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Abstract: Timely and rapidly mapping impervious surface area (ISA) and monitoring its spatial-
temporal change pattern can deepen our understanding of the urban process. However, the complex
spectral variability and spatial heterogeneity of ISA caused by the increased spatial resolution poses
a great challenge to accurate ISA dynamics monitoring. This research selected Jinan City as a case
study to boost ISA mapping performance through integrating the dual-attention CBAM module, SE
module and focal loss function into the Deeplabv3+ model using Sentinel-2 data, and subsequently
examining ISA spatial-temporal evolution using the generated annual time-series ISA data from 2017
to 2021. The experimental results demonstrated that (a) the improved Deeplabv3+ model achieved
satisfactory accuracy in ISA mapping, with Precision, Recall, IoU and F1 values reaching 82.24%,
92.38%, 77.01% and 0.87, respectively. (b) In a comparison with traditional classification methods and
other state-of-the-art deep learning semantic segmentation models, the proposed method performed
well, qualitatively and quantitatively. (c) The time-series analysis on ISA distribution revealed that the
ISA expansion in Jinan City had significant directionality from northeast to southwest from 2017 to 2021,
with the number of patches as well as the degree of connectivity and aggregation increasing while the
degree of fragmentation and the complexity of shape decreased. Overall, the proposed method shows
great potential in generating reliable times-series ISA data and can be better served for fine urban research.

Keywords: impervious surface area; Sentinel-2; Deeplabv3+; Jinan City; spatial-temporal variation

1. Introduction

The impervious surface area of the city (ISA) is the type of land cover that can prevent
surface water from directly infiltrating into the soil, mainly including buildings, roads,
squares, parking lots and other artificial structures. ISA can reflect the urbanization process
and is a pivotal factor affecting the urban hydrological environment, local climate conditions
and surface energy cycle [1,2]. Up-to-date ISA data can underpin the understanding of
the spatial-temporal dynamic development changes of cities. Due to numerous merits,
such as large-scale simultaneous observation, short revisit and low cost, the remote sensing
technique has developed as the mainstream method for ISA mapping and its dynamic
change analysis [3–8]. However, the complex spectral variability and spatial heterogeneity
of ISA pose great challenges to accurate ISA dynamics monitoring. Therefore, developing a
rapid and reliable ISA mapping methodology is considerably urgent for urban refinement
management, infrastructure construction and sustainable development.

In recent decades, numerous approaches have been developed for ISA mapping,
including ISA index-based, per-pixel classification and sub-pixel [9–12]. For example,
Liu et al. developed a new index called NUACI for rapid large-scale ISA mapping by
merging DMSP-OLS, MODIS EVI and NDWI, and an admirable result was derived [13]. In
sub-pixel ISA mapping, Liu et al. designed a random forest regression routine for sub-pixel
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ISA mapping in Nansi Lake of China by combining China’s GF-5 hyperspectral images and
GF-1 pan sharpening data [14]. For per-pixel ISA mapping based on image classification,
Zhang et al. performed a global 30 m ISA mapping through combining random forest
algorithm with multi-source and multi-temporal remotely sensed images on Google Earth
Engine (GEE), with an overall accuracy of 95.1% and kappa coefficient of 0.898 [15]. The
aforementioned index-based and sub-pixel ISA mapping method only highlighted the ISA
region in the source image through mathematical operation; however, the determination
of appropriate threshold is typically a challenging task to further amount to the total area
in the enhanced image. The per-pixel ISP mapping approaches were mostly based on
traditional machine learning, which were heavily dependent on handcrafted features and
made little use of context information of neighboring pixels in classification. In addition,
classification based solely on spectral and geometric features cannot solve the confusion
caused by the heterogeneity of ground objects. Manually setting the features involved in
classification is generally based on shallow features extracted from original data, without
mining deep features.

With the advance of artificial intelligence, deep learning, especially the deep convo-
lution neural network (CNN), has made substantial progress in computer vision due to
its robust hierarchical features and learning capabilities. Currently, deep CNN for clas-
sification can be roughly generalized into two categories, image scene classification and
semantic segmentation [16,17]. The former predicts the entire image patch fed into network
as a single label. It is manifest that scene classification typically tends to lead to a jaggy
predicted boundary for ground objects. Although a series of excellent network architecture
(e.g., VGGNet, GoogleNet and ResNet) was developed for scene classification in recent
years, the optimization of these networks was strongly dependent on huge sample sets (e.g.,
ImageNet) due to the large number of model parameters [18,19]. In contrast, constructing a
huge sample set for land use/land cover classification is an extremely challenging task in
remote sensing fields, which impels researchers to design lightweight network structures
with a relatively small number of parameters for land use/land cover type identification.
For example, Huang et al. developed a semi-transfer deep CNN called STDCNN for Hong
Kong land-use mapping, while the performance of the mapping method is highly depen-
dent on the quality of the STDCNN land-use classification, stated in their discussion. [20].
Liu et al. designed a semi-supervised deep CNN framework for urban green plastics cover
mapping in Jinan City using Google Earth images, which was the first attempt to identify
green plastic cover from VHR remote sensing data based on deep learning methods [21].
Compared with the preceding scene classification, semantic segmentation based on CNN
has the capability of assigning a label to every pixel in an input image patch, which can
yield a relatively clear boundary for ground objects due to inclusion of low-level details
information. However, the per-pixel manner of semantic segmentation resulted in a rela-
tively large overhead for computer resources compared with patch wise scene classification.
As a pioneer, fully convolutional networks (FCN) proposed by Long et al. ushered in a new
opening for CNN-based semantic segmentation, which replaced the last fully connected
layers with convolutional layers to achieve end-to-end pixel-level classification [22]. Since
then, numerous admirable network architectures have been developed for pixel-level image
classification, such as Segnet, U-Net, PSPNet, Deeplab, etc. [23–28]. Due to its per-pixel clas-
sification manner, the abovementioned semantic segmentation networks were extensively
applied in numerous remote sensing applications. For instance, Zhang et al. developed
a novel Scale Sequence Residual U-Net for identifying and mapping individual plants,
which produced the best performances in terms of both robustness to training sample size
reduction and computational efficiency compared with the benchmarks, and its average
accuracy reached 91.67% [29]. Adrian et al. designed a three-dimensional U-Net for crop
type mapping through fusing multi-temporal Sentinel-1 data and Sentinel-2 multispectral
data, and a competitive accuracy was derived through extensive ablation experiments [30].
In summary, semantic segmentation networks can actively learn features to obtain optimal
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models, reducing manual intervention and well compensating for the shortcomings of
machine learning models, which play an important role in automatic extraction of ISA.

