = 1/

(
1 + SNR−1) is the thermal decorrelation component. The Cramer

Rao bound for the phase variance of the temporal decorrelation noise is then given by:

var
[
∆ndecorr,temp

k

]
=

1−
(

γ
temporal
k

)2

2L
(

γ
temporal
k

)2 =
1

2L

 1(
γ

temporal
k

)2 − 1

∀k (31)

Similar to what was formerly done for the estimation of the component relevant to
the geometrical decorrelation effects, it could be straightforwardly demonstrated that:

∥∥∥∆ndecor,temp
∥∥∥

2
∼=

√
M(SB)

2L

√
Πtemp − 1 (32)

where:
Πtemp = E

[
γ−2

temp

]
(33)

For the attained norm of the residual topographical mistakes
∥∥∥∆Ψ(SB),topo

∥∥∥
2
, the

application of the InSAR basic principles [73] allowed demonstrating that:

∥∥∥∆Ψ(SB),topo
∥∥∥

2
=

4π · ∆z ·
√

M(SB)

λ · r · sin ϑ

√
E
[
|∆B⊥|2

]
(34)

Concerning the norm of the APS contribution, its calculation required further con-
siderations relying on the distinction between the tropospheric and ionospheric terms;
a model is provided in [70] (and references therein). For the tropospheric components, one
could say that

∥∥∥∆Ψ(SB),topo
∥∥∥

2
is linearly dependent on the height of the scene, say Z, and

the slant-range distance rg between the observed point and a reference pixel in the area
(for instance, the pixel to which the ground deformation measurements are calibrated). Ac-

cordingly,
∥∥∥∆Ψ(SB),APS

∥∥∥
2
∼=
√

M(SB)
[
χZ + ςrg

]
, where χ and ς are appropriate constants

to be computed.
Further extensive studies are still required to compute the covariance matrix of the

temporally-correlated phase unwrapping problems, which do not lead to temporal incon-
sistencies in the system of Linear Equation (4) and, hence, are difficult to be extracted and
studied. Several studies on the phase unwrapping topic, including both conventional,
two-dimensional, and recently developed three-dimensional (space-time) approaches, are
proposed in the literature, see for instance [57,83–87].

5. How Does the Temporal Coherence Get Valuable Information on the SBAS-InSar
Products Error?

In this section, the problem of relating the LS residual data vector after the SB interfero-
grams’ inversion with the relevant error source noise is addressed. As earlier anticipated in
Section 2, in the SBAS case, such residuals are exclusively related to the time-uncorrelated

phase terms ∆nuncor + 2πKuncorr. This means that the optimal LS solution
^
m of Equation (4)

satisfies the following condition (see again Figure 3):

mAPS + mtop_err + mdecorr + munwr_corr + A†(∆nuncorr + 2πKuncorr) (35)

Accordingly:

R = A ·A†(∆nuncorr + 2πKuncorr)− (∆nuncorr + 2πKuncorr) (36)
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From Equations (35) and (36), the phase residuals after the LS inversion (4) could
be directly related to the time-uncorrelated phase terms of the unwrapped phases. More
specifically:

‖R‖2 ≤
∥∥∥A ·A†

∥∥∥
2
· ‖(∆nuncorr + 2πKuncorr)‖2 + ‖(∆nuncorr + 2πKuncorr)‖2

= ‖A‖2 ·
∥∥∥A†

∥∥∥
2
· ‖(∆nuncorr + 2πKuncorr)‖2 + ‖(∆nuncorr + 2πKuncorr)‖2

= [κ(A) + 1]‖(∆nuncorr + 2πKuncorr)‖2

(37)

At this stage, it is instructive to show that the temporal coherence, see Equation (10),
computed after the SBAS inversion of the stack of unwrapped phases, gets a measure of the
consistency between the original interferograms and those reconstructed from the obtained
ground deformation time-series.

