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Abstract: InSAR (Interferometric Synthetic Aperture Radar) is widely recognized as a crucial remote
sensing tool for monitoring various geological disasters because it provides all-day and all-weather
monitoring. Nevertheless, the current interpretation methods for InSAR heavily depend on the
interpreter’s experience, which hinders efficiency and fails to meet the requirements for the timely
detection of geologic hazards. Furthermore, the results obtained through current InSAR process-
ing carry inherent noise interference, further complicating the interpretation process. To address
those issues, this paper proposes an approach that enables automatic and rapid identification of
deformation zones. The proposed method leverages IPTA (Interferometric Point Target Analysis)
technology for SAR data processing. It combines the power of HNSW (Hierarchical Navigable Small
Word) and DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithms to
cluster deformation results. Compared with traditional methods, the computational efficiency of
the proposed method is improved by 11.26 times, and spatial noise is suppressed. Additionally,
the clustering results are fused with slope units determined using DEM (Digital Elevation Model),
which facilitates the automatic identification of slopes experiencing deformation. The experimental
verification in the western mountainous area of Beijing has identified 716 hidden danger areas, and
this method is superior to the traditional technology in speed and automation.

Keywords: InSAR; IPTA; HNSW; DBSCAN; Beijing

1. Introduction

With the progress of society, more and more attention has been paid to the natural en-
vironment. The research on the prevention and control of geological disasters plays a vital
role in realizing the harmonious coexistence between man and nature. Landslides are one
of the most common geological disasters, accounting for 69.1% of all geological disasters in
China in 2022, so it is necessary to identify and monitor such disasters effectively [1]. In
recent years, Synthetic Aperture Radar Interferometry (InSAR), as a microwave remote
sensing technology, has been widely used in landslide monitoring [2–5]. This technol-
ogy has the advantages of a wide monitoring range, high spatial resolution, and high
monitoring accuracy and has become an essential tool for landslide monitoring [6–10].
InSAR processing methods commonly include PS-InSAR, SBAS-InSAR, and IPTA technol-
ogy [11]. IPTA technology is a monitoring method based on radar scattering mechanisms
and polarization characteristics analysis, which has broad application prospects in landslide
monitoring [12–16]. Compared with PS-InSAR and SBAS-InSAR in mountainous areas,
this method selects more feature points and obtains more deformation information, which
is more suitable for early landslide identification [17]. In recent years, the research on IPTA
technology in landslide monitoring has made significant progress. For example, Zhang
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used the method to monitor the loess landslide and found that the improved algorithm
has a good performance in reducing interference points and improving monitoring ac-
curacy and can realize monitoring at a single pixel scale [18]; Ding combined this with
TerraSAR-X data to detect landslides based on methods, and found that the method based
on the normalized differential polarization index has the best effect [19]; Theodoros realized
the high-resolution monitoring of landslide activity by combining spaceborne SAR and
ground-based GNSS data, and the results show that this method can accurately detect
landslide deformation signals [20].

In sum, IPTA technology has certain advantages in landslide monitoring, but the
characteristic information of InSAR results is rich. To improve the monitoring efficiency, it
is necessary to remove anomalies and disturbance points adaptively. Secondly, there is a
problem of the low efficiency of manual interpretation in deformation zone interpretation,
and it is essential to solve the automatic interpretation mode in the present state of massive
data [21,22].

To solve these problems, it is necessary to combine machine learning algorithms
with InSAR technology to study the automatic interpretation method of the deformation
zone. Commonly used clustering methods include k-means, mean-shift, DBSCAN, and
so on. DBSCAN is a density-based clustering algorithm. Compared with other types of
clustering methods, this method does not need to determine the number of clusters. It can
identify noise and clusters with arbitrary shapes well, so it is widely used in the InSAR
monitoring field. In 2016, Bakon combined the DBSCAN method and InSAR technology
to filter out the spatial noise in the low-coherence area and highlight the details of the
deformation area [23]. In 2022, Zhang classified urban center clusters by combining the
DBSCAN method with the SBAS-PS InSAR and obtained the boundary between built-up
and non-built areas [24]. In 2022, Talib combined PS-InSAR with DBSCAN to monitor and
identify sinkholes [25]. All the above studies have achieved good results. The advantages
of DBSCAN include processing large-scale data, automatically detecting anomalies and
interference, and clustering InSAR data quickly and effectively.