Jinan City, the capital of Shandong Province in China, is experiencing rapid urban
expansion prompted by a series of regional development plans, which partially leads to
the increased frequency of urban flooding due to the proliferation of ISA. Therefore, it
is urgent to understand the spatial-temporal dynamic characteristics of ISA in Jinan City
for building a healthy, happy and sustainable City of Springs. In this study, we aim to
develop an accurate ISA mapping method and subsequently produce a time-series ISA
data in Jinan City for exploring the ISA spatial-temporal dynamic characteristic. More
specifically, this study aims (i) to determine whether ISA mapping accuracy is improved
through combining an improved Deeplabv3+ with Sentinel-2 optical multispectral images,
(ii) to yield a reliable annual continuous time-series ISA data in Jinan City from 2017 to
2021 and (iii) to understand what the ISA spatial-temporal variation characteristics were in
Jinan City from 2017 to 2021.

The rest of this article is organized as follows. Section 2 introduces the study area
and the data sources. Section 3 describes the details of the improved Deeplabv3+. In
Section 4, the experiments and comparison analyses are presented. Section 5 is the discus-
sion. Section 6 presents the main conclusions and suggestions for future work.

2. Study Area and Dataset
2.1. Study Area Overview

As the core city of the economic circle of the provincial capital, Jinan City lies in the
Midwest of Shandong Province, spanning 36◦00′ N~37◦32′ N and 116◦12′ E~117◦58′ E. The
mother river of China, the Yellow River, flows through Jinan City, starting from Pingyin
County and ending at Jiyang County. Referring to the General Urban Planning of Jinan
City (2011–2020) approved by the State Council, this study selected the planned central
city of Jinan as the study area. The central urban area is mainly concentrated in the area
suitable for construction between the southern mountain area and the northern Yellow
River. It mainly covers the Licheng District, Lixia District, Shizhong District, Tianqiao
District, Huaiyin District and Changqing District, with a planned area of about 1022 km2

(Figure 1). By 2019, the city’s built-up area was 760.6 km2, with a permanent population of
8.9087 million, an urban population of 6.3438 million and an urbanization rate of 71.21%.
In recent years, Jinan has been experiencing rapid expansion and reconstruction, with the
extent of the urban area continuously expanding and the ISA increasing rapidly.
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2.2. Dataset

In this study, remotely sensed data for time-series ISA mapping and analysis were
captured by Sentinel-2 multispectral instrument (MSI) with 13 spectral bands spanning
from the visible and the near infrared to the short-wave infrared. The spatial resolution
of MSI images varied from 10 m to 60 m depending on the different spectral band. As
the first high-resolution multispectral imaging satellite of European Copernicus program,
Sentinel-2 MSI images have been successfully applied to fire assessment [31], land cover
classification [32–34] and emergency rescue services [35].

The preprocessing of Sentinel-2 images included atmospheric correction, resampling
and image clipping. In order to weaken the adverse impact of soil and bare land on ISA
extraction, the acquisition time of Sentinel-2 images used in this paper was limited to the
period when vegetation growth is excellent (May–October). The time-series MSI images
involved the L1C and L2A products, which were downloaded from the Copernicus Open
Access Data Center website (https://scihub.copernicus.eu/dhus/#/home, accessed on
7 September 2022). Based on the SNAP processing tool, all bands were resampled to a 10 m
spatial resolution. The detailed data description used in this study are listed as follows
(Table 1).

Table 1. Time-series Sentinel-2 data.