Considering the fundamentals of directional statistics [88], the temporal coherence
could also be reformulated as:

ρ = 1
M(SB)

∣∣∣∣∣M(SB)−1
∑

k=0
exp[jrk]

∣∣∣∣∣ = 1
M(SB)

M(SB)−1
∑

k=0
cos(rk − r) ∼= 1− 1

2M(SB)

M(SB)−1
∑

k=0
(rk − r)2

= 1− 1
2

(
‖R‖2

2 −
¯
R

2
) (38)

where r is the average residual phase, namely r = arctan

(
M(SB)−1

∑
k=0

sin(rk)/
M(SB)−1

∑
k=0

cos(rk)

)
.

Therefore, from Equation (38), the residuals’ norm could be expressed as a function of
the temporal coherence values and the average phase residuals could be expressed as
‖R‖2

2 = 2(1− ρ) + r2.
By summarizing, this research work leads to the conclusion that a suitable upper

bound of the relative error of the SBAS (and the alternative SB methods) ground deforma-
tion measurements is given by:

εm =

∥∥∥∥ ^
m− ¯

m
∥∥∥∥

2∥∥∥∥¯
m
∥∥∥∥

2

≤ ε

2

∥∥∥∆Ψ(SB)
∥∥∥

2

σmin

∥∥∥∥ ^
m
∥∥∥∥

2

+
‖R‖2

‖A‖2 ·
∥∥∥∥ ^

m
∥∥∥∥

2

· κ2(A)

+ O
(

ε2
)

(39)

where:
ε = Υ

λ

4π · v ·
√

E[∆t2]
(40)

with
Υ =

√
Π−1

2L +
√

Πtemp−1
2L +

√
χZ + ςrg

+ 4π
λ

√
E[|∆B⊥ |2]
rg ·sin ϑ ∆z + 2π‖Kcorr‖2√

M(SB)
+

√
2(1−ρ)+r2

(κ(A)+1)

(41)

Equation (40) relies on the simplifying assumption that all unwrapped phase vectors’
contributions are independent. A few remarks on Equations (39)–(41) are now in order.
Different contributions influence the relative error of the input data vector. It is worth
noting that the temporal coherence value ρ that appears in Equation (41) allows one to
quantify the global effects of time-uncorrelated phase signals (i.e., phase unwrapping
mistakes and time-uncorrelated wrapped phases) on the final solution and the network of
SB interferograms. Moreover, the temporal coherence value also depends on the applied
threshold on the maximum perpendicular baseline of the selected SB; however, that rela-
tionship is more challenging to extract. Further studies are still required to recover the
closed-form mathematical relationships existing among these errors and the perpendicular
baseline of the selected interferometric SAR data pairs.
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Figure 8 shows the estimated model’s relative error as a function of the selected
threshold on the SB interferograms’ maximum perpendicular baseline, in a simplified case.

Figure 8. Upper bounds of the relative error of the measurement model parameters vs. the maximum
perpendicular baseline of the SB interferogram, considering different mean ground displacement
values of the observed SAR pixel on the terrain.

This was obtained from Equation (40), without considering the contributions of the
APS, the residual topography, and the time-correlated phase unwrapping mistakes, and
assuming that the temporal coherence ρ was equal to 1 (i.e., the idealized condition that
no residuals were present after the LS inversion). Low values of the temporal coherence
corresponded through Equation (40), to higher relative errors of the model parameters
(4). Moreover, it is worth remarking that the variation of the condition number of the
design matrix as the maximum perpendicular baseline decreases, was not included in
the simulated results shown in the plot of Figure 8. Remarkably, SB networks with very
short baselines constraints were less redundant than those with larger baselines. This
implied a limit on the use of very short baselines, which is challenging to quantify from a
theoretical point of view. In Section 6, some experiments were performed to show how the
SB network’s condition number κ varied in a real scenario. Accordingly, a balance between
opposite requirements must be adequately considered in selecting the most suitable thresh-
old of the perpendicular baseline constraint. This investigation’s outcomes also deserve
further analyses to include other mechanisms, such as suitable models accounting for the
scenes’ temporal decorrelation, which were not considered. Of course, the complete charac-
terization of the measurement errors requires the perfect knowledge of the total covariance
matrix of the unwrapped phases, including the contributions of phase unwrapping errors,
and this is a matter for other investigations.