However, DBSCAN needs to traverse all the points in clustering and calculate the
distance between each two points, which is inefficient and resource intensive. Therefore,
this paper proposes a model combining the HNSW and DBSCAN methods. The HNSW–
DBSCAN model is more efficient than the DBSCAN nearest neighbor point search method
and can complete the query of the dataset without traversing all points. We conducted
experiments in the western mountainous area of Beijing to verify the efficiency and accuracy
of the model.

2. Study Area and Data Preparation
2.1. Study Area

The study area is Fangshan District and Mentougou District, the southwestern gateway
to Beijing, located in the western mountainous region of Beijing. The western and northern
part of the study area borders Hebei Province, between 39◦30′~40◦10′N latitude and
115◦25′~116◦15′E longitude, with a total area of 3450 km2. The study area belongs to the
Taihang Mountains, with its complex lithology, and is located in the Xishan iterative fold
of the Yanshan platform fold belt, which experienced tectonic solid deformation during
the Indo-Chinese and Yanshan periods, forming a series of large-scale fold structures. The
fracture structures are more developed. Due to the different geomorphic causes and surface
morphology, there are apparent differences in terrain, slope, gully bed, soil, vegetation
conditions, and the degree of geological hazards development in each geomorphic-type
area. According to the morphology of landforms, the landform types in the study area are
divided into middle, low, and hills.

2.2. Data Preparation

The data used the BJ-3 optical remote sensing images with 0.3 m resolution in 2022,
and the data range covered the study area; a total of 80 views of RADARSAT-2 data from
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September 2016 to September 2022 were included, with a satellite replay period of 24 days,
a width of 150 km, a polarization mode of HH, and a spatial resolution of 5 m × 5 m. The
data range is shown in Figure 1, and the image details are shown in Table 1. The accuracy
of the DEM provided by USGS is 12.5 m and Table 2 shows the computer configurations
used for the experiments.
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Table 1. RADARSAT-2 image details of the study area. The year is indicated vertically, and the month
is displayed horizontally.

Year
Month

1 2 3 4 5 6 7 8 9 10 11 12

2016 / / / / / / / / 24 18 11 29
2017 22 15 11 4/28 22 15 / / 19 13 6/30 24
2018 17 10 6/30 23 17 10 28 21 14 8 1/25 /
2019 12 5 1 18 12 5 23 16 9 3/27 20 14
2020 7 24 19 12 6/30 23 17 10 3/27 21 / 8
2021 1/25 18 14 7 25 18 12 5 22 16 9 3
2022 / 13 / 2/26 20 13 7/31 24 17

Table 2. The computer configurations used for the experiments.

CPU RAM GPU Solid State Drives

I9-12900KS 128 G GTX 1660 2 T

3. Methodology

The fast identification method of hidden danger zones proposed in this paper aims
to filter out the spatial noise in the InSAR results based on the spatial distribution charac-
teristics of the deformation rate of the point targets and automatically identify the hidden
danger zones in the study area. To achieve this, the IPTA-InSAR technique is utilized
to obtain the annual average deformation rate. Cluster analysis is applied to divide the
surface deformation regions based on the spatial distribution of deformation rates. Addi-
tionally, the range of slope units is fused, and the boundary of the hidden danger zone is
determined.
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The processing of the proposed method consists of five main steps:

1. N-view SAR images are acquired, and the master image is determined. The SAR
dataset is then aligned with the master image as the reference.

2. The aligned SAR dataset from the previous step is processed using the IPTA technique
to obtain the annual average deformation rate.

3. The surface annual average deformation rate is analyzed, and its rate standard devia-
tion is calculated. The rate interval with a 95% confidence interval is selected based
on error theory. The deformation rate within this interval is masked, and only the
rates outside the interval, indicating unstable regions, are retained.