Imaging Date Imaging Satellite Product Level Cloud Volume/%

7 September 2017 S2B L1C 0
7 September 2018 S2A L1C 0
18 August 2019 S2B L2A 0.72

1 September 2020 S2B L2A 0.95
11 September 2021 S2A L2A 0.88

3. Methodology

In this study, the workflow for time-series ISA mapping and spatial-temporal character-
istics was illustrated in Figure 2. The main steps include (i) data preprocessing and samples
construction; (ii) semantic segmentation model training; (iii) time-series ISA extraction; (iv)
analysis of the spatial-temporal changes of the ISA.
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3.1. Samples

Due to the large study area and the scattered distribution of ISA, in order to reduce
the workload of manually interpreting and drawing samples, local areas with high-density
ISA were selected from entire image of the study area for the production of sample labels.
Taking 2020 as an example, four sample blocks were selected for model training as shown
on the left of Figure 3, and one sample block was selected for the model test as shown
on the right of Figure 3. In order to verify the migration ability of the model, a different
sample block was selected from the images of the other four years for testing. Subsequently,
these images and their corresponding masks were cropped to 512×512 pixels to feed the
model. Figure 3 shows the distribution of the selected sample blocks and the schematic
diagram of sample labels, where the white area is the ISA with label value of 1 and the
black area is the permeable surface area with label value of 0. In addition, to enhance
the generalization ability of the model and decrease overfit, several data augmentation
techniques were adopted in this study, including image flipping, rotating, mirroring, adding
noise and so on.
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Figure 3. Sample block distribution map and schematic diagram. (a) Training set; (b) Test set; (c) True
color image; (d) Label image.

3.2. Details of Model Training

DeepLabv3+ is a typical network structure with high precision in the field of semantic
segmentation at present, which introduces coder-decoder structure on the basis of the
DeepLabv3 model. The encoder component is used to extract the representative hierarchical
features from input images. The decoder component is used to restore the spatial resolution
of feature maps and extract the target object using the learned features [30]. Several studies
have demonstrated that the attention module can improve the performance of segmentation
networks and enhance the accuracy of the predicted results [36,37]. In this paper, several
attention modules (the CBAM module [38] and SE module [39,40]) were integrated into
the Deeplabv3+ model to attempt to boosting the accuracy of the ISA mapping result.
Meanwhile, considering the imbalance problem of positive and negative samples in sample
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set, the focal loss function [41] was adopted instead of cross-entropy loss to further improve
the segmentation accuracy of the model.

The detailed structure of the improved Deeplabv3+ model is illustrated in Figure 4. In
the encoder component, Xception network was used as the backbone network for feature
extraction, while the ASPP (atrous spatial pyramid pooling) module was employed for
mining multi-scale context information of the image using the hole convolution with
various expansion rates. The CBAM (Convolutional Block Attention Module) was utilized
to intensify the crucial content of feature maps as well as different feature maps. In the
decoder part, both high-level features after four-fold up-sampling operation and low-level
features extracted by Xception network were jointly passed into the SE module to highlight
the feature maps with high importance. Subsequently, the abovementioned two kinds
of features were concatenated and further processed to obtain the pixel-level prediction
results with the same size with original input images using 3 × 3 convolution and a four-
times up-sampling operation.
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Figure 4. Structure of the improved Deeplabv3+ model.

In this study, the deep learning library used was TensorFlow. The optimization of
model parameters was conducted on the Ubuntu 20.04 operating system with Intel Xeon(R)
Gold 5118 CPU and NVIDIA TITAN V with 12 GB memory. Due to its capability of
automatically adjusting the learning rate value, the Adam optimizer with an initial learn
rate of 10−4 was adopted in the process of model optimization. The number of epochs was
set to be 50, while the batch size was set to be 3. In addition, an early stopping technique
with patience equal to 10 was applied to decrease model overfit during training.

3.2.1. CBAM Module

As it is lightweight and generalizable, a convolutional block attention module (CBAM)
can be integrated into any CNN architecture seamlessly with negligible overhead. The
convolutional block attention module (CBAM) aimed to concentrate on significant features
and suppress unnecessary features, which consisted of two sequential sub-modules, the
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channel attention module (CAM) and spatial attention module (SAM). The CAM can boost
the weight of the input feature maps with a strong representative ability using a learned
vector with its length equal to the number of channels of input feature maps. The SAM can
improve the significance of different areas in each feature map by a position weight matrix
with its height and width same as that of feature map. Such modules have demonstrated
usefulness in feature extraction. The structure of the CBAM is illustrated in Figure 5.
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Figure 6 illustrates the workflow of the CAM in detail. First, the maximum pooling
and the average pooling operations were applied to input feature F (H ×W × C) to obtain
two weight matrices with the size of 1 × 1 × C. Subsequently, the two weight matrices
was passed through the shared multi-layer perceptron. Finally, the two output features
from the shared multi-layer perceptron were added together and activated by the sigmoid
function to generate a weight matrix of 1 × 1 × C for highlighting key features through the
multiplication operation with input features.
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Figure 6. Channel attention structure.