Giving the implementation of the problem in Equation (4) provided within the SBAS
algorithm, it is also instructive to finally derive the absolute error upper bound of the
model parameters estimates. For the SBAS case, the model parameter vector contains the
velocities between consecutive time acquisitions. Accordingly, if we consider a point on the
ground subject to a perfectly linear displacement v, all vector velocity components were
the same and were equal to the mean deformation velocity of the analyzed pixel, namely v.
Therefore, considering the approximation provided in Equation (40), one could express the
bound for the (average) absolute error of the model parameter, in the case that the terrain
deformation was not zero, such as:

Em =

∥∥∥∥ ^
m− ¯

m
∥∥∥∥

2
≤

Υ · λ ·
∥∥∥∆Ψ(SB)

∥∥∥
2

2π · v · σmin
√

E[∆t2]
+

Υ · λ
4π · v ·

√
E[∆t2]

κ2(A)

√
2(1− ρ) + r2

σ0
+ O

(
ε2
)

(42)

In the experimental section, the results of a series of tests are shown. Experiments
were carried out to demonstrate how the SBAS (and potentially other alternative SB
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implementations) measurements’ quality, measured in terms of the temporal coherence,
changed as the selected maximum perpendicular baseline of the SB InSAR data pairs
became shorter.

6. Experimental Results

Some experiments were performed by processing a set of real SAR data to support
the previous sections’ theoretical outcomes. In particular, this research study used a set of
48 ASAR images (ascending passes, Track 120, VV polarization) collected between 2003 and
2010 in the Southern California region. Figure 9 shows the distribution of the SAR scenes
in the time/perpendicular baseline plane. Starting from the available SAR images, a group
of 729 InSAR data pairs, characterized by a maximum temporal separation of 1000 days
and a perpendicular baseline value smaller than the critical value (which was about 1100 m
for a flat terrain in the case of the ENVISAT satellite) were selected and generated. The
topographic phase components in the generated interferograms were reconstructed us-
ing precise satellite information, and a three-arc digital elevation model (DEM) of the
investigated zone. To reduce the impact of phase noise artefacts in the interferograms,
the generated interferograms were independently multi-looked (with forty azimuth looks
and eight range looks, respectively) and filtered using the well-known Goldstein filter [89].
To show that the quality of the reconstructed ground deformation InSAR products en-
hanced, as the selected maximum allowed perpendicular baseline threshold of the SB
interferograms decreased, some tests were done. The SBAS inversion procedure [25] was
applied to the subsequently-reduced sets of SB interferograms, selected by progressively
decreasing the maximum allowed perpendicular baseline of the interferograms.

Figure 9 shows the selected InSAR data pairs’ distribution in the temporal/perpendicular
baseline plane for the five tests performed by considering thresholds of 1100 m, 800 m, 600 m,
400 m, and 200 m on the maximum perpendicular baseline of the SB InSAR data pairs, respec-
tively. The total group of 729 differential SAR interferograms, with a time separation shorter
than 1000 days, were preliminarily, and independently, unwrapped using, for the sake of
simplicity, the minimum cost flow phase unwrapping method proposed in [90]. For every
set of SB interferograms, the SBAS inversion procedure was applied, and the relevant ground
deformation time-series and the associated temporal coherence maps were obtained. As an
example, Figure 10 shows the mean deformation displacement map of the area obtained by
processing the group of interferograms shown in Figure 9e that corresponded to a threshold
on the maximum perpendicular baseline of 200 m. The map shows the ground displacement
information related to 228,318 well-processed radar pixels, exhibiting a temporal coherence
value higher than 0.7, which was a suitable threshold.