4. The coordinates of all coherent point targets and their corresponding rates are orga-
nized into a database for DBSCAN clustering analysis. The range interval of landslides
in the study area is determined based on the historical hidden hazard ledger. The
clustering results are filtered according to this interval, and deformation areas with
smaller ranges are excluded.

5. The slope units in the study area are classified using the slope unit classification
method based on the r.slopeunits method, considering the DEM data. The clustering
results obtained in the previous step are fused with the slope units, and the slope
units where the clustering results are located are retained. Finally, fusing the slope
parameters determines the final InSAR-identified hidden slope bodies.

Please refer to the flowchart below for a visual representation of the proposed method,
as shown in Figure 2:
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tion zones.

3.1. Interferometry Point Target Analysis Method

In this paper, the ground surface deformation rate is solved using the IPTA technique
for the SAR data set, and its flow chart is shown in Figure 3.
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3.1.1. Persistent Scatterer Selection

Due to the high vegetation coverage in the study area, the traditional PS point selection
method is used to achieve better results. This paper uses three-point selection strategies to
select PS points to obtain target points with high phase quality and comprehensive coverage,
namely, amplitude departure index method, spectral coherence, and phase stability [26,27].

3.1.2. Differential Interferometry

For a point pi on the SAR image, the slave image interferes with the master image
separately to obtain the differential interferometric phase, which consists of different
components, and the interferometric phase model of IPTA is the same as the conventional
InSAR model, as follows:

ϕunw(pi) = ϕtopo(pi) + ϕde f (pi) + ϕatm(pi) + ϕnoise(pi) (1)

where ϕunw(pi) denotes the phase after untwisting, ϕtopo(pi) denotes the topographic
phase, ϕde f (pi) denotes the deformation phase, ϕatm(pi) denotes the atmospheric phase,
and ϕnoise(pi) is the noise phase. Except for the noise phase, the rest of the phases can be
removed by the model, and the noise phase can be removed by the filtering method where
the relationship between ϕde f and the LOS vector shape variable ∆d is as follows:

ϕde f =
4π

λ
∆d (2)

where λ denotes the wavelength.

3.1.3. Model Refinement

The atmospheric delay and nonlinear deformation phases are spatially correlated at
a particular spatial scale. The atmospheric delay phase and nonlinear deformation phase
can be weakened by constructing a Delaunay triangular network for the point target and
then making a quadratic difference between the differential interferometry phase of the
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neighboring point target. The quadratic differential phase model based on the neighboring
point targets is as follows:

∆ϕ =
−4πB⊥
λRsinθ

∆dh− 4π

λ
∆v ∗ t + ∆ϕres (3)

where ∆dh denotes the elevation correction of the target at adjacent points, ∆v denotes
the deformation rate difference, and ∆ϕres denotes the residual phase, including nonlinear
deformation phase, atmospheric phase, and noise phase. The model’s parameters are
corrected by iterative correction, and the deformation rate is finally obtained by leveling
the triangular network.

3.2. DBSCAN

DBSCAN clustering algorithm is a density-based clustering algorithm that can divide
data points into core points and noise according to the density of points in the neighborhood.
Clusters of different shapes can be identified by continuously delineating the points within
the clusters. The spatial noise in the data set can also be removed by changing the parameter
threshold. Unlike the currently popular K-means algorithm, this method does not need to
realize the setting of the number of clusters, and it can effectively identify clusters of any
shape. It can identify noisy points, which is widely used.

The DBSCAN algorithm has two essential parameters: the neighborhood radius Eps
and the density threshold MinPts for point A(i, j) and point B(m, n), where A, B∈ D.
Neighborhood radius eps means that, with A as the center of the circle, the radius is within
the area of eps as a circle; density threshold MinPts implies that, for point A, if there exist
at least MinPts points within the neighborhood radius, then A can be designated as the
core point. The specific flow of the DBSCAN algorithm is as follows:

(1) Select point A in dataset D, count all the points in the neighborhood eps of point A,
and write the neighborhood as Numeps(A), if Numeps(A) ≥MinPts, mark point as the
core point and establish the cluster core point at the same time; if Numeps(A) < MinPts,
the point is a noise point.