The SAM is used to obtain contextual features among global features, so that the
features of the same kind at different locations are mutually enhanced, and the semantic
segmentation ability is enhanced [42,43]. The workflow of the SAM is shown in Figure 7.
First, the average and max operation were, respectively, applied to the channel dimen-
sion input features F (H × W × C) for yielding two matrices with the same dimension
(H ×W ×1). Then, a concatenation operation was performed to the above matrices on
their channel dimension to derive a matrix of H ×W × 2. Finally, a spatial attention map
with the same size (height and width) as the input feature map was generated through a
convolution operation and a sigmoid activation function to the matrix of H ×W × 2, and a
further made multiplication operation with input feature maps was used to improve the
importance of different spatial location in each feature map. Therefore, the spatial attention
was the weighted sum of spatial location features and the original feature map. According
to the spatial attention map, the context features were aggregated so that similar semantic
features could promote each other.
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3.2.2. SE Module

The SE module can be divided into two steps: squeeze and excitation. The aim of the
squeeze step was to obtain the global compressed feature by performing the global average
pooling operation on the input feature maps. Excitation aimed to derive the importance
of each input feature using two fully connected layers and then use the weighted feature
map as the input of the next layer of the network [44]. Figure 8 depicts the structure of
the SE module. Initially, the input X was mapped to the output U (H ×W × C) through
any given Ftr transformation. Then, the U was passed through a squeeze operation
to produce a channel descriptor by aggregating the feature map in spatial dimensions
(H ×W). The function of this descriptor was to generate a globally distributed embedding
of channel characteristic response, allowing the information of the global receptive field of
the network to be used by all its layers. Aggregation was followed by an incentive operation,
which adopted the form of a simple self-gating mechanism that took the embedding as
input and produces a collection of modulation weights for input features. These weights
were applied to the U to obtain the output of the SE block, which could be directly input to
the subsequent layers of the network.
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3.2.3. Focal Loss Function

In the image classification task, the model is susceptible to imbalance between positive
and negative samples. On the one hand, more non-target samples or backgrounds provide
too much useless information, reducing the training efficiency of the model. On the other
hand, the model prefers to predict the type with a large sample size. Meanwhile, sample
diversity plays a pivotal role in boosting generalization capability of model. Although the
proportion of some samples belonging to the same category may be low, they, called hard
samples here, are beneficial to enhancing sample diversity. To address the problem of un-
balanced positive and negative samples and hard sample mining, the focal loss function is
introduced in this paper. Focal loss is an improvement for the commonly used cross-entropy
loss function by adding adjustment factors of sample weights to alleviate the problem of
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unbalanced sample categories and boost hard samples mining. The mathematical formula
is as follows.

Ff ocal loss(p′) =

{
−α(1− p′)γ log p′, p = 1
−(1− α)p′γ log(1− p′), p = 0

(1)

where p is the true label; p′ is the predicted probability; α is the weight parameter of the
category in binary classification, which is used to adjust the imbalance of positive and
negative samples; γ is the focus parameter; and (1− p′)γ is used to regulate the simple-hard
sample problem.

3.3. Accuracy Assessment

To verify the segmentation performance of the proposed segmentation model, four
evaluation metrics, Precision, Recall, IoU and F1 value, were adopted for accuracy verifi-
cation. For binary image classification, four predicted outcomes exist for an image: True
Positive (TP), True Negative (TN), False Positive (FP) and False Negative (FN)—where
TP is the number of pixels correctly classified as ISA category, TN is the number of pixels
correctly classified as permeable land surface, FP is the number of pixels misclassified as
ISA, and FN is the number of pixels misclassified as permeable land surface. The detailed
calculation formulas are as follows.

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

IoU =
TP

TP + FP + FN
(4)

F1 =
2× Precision× Recall

Precision + Recall
(5)

Precision indicates the proportion of the pixels correctly predicted as ISA to the total
of ISA pixels in predicted result. Recall refers to the proportion of the correctly predicted
ISA pixels to the total of ISA pixels in ground truth. F1 combines Precision and Recall can
comprehensively evaluate the accuracy of model. IoU refers to the ratio of the intersection
of the predicted result and ground truth over their union, and the higher value represents a
better fit for the model.

4. Results
4.1. Accuracy Assessment of Result

This section evaluates the accuracy of ISA generated by the improved Deeplabv3+
model using qualitative and quantitative measures. The qualitative method refers to the
manual visual check between the distribution of ISA and the corresponding true-color
image. The quantitative approach is based on the four metrics described in Section 3.3.

Figure 9 shows the local ISA extraction results. From Figure 9, it can be observed that
the distribution of ISA had good consistency with that of corresponding true-color image,
which indicated that the presented model can accurately separate ISA from other land
use/land cover types. Through further visual check, the boundary of the ISA extraction
result was clear. However, omissions and misclassifications for fine ISA are inevitable. For
example, some narrow and long permeable surfaces distributed along the road and the
bare land will be misclassified as ISA, reducing the accuracy of ISA mapping.
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According to Table 2, it can be found that the Precision, Recall, IoU and F1 reached
82.24%, 92.38%, 77.01% and 0.87, respectively, which demonstrates that the improved
Deeplabv3+ achieved good performance in identifying ISA from Sentinel-2 multispec-
tral images.

Table 2. Accuracy of the ISA mapping of the proposed model.