Figure 11 shows the comparison between the histograms of the temporal coherence
value as a function of the applied maximum baseline constraints. The results of Figure 11
show how the use of different (higher) thresholds of the temporal coherence leads to
identifying more reduced sets of well processed, reliable measurement points. Usually, a
coherence threshold of 0.7 is used as a good compromise between the attainable density of
the measurement points and the false alarm probability. Indeed, Equation (42) shows that
higher temporal coherence values correspond to results with reduced errors. Specifically,
the achieved results show how the (average) temporal coherence increased as the selected
maximum perpendicular baseline decreased. However, it is remarkable that this threshold
could not be decreased indefinitely, even though the number of detectable well-processed
pixels increased considerably. Indeed, as the maximum allowed perpendicular baseline of
the SB interferograms decreased, the number of SB interferograms reduced and, accordingly,
the variance of the temporal coherence estimator tended to become significant, thus the
measured temporal coherence results were biased. Indeed, it could be demonstrated that
the variance of the temporal coherence estimator was approximately given by 1/M(SB).
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Figure 9. Sets of SB interferograms relevant to South California’s area obtained by processing a group of ENVISAT/ASAR
images. The SB InSAR data pairs are identified by imposing a constraint on the maximum perpendicular baseline of (a)
1100 m, (b) 800 m, (c) 600 m, (d) 400 m, and (e) 200 m. Dates shown in this Figure are expressed with the format (day,
month, year).
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Figure 10. 2003–2010 Mean deformation velocity map of South California obtained using the SBAS method to the group of
SB interferograms identified in Figure 9e and corresponding to a maximum value of the InSAR perpendicular baselines
equal to 200 m. The map is in radar coordinates, and the ground deformation is superimposed on an amplitude SAR image
of the area. Shown deformation values are saturated between +/− 10 mm/year.
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Figure 11. Experimental SBAS Results. (a) Comparing the temporal coherence values of the five
performed runs of the SBAS inversion obtained by progressively relaxing the constraint on the
maximum allowed perpendicular baseline of the interferograms, from 1100 m to 200 m; (b) zoomed
view of (a) the interval of very high temporal coherence values (higher than 0.9).

Moreover, as said in the previous section, very short baselines might reasonably lead to
a design matrix A with large condition numbers κ(A), affecting the obtained measurement
quality. This statement agreed with that prescribed by Equation (42). Indeed, the second
term on the right-hand side of Equation (42) (accounting for the temporal coherence ρ) is
directly proportional to κ2(A).

The map of the input data vector’s relative error ε, for the test-case with a 200 m-
threshold on the maximum InSAR perpendicular baseline, is also shown in Figure 12. The
relative error was estimated from the input data, using the following Equation:

ε =

∥∥∥∆Ψ(SB) − ∆Ψ(SB),de f
∥∥∥

2∥∥∆Ψ(SB),de f
∥∥

2

∼=
λ

4π · v
√

E[∆t2]



√
M(SB)−1

∑
k=0

var
[
∆Ψ(SB)

k

]
√

M(SB)
+

√
2(1− ρ) + r2

(κ(A) + 1)

 (43)

where the variances of the interferograms were computed from the measured coherence
values of the interferograms using the Cramer Rao bound limit for the phase variance,
see Equation (18), and assuming the ground deformation was almost linear with a mean
deformation velocity value v, which is shown in the map of Figure 11, obtained by fitting
the recovered SBAS ground displacement time-series with a time linear model.
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Figure 12. Map of the Relative Errors of the SB unwrapped phases relevant to the test-case with SB
interferograms with a maximum perpendicular baseline of 200 m.

For the sake of simplicity, in Equation (36) and for the derivation of the input data
relative errors, the effects of the time-correlated phase unwrapping errors, the APS, and
the residual topography were neglected.