(2) Select the next point within Numeps(A) in the neighborhood B(m, n), and add
Numeps(B) to Numeps(A) in the same step as the previous one.

(3) Repeat step 2 until all the points in the Numeps(A).
(4) Repeat steps 1–3 until all points in dataset D are traversed and marked as core points

or noise.

3.3. Hierarchical Navigable Small Worlds and DBSCAN

HNSW is an efficient nearest neighbor search algorithm that constructs a multi-level
graph structure where the nodes at each level represent a vector and a certain number of
candidate nodes are reserved in each level of the graph, and the candidate nodes are also
connected to their candidate nodes. As shown in Figure 4, to find the nearest neighbors
of a vector, candidate nodes are filtered by traversing down from the higher levels until
the nearest node to the query vector is found. By adjusting the number of candidate
nodes to balance the speed and accuracy of the search, HNSW can perform an efficient
nearest-neighbor search in high-dimensional data. This paper uses the open-source code of
HNSW [28].

As shown in Figure 5, the process of finding the nearest neighbor points of a given
input point (represented by the red dot) begins with the initial step of querying N candidate
points around the input point. The closest point to the input point is then found based on the
Euclidean distance and is denoted as Q2. At the same time, the candidate points are marked
to avoid repeated queries and improve retrieval efficiency. Next, the candidate points are
queried similarly to find their own set of candidate points and determine their nearest
neighbor to the input point, denoted as Q1. This process repeats until the closest point to
the query point in all layers (denoted as Q0) is found, completing the search for the nearest
neighbor points of the input point. By utilizing the HNSW (Hierarchical Navigable Small
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World) algorithm, space consumption and query time can be effectively reduced when
applied to DBSCAN spatial search technique, resulting in improved clustering efficiency.
The technical steps are summarized below.
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4. Results and Analysis
4.1. Result of IPTA Processing

The IPTA (Interferometric Point Target Analysis) technique has shown good processing
results for areas with long time spans and high vegetation coverage. This study employed
the IPTA technique by GAMMA SOFTWARE 2020 to select point targets based on their
spectral properties and scattering stability. Specifically, we applied the IPTA technique
to process 80 scenes of RADARSAT-2 data and selected 72,026,685 point targets. The
interferometric combination of multiple master images was used, as shown in Figure 6.
Precise orbit data were also used for preprocessing to minimize orbit errors.
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After IPTA processing, the surface deformation rate and temporal deformation results
from 2016 to 2022 were obtained, and the results were displayed by geocoding, as shown
in Figures 7 and 8.

According to Figure 7, the study area is generally stable, and the main deforma-
tion zones are concentrated in the Shijiaying Township, Da’anshan Township, and Datai
Township, as shown in the red mark in Figure 7. According to the geological data, the sur-
rounding rock types are mainly shale, siltstone, and soft rock coal seams. InSAR identified
twenty deformation zones in this study area, and ten of them were confirmed as landslide
hazards after on-site investigation. The deformation rate of landslide is 30.5 mm/year at
the maximum and 5.8 mm/a at the minimum; the area of the landslide body is uneven in
size, with a maximum area of 820,000 m2 and a minimum area of 1600 m2.
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Figure 8. Time series diagram of surface deformation.

4.2. HNSW–DBSCAN

First of all, the InSAR deformation rate needs to be divided into stable and unstable
regions according to the threshold, so a deformation stability threshold needs to be deter-
mined, and, theoretically, the deformation of stable points should be 0, but the accuracy
of InSAR deformation monitoring results vary with different regions due to the accuracy
of the data processing methods, and there are no uniform threshold delineation results.
The experimental analysis shows that the approximate accuracy information of the InSAR
results can be used to determine the deformation rate range of the stable region. In this
paper, the 95% confidence interval (1.96 times STD) is used to delineate the boundary
between the stable area and the deformation region, and the deformation rate range of the
stable region is finally obtained as [−4.2817 mm/a, 5.014 mm/a], as shown in Figure 9.
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Figure 9. Deformation rate after threshold division.