Method Precision (%) Recall (%) IoU (%) F1 (%)

The proposed model 82.24 92.38 77.01 87

4.2. Comparison of the Results of Traditional Classification Methods

To further verify the advantages of the proposed method in ISA extraction, we com-
pared it with the random forest (RF) [45] and support vector machine (SVM) methods [46].
As two commonly used traditional image classification methods, RF and SVM have gained
more attraction and achieved satisfactory classification results in remote sensing field
over the past decades [47,48]. To ensure the comparability of the experiments, sample
points were selected within the training sample area, in which 632 ISA, 649 croplands,
687 forestlands, 591 grasslands, 360 watersheds, 397 bare lands and 370 others were se-
lected for training samples, while 424 ISA, 279 croplands, 295 forestlands, 253 grasslands,
155 watersheds, 260 bare lands and 158 others were selected for test samples. The ntree
and mty parameters used in RF algorithm were set to 500 and the square root of the total
number of classification features, respectively. For SVM classification, a radial basis was
selected as the kernel function. The Gamma value in the kernel function was set to the
inverse of the number of features. The classification results were processed into binary
classification maps containing the ISA and background. The accuracy calculation results
are shown in Table 2.

From a quantitative perspective, as shown in Table 3, the presented method outper-
formed RF and SVM in all four accuracy metrics. Although the Precision (82%) of SVM
was close to that (82.24%) of the presented method, the other values of the three accuracy
metrics of SVM were clearly lower than that of the proposed approach. In addition, the IoU
and F1 of RF was close to that of SVM, but they remained inferior to that of the proposed
method. The Precision, Recall, IoU and F1 of the proposed method were improved by
3.42%, 22.38%, 17.85% and 0.13%, respectively, compared to the four accuracy metrics of
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RF, and improved by 0.24%, 27.38%, 19.99% and 0.14%, respectively, in comparison with
SVM. The comparison analysis of accuracy revealed that the improved Deeplabv3+ model
was more effective and advantageous than the traditional pixel-wise classification algo-
rithms in ISA mapping based on Sentinel-2 data. In addition, both traditional classification
algorithms tended to misclassify bare land as ISA. The reason may be that the classical
machine learning method is not enough to mine the deep features of spectral and spatial
information, while the deep CNN can mine more abstract semantic information and is
more accurate in distinguishing ISA from bare land.

Table 3. The comparison with the accuracy of traditional classification methods.

Method Precision (%) Recall (%) IoU (%) F1 (%)

The proposed model 82.24 92.38 77.01 87
RF 79 70 59.16 74

SVM 82 65 57.02 73

4.3. Comparison of Different Semantic Segmentation Model

This section mainly justifies the superiority of the improved Deeplabv3+ through a
comparison with classical CNN semantic segmentation networks such as FCN8, U-Net and
original Deeplabv3+. To ensure the comparability of the results, all CNN segmentation
models exploited the same training and test samples. Table 4 shows the accuracy com-
parison of different CNN semantic segmentation model. Overall, all four deep learning
methods achieved good accuracy. Although the Precision of the improved DeepLabv3+
model in this paper was lower than that of the FCN8 and U-Net models, the Recall, F1
value and IoU of the proposed model were higher than that of the other three models, with
the Recall, F1 and IoU increasing by 7.91%, 0.03 and 4.65% in comparison with FCN8, and
increasing by 7.72%, 0.03, and 3.86% compared with U-Net. Therefore, the overall perfor-
mance of the proposed model was superior to FCN8 and U-Net. Meanwhile, compared
with the original DeepLabv3+ model, all accuracy metrics for the improved Deeplabv3+
had higher values, with the Precision, Recall, F1 and IoU increasing by 0.18%, 3.3%,
0.02 and 2.45%, respectively, indicating that the introduction of the CBAM module, SE
module and focal loss function improved the extraction accuracy of ISA in high-resolution
remote sensing images to a certain extent. The comprehensive comparative analysis demon-
strates that the ISA extraction accuracy based on the improved DeepLabv3+ model is the
best, with the IoU of 77.01% and the clear edge information of the ISA, which proves the
effectiveness and accuracy advantage of the proposed model.

Table 4. Accuracy comparison of semantic segmentation methods.

Method Precision/% Recall/% F1 IoU/%

FCN8 83.46 84.47 0.84 72.36
U-Net 84.33 84.66 0.84 73.15

Deeplabv3+ 82.06 89.08 0.85 74.56
Improved Deeplabv3+ 82.24 92.38 0.87 77.01

4.4. Analysis of Spatial-Temporal Variation of Impervious Surface in Jinan City
4.4.1. Time-Series ISA Mapping

As stated in Section 4.1, the proposed model achieved a satisfactory accuracy of ISA
mapping. This section aims to apply the presented model to produce annual time-series
ISA distribution data from 2017–2021 in Jinan City from Sentinel-2 multispectral data with
a resolution of 10 m. Figure 10 illustrated the time-series ISA distribution from 2017 to
2021 in Jinan City. Through a comparison between the ISA spatial distribution and its
corresponding Sentinel-2 true-color images, we found that distribution of ISA has good
consistency with that of its true-color image, which indicates that the model has good
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generalization ability and can be used to generate reliable time-series ISA for the study of
spatial-temporal changes of the ISA.
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4.4.2. ISA Area Change