Figure 12 shows that the relative errors in the analyzed scene’s coherent regions were
significantly reduced. Figure 12 only portrays the relative error of the well-processed
SAR pixels with temporal coherence values larger than 0.7. In this case, σ0= 1616 and
κ(A) = 117.697; accordingly, considering Equations (39)–(43), for SAR pixels with a
temporal coherence of 0.7, the error bounds for the velocity deformation [rad/s] was about
seven times larger than ε and was reduced to about 1.5 times the value of ε for coherence
values larger than 0.85.

By using Equations (39)–(43), the error bound of the (average) absolute error of the
measured ground mean displacement rate was retrieved for all well-processed SAR pixels
selected with a temporal coherence threshold of 0.7. Figure 13a shows the map of the
temporal coherence and Figure 13b shows the estimated map of the error for the velocity
measurements obtained using the SBAS method. Over the whole set of 228,318 coherent
and well-processed SAR pixels (with a temporal coherence larger than 0.7), an average
error of 1.6 mm/year was obtained, which was in agreement with the results of experimen-
tal studies that showed that the average accuracy of SBAS measurements of the terrain
displacement velocity was about 1 mm/year.
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Figure 13. (a) Temporal coherence map of South California area (test-site case with the maximum
perpendicular baseline of 200 m), (b) map of the absolute error (upper bound) of the ground mean
displacement rate after SBAS inversion; the map does not take into account the effects of APS and
the residual topography of the area.

It is worth stressing that the values found in this research study represent the upper
bounds of the InSAR products; hence it could be suitably affirmed that the SBAS accuracy
(and of the SB methods alternative to SBAS) was on the order of 1 mm/year and in very
coherent regions, also at sub-millimetric scale. To demonstrate this statement’s validity,
Figure 14 shows the plot of the ground displacement velocity accuracy vs. the temporal
coherence of the well-processed SAR pixels exceeding the threshold of 0.7. The plot makes
it evident that accuracy improves as temporal coherence increases and for temporal coher-
ence values of about 1 mm/year, which is what quantitative cross-comparison analyses
demonstrate [76].

Figure 14. The plot of the ground displacement rate absolute error of the SBAS measurements vs. the
temporal coherence.

7. Discussion

This research study investigated the quality of InSAR ground deformation products
obtained via multi-temporal interferometric small baseline algorithms. Fundamentals of
error propagation theory and perturbation theory were exploited to retrieve some mathe-
matical relationships relating the quality of the ground displacement model parameters
to the operational wavelengths, satellite and scene image parameters, the relative error
of the unwrapped phase vectors, and the characteristics of the used network of SB inter-
ferograms. It was shown that the SBAS algorithm’s performance and other alternative
SB methods could be quantitatively evaluated by the measured value of the temporal
coherence. Moreover, it was proven that networks of short baselines could guarantee
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improved performance, instead of using the whole set of potential InSAR interferograms
with baseline values shorter than the critical ones. The research also demonstrated with real
SAR data that the temporal coherence factor could be used as a proxy for the quantitative
estimation of the error bounds of the time-correlated phase unwrapping and phase noise
artefacts in the generated SBAS InSAR deformation products.

This research study’s primary outcomes could be extended to sets of the new genera-
tion of Sentinel-1 (S-1) SAR data and the forthcoming missions’ SAR data. The relative and
absolute error bounds of the SB InSAR data products could generally be computed via Equa-
tions (39)–(43). Specifically, by processing the S-1 data [91], some peculiarities arose from
the burst-mode TOPS acquisition of the IW S-1 SAR images that required intra-burst/inter-
burst fine co-registration procedures [51]. Therefore, uncompensated time-uncorrelated
misregistration mistakes in the sequence of the available S-1 SAR images, if not adequately
compensated for [52], might introduce sensible, additional, time-uncorrelated phase arte-
facts in the set of unwrapped S-1 interferograms, see the term ∆nuncor

i of Equation (6). Note
also that S-1 is intrinsically an SB system because the S-1 orbital tube is narrow. This is
beneficial for the achievable results, as also demonstrated by this research study, because
a highly time-redundant network of SB interferograms is characterized by enhanced co-
herence and low values of the design matrix condition number κ and both conditions
have a beneficial effect on the expected theoretical accuracy of the InSAR products (see
previous Sections).