The number of non-stable areas visible in Figure 9 is large, and the delineation of
deformation zones at this time will identify many of them, which is a great difficulty
for field investigation, and this paper uses the HNSW–DBSCAN algorithm to screen the
deformation zones. The results are shown in Figure 10.
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After HNSW–DBSCAN clustering, the noise in the study area is removed, but there is
still a small area of deformation aggregation affecting the interpretation. To interpret the
deformation of the prominent area more reasonably, this paper selects the landslide area
threshold and keeps the clusters in which the number of pixels exceeds the threshold.

After testing, for the Xishan test area, the landslide hazard area in the ground hazard
ledger is converted into the number of pixel points according to the resolution of SAR
data of 5 × 5 m. The total number of pixel statistics is plotted in Table 3, and the smallest
identifiable landslide is selected to set the landslide area threshold.

Table 3. Total number of pixels statistics table.

Total Pixels <100 <400 <1000 <2000 ≥2000 Total

Number 10 14 12 9 8 53

Therefore, for the InSAR interpretation of the deformation area, the scanning radius
of the DBSCAN algorithm is set to five pixels, which corresponds to a horizontal distance
of 25 m, and the minimum number of included pixels is twenty pixels, and a total of
23,416 different deformation clusters are obtained. By counting the distribution of the
number of pixels occupied by different landslides, the landslide decoding threshold was
selected according to the characteristics of geological hazards in Beijing, and the deforma-
tion potential areas were determined. The process of deformation area circling around
Shijiaying and Da’anshan is shown in Figure 11a–c. Finally, 713 deformation zones were
identified in the study area, as shown in Figure 11.
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Figure 11. The result of HNSW–DBSCAN. (a). Raw InSAR rate map. (b). After deformation threshold
screening. (c). After clustering analysis.

After clustering using HNSW–DBSCAN, 11,641 different deformation clusters were
obtained. Based on the characteristics of regional geological hazards in the study area,
the minimum identifiable landslide area was selected as the threshold value to determine
the potential deformation area. Figure 11a–c shows the process of deformation zone
enclosure around Jinjitai village in the Shijiaying area of Fangshan District. Because the
occurrence of landslides is related to the slope of the mountain, this paper uses the slope
threshold of landslides to retain the areas where landslides are more likely to occur. Finally,
713 deformation zones were identified in the study area. The finalized map of the extent of
deformed slopes was obtained by fusing with the slope units generated by the r.slopeunits
software for GRASS 7.8 [29], as shown in Figure 12.
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Figure 12. Range of automatically identified deformation zones.

4.3. Comparison between Traditional DBSCAN and HNSW–DBSCAN

The current clustering methods for point density mainly include the DBSCAN and
KD-TREE DBSCAN methods. The HNSW–DBSCAN method proposed in this paper has
higher efficiency for the above two ways on the nearest neighbor problem. To verify the
method’s effectiveness, the three methods are used in this paper for comparison experi-
ments on the 2D manual dataset. By comparing the accuracy and clustering efficiency of
the three methods on different test sets, the feasibility of the HNSW–DSBCAN method is
demonstrated.

To better verify their clustering accuracy, the three methods were tested using test
datasets, and Figure 13 shows the four manual test datasets: d6, ls3, t4, and t7. The time
and correct rate of the three methods on different data sets are counted separately, and the
time comparison is plotted in Figure 14. The clustering performance evaluation indicators
are shown in Table 4. According to Figure 14 and Table 4, it can be seen that the proposed
method outperforms the other two methods in terms of time and correct rate, which shows
that the proposed method can guarantee the correct clustering rate and improve efficiency
at the same time and has a better performance in InSAR decoding has higher practicality.

Table 4. Clustering algorithm evaluation metrics.