Table 5 shows the annual ISA area and percentage in Jinan City from 2017 to 2021.
Figure 11 displayed the spatial-temporal evolution of ISA in Jinan City. It can be observed
that the ISA from 2017 to 2021 showed a change of growth-decrease-growth, but the change
of area was quite small among different years. Among them, the area only increased by
2.26 km2 from 2017 to 2018, and the area of ISA decreased year by year in 2018–2020. The
ISA area reached the lowest value in recent years in 2020, which was due to the severe
COVID-19 situation. In the following year, the COVID-19 situation firmed up, resulting in
the gradual recovery of construction projects as well as the gradual improvement of the
economy, leading the ISA area to reach 496.87 km2 in 2021, with an increase of 49.72 km2 in
comparison with 2020. From the whole period, the ISA area varied from 465.02 km2 in 2017
to 496.87 km2 in 2021, with an increase of 31.85 km2. Meanwhile, the ISA area percentage
varied from 45.80 in 2017 to 48.93 in 2021, with an increase of approximate three percentage
point during the whole study periods.
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Table 5. Statistics of the impervious surface area in the central city of Jinan, 2017–2021.

Year 2017 2018 2019 2020 2021

Area (km2) 465.02 467.28 461.90 447.15 496.87
Area Percentage (%) 45.80 46.91 45.49 44.04 48.93
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According to Figure 11, the new areas of the ISA (red areas) were significantly more
than the areas of ISA reduction (yellow areas) from 2017 to 2021, which was consistent
with the area statistics. During the five consecutive years, Jinan City has been in the
development stage of continuous planning and construction, with the urban spawl in
Jinan City displaying a pattern to the east and minor ISA changes emerging in the central
region. The reduction of ISA was mainly distributed in the village demolition in the
western Huaiyin District and Changqing District, the relocation of Jigang Area in the east
and the demolition of illegal construction in the whole region. The new areas are mainly
concentrated in the development of the eastern Licheng District, including the construction
of the new East railway station, the development of residential areas, the new industrial
parks and factories. The change of ISA in the central area is not remarkable, with little new
ISA. Overall, the expansion of the central urban area of Jinan City is consistent with the
urban plan of Jinan City and reflects the development status and urbanization process of
Jinan City.

4.4.3. Change Analysis of Landscape Pattern

Landscape pattern refers to the type, size, shape and spatial configuration of landscape
patches [49–51]. The landscape pattern index can highly concentrate this information and
quantitatively reflect the characteristics of the target in terms of organization and spatial
configuration. According to the research needs, we selected Number of Patches (NP),
Patch Density (PD), Landscape Shape Index (LSI), Largest Patch Index (LPI), Mean Patch
Area (AREA_MN), Aggregation Index (AI) and Patch Cohesion Index (COHESION) to
analyze the landscape pattern of ISA and its change characteristics; the specific meaning
and calculation formula of each index are shown in Ref [52].
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Table 6 shows the index of the ISA landscape pattern during 2017–2021. It can be
seen that the NP and PD were decreasing-increasing-decreasing-, with the maximum and
minimum values appearing in 2019 and 2018, respectively, while the change trend of the
AREA_MN was the opposite of the NP and PD absolutely, indicating that the ISA was the
most broken in 2019. Then, the ISA continued to expand with the increasing NP, which
showed a filling growth trend. The new patches were gradually connected with the existing
ISA to form larger patches, reducing the degree of fragmentation. The LSI increased year
by year from 2017 to 2020, while it decreased slightly in 2021, indicating that the shape of
the ISA had changed, which tended to be complex and irregular. The LPI decreased from
2017 to 2020, yet increased again in 2021, showing an overall growth trend, reflecting the
trend that the ISA decreased first and then increased. The AI and COHESION remained
above 94 and 99, respectively, in recent years, demonstrating that the aggregation degree
and connectivity of the ISA were always at a high level.

Table 6. Impervious Surface Landscape Pattern Index, 2017–2021.

Year NP PD AREA_MN LSI LPI AI COHESION

2017 7643 7.53 6.08 106.68 40.97 95.09 99.961
2018 7418 7.31 6.30 112.03 39.51 94.86 99.958
2019 8473 8.34 5.45 116.47 39.07 94.62 99.957
2020 7962 7.84 5.62 120.59 37.51 94.34 99.956
2021 7815 7.70 6.36 114.23 44.24 94.92 99.968

Overall, remarkable changes of the landscape pattern of ISA in the central city from
2017 to 2021 occurred, with the PN and LPI increasing, yet the degree of fragmentation
decreased. All of these indicated that the ISA continued to grow and fragment regions
were gradually connected, which increased the connectivity and aggregation of ISA and
reduced the shape complexity.

5. Discussion
5.1. Impact of Including CBAM and SE Module on ISA Mapping

In this section, we discuss the impact of integrating the CBAM and SE module into the
Deeplabv3+ model on ISA mapping. In the field of deep learning, the introduction of an
attention mechanism means that the network model does not need to process huge amounts
of input information, some of which may be redundant, to the same standard, allowing the
network to focus on specific parts of the input. In the detection of ISA, due to the existence
of small, complex and overlapping samples, the spatial perception ability of the model is
also very important. The CBAM module contains two sub-modules, CAM and SAM. After
the introduction of the CBAM module, the input feature maps will be sequentially passed
through CAM and SAM to extract representative semantic features in both channel and
spatial dimensions, thus improving the feature representation capability. The SE module
can perform feature recalibration through squeeze and excitation block. As shown in
Table 4, the accuracy of ISA yielded by the proposed model was boosted after introducing
the CBAM and SE module, with the Precision, Recall, F1 and IoU increasing by 0.18%, 3.3%,
0.02 and 2.45%, respectively, in comparison with the original Deeplabv3+ model, and the
edge information of the ISA is clear. In the experiment testing the generalization ability of
the proposed model with high-resolution remote sensing images of Jinan City, good results
in the extraction of ISA information were achieved. Overall, the improved Deeplabv3+
model has robust generalization ability, which can be used to produce reliable time-series
ISA for the study of spatial-temporal changes of ISA.