The proposed work is propaedeutic for future extensive investigations. In particular,
additional efforts are still required (a) to fully characterize the statistical properties of
the temporal coherence factor; (b) to distinguish the effects of the two time-uncorrelated
phase terms ∆nuncor and 2πKuncorr and quantify their actual mutual effects in the gener-
ated InSAR products; (c) to study and characterize the time-correlated phase unwrapping
mistakes that were not accounted by the temporal coherence because they did not lead to
the formation of residuals after the SBAS inversion; (d) to fully characterize the covariance
matrix of the time-uncorrelated phase unwrapping mistakes; (e) to compute the covariance
matrix of the unwrapped phase errors; and (f) to compute the accuracy of the ground
deformation time-series, on a pixel-by-pixel basis, both in terms of the theoretical upper
bounds and the actual measurement values. All these goals require the development and
testing of noise models that might simultaneously account for the time-correlated and
time-uncorrelated components of the unwrapped phases and the generally unavoidable
phase unwrapping mistakes. These efforts are beneficial for developing new methods and
applications. Indeed, in recent years, new challenges are emerging related to the develop-
ment of novel efficient processing chains of large sets of SAR data and for the extraction
of ancillary information in large sets of InSAR data, see for instance [55,56,74], which
could be potentially used to enhance the use of present-day InSAR methodologies. In this
context, integrated approaches based on the use of radar data at different wavelengths, also
potentially complemented with multi-spectral data collected in the optical/infrared bands,
might help in having new information on the state of the Earth’s environment, including
the Earth’s surface, the atmosphere, the oceans, and the coastal regions.

8. Conclusions and Future Perspectives

The growing availability of radar images collected by constellations of satellites for
the monitoring of Earth’s surface and its changes over the years, led to the development of
several interferometric SAR algorithms and methodologies. SAR interferometry nowadays
represents more than a mature and well-consolidated technology that is intensely used for
geophysical applications. This research paper sheds light on the theoretical accuracy of the
InSAR products attainable via multi-temporal SB methods, allowing one to estimate the
correctness of the obtained products on a pixel-by-pixel basis.

The presented analysis also permits us to foresee the expected accuracy of the InSAR
products, considering the mathematical and statistical properties of the network of SB
interferograms involved in generating the mentioned data products. This work is beneficial,
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especially in the present era, when new challenges emerge in the scientific community of
InSAR experts and algorithms’ developers.

On the one hand, the current principal evolution trend in this research field is applying
conventional InSAR methods to a large amount of SAR data through innovative high-
computing paradigms. In this framework, integrated approaches based on the use of radar
data at different wavelengths, also potentially complemented with multi-spectral data
collected in the optical/infrared bands, might help to acquire new information on the state
of the Earth’s environment, including the Earth’s surface, the atmosphere, the oceans, and
the coastal regions.

On the other hand, some efforts are still needed to assess the capability monitoring
of the available plethora of alternative InSAR methods and develop unified frameworks
to categorize them in terms of their expected Earth’s surface monitoring capability perfor-
mances. In this context, this study uses a unified mathematical/statistical framework to
investigate the properties of SB methods for characterizing and monitoring the displace-
ment of distributed targets on the terrain. This research study’s outcomes could also be
beneficial for developing further studies aimed at quantifying the impact of different noise
sources in the InSAR products by benefiting artificial intelligence schema that might help
better characterize a real scenario.

Methods adopted to handle time-series of data for change detection purposes and the
extraction of additional physical information on the state of imaged scenes, using coherent
multi-temporal InSAR approaches are also very promising. The present and forthcoming
evolution of the mature InSAR technology in the next decade is foreseen mainly focused
on big data paradigms, machine learning, and segmentation methods that are becoming
fundamental to extract useful information from large sets of multiple-satellite SAR datasets.
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