Data Adjust Rand Index Homogeneity Completeness V-Measure

d6 98.7% 96.3% 96.4% 96.4%

l3 98.7% 97.7% 97.5% 97.6%

t4 98.6% 97.3% 97.4% 97.4%

t7 96.4% 94.7% 92.1% 93.4%
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The above analysis is based on the accuracy evaluation of the classification results of
each point in the clustering results. For the interpretation of the InSAR deformation zone,
small clustering errors in the clustering results will not affect the interpretation results,
because when there are a certain number of deformation points in the slope unit, they
will be identified as landslides. For automatic identification, the main evaluation index is
the accuracy of landslide interpretation, so the accuracy of the automatic identification of
landslides is tested based on the landslide determined by InSAR results. It is verified that
the landslides found in the field investigation in the study area are all in the automatic inter-
pretation results, which proves the effectiveness of this method in the InSAR interpretation
of landslides.
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5. Discussion

For the landslide body after IPTA interpretation, the landslide on the west side of
Ash Qingjian village in Shijiaying Township, Fangshan District, was used as a typical
landslide to analyze its deformation pattern and signs of deformation [30]. The landslide
is located in the middle reaches of the Anzhi ditch of Ash Qingjian, and there are two
collapses on the front edge of this hidden body on the optical image, and one tension crack
is produced on the rear edge. The historical images from 2003 to 2019 show that the lower
slope of this landslide’s hidden body collapses first and then drives the upper slope to slide,
which makes the tension crack appear on the rear edge of the landslide body, showing the
characteristic of a traction landslide (Figure 15); Figure 16 represents the deformation rate
of the landslide, point P-1 is located in the upper part of the landslide body, point P-2 is
located in the middle of the landslide body, and point P-3 is located in the lower part of the
landslide body. Figure 17 represents the time-series deformation rates of the three studied
points. The rate of deformation of the upper part of the landslide body is lower than that of
the middle and lower parts of the landslide body, and the upper part of the landslide body
has developed several tension fissures and formed a multi-stage dislocation of different
heights. At this stage, the deformation and damage of the landslide body is mainly in the
form of pulling and cracking at the back edge and bulging at the front edge.
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Through field verification, the accuracy of the proposed method for landslide identifi-
cation is proved, and it is proved that IPTA technology can not only delineate the boundary
and spatial distribution of landslides but also directly reflect the creep and disaster process
of landslides in the time domain, which can play an important role in landslide monitoring
and warning. Moreover, international scholars have found that IPTA technology can real-
ize high-precision deformation monitoring in different climate regions, so the automatic
deformation interpretation method proposed in this paper is still applicable in different
climate regions. Due to the limitation of the nderlying code, the proposed method has not
fully developed its performance and still has room for efficiency improvement.

6. Conclusions

InSAR technology has been widely used in landslide deformation zone identification,
but there are still problems with interpretation relying on expert experience, subjectivity,
and low interpretation efficiency. To solve this problem, a full process method of automatic
deformation zone interpretation is proposed, which reduces the process of manual partici-
pation, releases productivity, and increases productivity from temporal InSAR processing
to automatic deformation zone interpretation and the circling of deformation zones.

1. This paper proposes the HNSW–DBSCAN algorithm, which combines the HNSW
and DBSCAN methods. The algorithm is tested using Beijing Xishan Mountain as
the study area. The results show that the algorithm effectively removes spatial noise
and greatly improves clustering efficiency while maintaining high accuracy compared
with traditional methods.

2. This paper introduces a method that combines slope units with clustering results
to identify the slopes where deformation occurs efficiently. This approach aims to
enhance InSAR decoding efficiency and enable the rapid targeting of deformation
areas.

3. IPTA technology was employed to monitor surface deformation in the Xishan area
of Beijing. The accuracy of the results from IPTA technology in highly vegetation-
covered mountainous areas was verified through in-conformity accuracy verification.
Furthermore, field validation was conducted to confirm the decoded landslides, and
the validation results were found to be consistent with the InSAR decoding results.

It has been verified that the automatic interpretation method proposed in this paper
has been improved in efficiency and has high accuracy. This method provides an effec-
tive automatic interpretation method for the subsequent InSAR interpretation which is
significant for early deformation recognition. In the following research, we will study the
adaptive automatic recognition work and select different regions for method validation.
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