5.2. Comparison with Other Methods

In this section, we focus on the advantage of the proposed method over other ISA
mapping methods. In order to verify the influence of different classification methods on the
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extraction results of ISA, we compared the improved Deeplabv3+ model with traditional
classification methods and classic CNN semantic segmentation models. The experimental
results showed that the accuracy of the ISA produced by SVM and RF was inferior to
that of the improved Deeplabv3+ deep learning method, and the classification results had
an obvious salt-and-pepper effect. The reason could be that classical machine learning
methods are insufficient to mine the deep features of spectral and spatial information and
lack the ability to capture the high-level representative features when compared to deep
learning models, leading to a performance gap in ISA mapping, whereas the deep CNN
could extract high-level discriminative features. The results revealed that deep CNN could
mine more representative features for ISA mapping.

We examined the superiority of the improved Deeplabv3+ through a comparison
with a classical CNN semantic segmentation network such as FCN8, U-Net, and original
Deeplabv3+. The FCN8 model realizes semantic segmentation through the full convolution
network structure, yet there was still room to improve the segmentation accuracy and
other aspects. For example, the FCN8 model is not only not precise enough for the contour
and edge classification results of the ISA, but also its sensitivity to detail is low, and the
spatial relationship between pixels is not fully considered, resulting in small objects in the
image being easily ignored. In addition, the FCN8 model fuses the high-level and low-level
semantic information through the addition operation, while the ISA data generated by the
FCN8 model have a blurred boundary due to the inclusion of inadequate low-level features
containing affluent texture information.

The U-Net model is an improved structure based on FCN [26], which combines the
characteristics of transposed convolution and the jump network. One of the differences with
the FCN network is that there are a large number of feature channels in the up-sampling
part of the U-Net network, which allows the network to propagate context information
to higher-resolution layers. When implementing the up-sampling operation to restore
the size the feature map to its original size, the U-Net model integrated more low-level
features with rich textures into high-level features; therefore, the boundary of the ISA
result was relatively clear, and the ISA extraction accuracy was relatively high. However,
although the U-Net model combines the features of different scales of the corresponding
compression channel through jump connection, its transmission features are relatively
simple, resulting in its limited generalization ability for multi-scale features. Especially in
high-resolution remote sensing images, due to the complex background of ground objects,
there will be many sparse ISA with small coverage areas and irregular shapes, and its
network structure will inevitably lose significant details, such as small ISA, which makes it
difficult to accurately extract data.

DeepLabv3+ employed the encoder-decoder structure where DeepLabv3 was used
to encode the rich contextual information, and a simple yet effective decoder module was
adopted to recover the object boundaries. One could also apply the atrous convolution to
extract the encoder features, which include shallow features, deep features and multi-scale
features at an arbitrary resolution, depending on the available computation resources.
Moreover, the addition of the Xception model and atrous separable convolution made the
DeepLabv3+ model faster and stronger. The performance of the model was significantly
improved, which resulted in the relatively clearer boundary of the ISA result and the further
improved accuracy of ISA extraction.

The improved Deeplabv3+ model integrates the dual-attention CBAM module, SE
module and focal loss function into the Deeplabv3+ model, which can improve importance
of the different location and channel of the feature maps, as well as enhance the identifica-
tion ability of the network to ISA. As can be seen in Tables 3 and 4, the Precision, Recall, F1
and IoU of the proposed method in this paper had the highest overall performance accuracy,
which proves the effectiveness of this method. Therefore, the proposed method has more
advantages in ISA mapping with Sentinel-2 and can achieve accurate ISA extraction.

Meanwhile, it is necessary to discuss the limitations of our method through comparison
with previous studies on ISA mapping. In a previous study conducted by Zhang et al.,
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combined multispectral optical data and dual polarization SAR data to identify urban
impervious surfaces. In their studies, Zhang et al.’s resulting Precision, Recall, IoU and F1
reached 89.33%, 90.37%, 81.56% and 89.85%, respectively, as calculated from their confusion
matrix [35]. Compared to the accuracy of our method, the Precision, IoU and F1 of their
research were improved by approximately 7.09%, 4.55% and 2.85%, respectively, which
may have been due to the fact that a large volume of test samples was selected and that
the Sentinel-2 single-source data with only 4 bands were used in our study. The number
of the test samples in their study was 1028 for impervious surfaces (DIS + BIS) and 1607
for pervious surfaces, respectively, while the number of the test samples in our study was
566,623 for ISA and 481,953 for pervious surfaces, respectively. We believe that a large
volume of test samples is more reliable for our ISA mapping model validation. Moreover,
the introduction of TerraSAR-X data with a 3 m resolution in their study improved the
classification accuracy to a certain extent. Nevertheless, from the perspective of visual
interpretation, the results of the ISA extracted by the proposed method in this study are
highly matched with the corresponding true-color images, indicating that the proposed
method still has a powerful ISA identification ability.

Moreover, applying our improved model to other remote sensing images or Sentinel-2
images without atmospheric correction or other pre-processing operations may affect the
accuracy of ISA mapping. In addition, due to the fact that architectural styles vary from
region to region, such as significant differences in architectural styles between northern and
southern in China, the presented model may also lead to a reduced classification accuracy.
For this case, the ISA mapping model needs to be fine-tuned using a small number of
samples from new scenes to derive the satisfactory accuracy of ISA mapping.

In general, there is still much room for improvement in the extraction of ISA infor-
mation from high-resolution remote sensing images. With the continuous development of
network architectures and remote sensing technology, further progress will be made in the
extraction of data on urban ISA via deep learning.

5.3. The Reason for the Change of ISA

In this section, we discuss the factors that led to the change of the ISA. The ISA
statistical data are shown in Table 5. It can be observed that the ISA has shown a growth-
decrease-growth change in the past five years, whereas the area change was small and
belonged to normal fluctuation. For 2017–2018, the ISA increased slightly, which was
attributed to the stable economic performance and continuous population growth by
checking the 2018 Jinan National Economic and Social Development Statistical Bulletin
(http://jntj.jinan.gov.cn/art/2019/4/17/art_18254_2903837.html, accessed on 1 April 2023).
From 2018 to 2020, the ISA continued to decline, which may have been due to the demolition
of old buildings and villages on the urban fringe referring to the General Urban Planning of
Jinan City (2011–2020) (http://www.jinan.gov.cn/art/2016/8/29/art_28170_3349927.html,
accessed on 1 April 2023). In 2020, the ISA area reached its minimum value during the whole
period, which may have been due to the fact that the complex economic situation, especially
the severe impact of the COVID-19, hindered the progress of the construction project
based on the Statistical Bulletin on National Economic and Social Development of Jinan
City in 2020 (http://jntj.jinan.gov.cn/art/2021/4/2/art_18254_4742150.html, accessed
on 1 April 2023). In 2021, a significant increase of the ISA area occurred, which was
closely related to the accelerated implementation of the strategy of “Strengthening the
Provincial Capital” and the recovery of construction projects caused by the better COVID-
19 situation through checking the Statistical Bulletin on National Economic and Social
Development of Jinan City in 2021 (http://jntj.jinan.gov.cn/art/2022/3/4/art_18254_4745
381.html, accessed on 1 April 2023).

6. Conclusions

Taking the central urban area of Jinan City as a case in this study, we developed an
ISA mapping approach which integrated the dual-attention CBAM module, SE module

http://jntj.jinan.gov.cn/art/2019/4/17/art_18254_2903837.html
http://www.jinan.gov.cn/art/2016/8/29/art_28170_3349927.html
http://jntj.jinan.gov.cn/art/2021/4/2/art_18254_4742150.html
http://jntj.jinan.gov.cn/art/2022/3/4/art_18254_4745381.html
http://jntj.jinan.gov.cn/art/2022/3/4/art_18254_4745381.html
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and focal loss function into the Deeplabv3+ model based on Sentinel-2 data. Subsequently,
annual time-series ISA data, spanning from 2017 to 2021 in Jinan City, were yielded
by the improved Deeplabv3+. Then, the spatial-temporal distribution characteristics
and expansion trends were analyzed using landscape patterns methods. The following
conclusions were drawn.

(a) The improved Deeplabv3+ model for ISA extraction achieved a satisfactory accu-
racy in images from 2020, with the Precision, Recall, F1 value and IoU reaching 82.24%,
92.38%, 0.87 and 77.01%, respectively. These results demonstrate that integrating the CBAM
module and SE module into Deeplabv3+ was beneficial to improve the accuracy of ISA
mapping method in this study, which can achieve a relative better ISA extraction result to
realize large-scale and time-series ISA distribution monitoring.

(b) In comparison to traditional machine learning methods such as SVM and RF, all
four accuracy metrics for the improved Deeplabv3+ were superior to that of SVM and
RF, which suggests that deep CNN have the powerful capacity of data mining for urban
land use/cover mapping. Through a comparative analysis with the FCN8, U-Net and
Deeplabv3+ segmentation model, it was found that the proposed method in this study had
the highest accuracy and extracted the best details of ISA.

(c) Through analysis of the spatial-temporal change characteristics of the ISA, it found
that the ISA distribution in Jinan City exhibited a development pattern from east to west,
with significant directionality and enhanced aggregation. The ISA acreage showed a fluctu-
ating growth trend from 2017 to 2021. In 2021, the ISA rapidly increased to 496.87 km2, with
an area ratio of 48.93%. In addition, the number of patches, connectivity and aggregation
of ISA increased, while fragmentation and shape complexity decreased.

The research we performed mainly focused on developing a rapid and reliable ISA
mapping methodology as well as the evolution analysis of the ISA in Jinan City. However,
only a single source of Sentinel-2 data was considered without multi-source data fusion
with other data. Considering the advantages and availability of street-view images, future
studies should attempt to introduce that into the process of ISA classification to improve
the classification accuracy [53].
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