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Abstract: Mountainous forests are pivotal in the global carbon cycle, serving as substantial reservoirs
and sinks of carbon. However, generating a reliable estimate remains a considerable challenge,
primarily due to the lack of representative in situ measurements and proper methods capable of
addressing their complex spatial variation. Here, we proposed a deep learning-based method that
combines Residual convolutional neural networks (ResNet) with in situ measurements, microwave
(Sentinel-1 and VOD), and optical data (Sentinel-2 and Landsat) to estimate forest biomass and
track its change over the mountainous regions. Our approach, integrating in situ measurements
across representative elevations with multi-source remote sensing images, significantly improves the
accuracy of biomass estimation in Tibet’s complex mountainous forests (R2 = 0.80, root mean squared
error = 15.8 MgC ha−1). Moreover, ResNet, which addresses the vanishing gradient problem in deep
neural networks by introducing skip connections, enables the extraction of complex spatial patterns
from limited datasets, outperforming traditional optical-based or pixel-based methods. The mean
value of forest biomass was estimated as 162.8 ± 21.3 MgC ha−1, notably higher than that of forests
at comparable latitudes or flat regions in China. Additionally, our findings revealed a substantial
forest biomass carbon sink of 3.35 TgC year−1 during 2015–2020, which is largely underestimated by
previous estimates, mainly due to the underestimation of mountainous carbon stock. The significant
carbon density, combined with the underestimated carbon sink in mountainous regions, emphasizes
the urgent need to reassess mountain forests to better approximate the global carbon budget.

Keywords: mountain forest; Sentinel-1; VOD; landsat; forest biomass; carbon sink; deep learning

1. Introduction

Mountainous forests, spanning extensive territories, are pivotal in the sequestration of
atmospheric carbon [1]. Refining our estimates of carbon reservoirs within these biomes
is crucial for climate change mitigation strategies and to inform sustainable forestry [2–5].
Nonetheless, the diverse forest types, challenging topography, and heterogeneous climate
of mountain regions impose significant difficulties in calculating forest biomass and carbon
sequestration rates [6,7]. Across the elevational gradient, forest types transition from
broadleaf to mixed, and then to coniferous forests and eventually an alpine tree line, which
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occurred over short horizontal spans, and paralleled by varied biomass. Marked biomass
differences also persist between sunlit and shaded slopes in mountain regions. Traditional
assessment methods could not capture the intricate spatiotemporal dynamics of mountain
forests, hindered by limited in situ measurements and methods suitable for their complex
spatial variations [8]. Consequently, accurate biomass and carbon sequestration estimates
for mountainous terrain remained challenging [9].

First, in situ measurements in mountainous areas were limited, as monitoring sites
often were unevenly distributed and too few to accurately reflect the complex spatial
variations, especially across large elevational gradients. Such insufficiency compromised
the accuracy of forest carbon stock assessments and their variation within these complex
landscapes. For example, a widely used forest biomass inventory dataset for Eurasia [10]
included only 30.6% of measurements from mountain regions as defined by the Global
Mountain Biodiversity Assessment (GMBA) datasets [11], and included only 19.9% of
measurements which were located in rugged regions with slopes greater than 10◦. This
deficiency was more pronounced across China, where only 6.45% of measurements were
located in mountain regions with an elevation higher than 1000 m. Therefore, there was
an emergent need to conduct widespread measurements over mountain regions [12,13].
However, the remoteness and access difficulties in mountainous regions made extensive
field surveys challenging, often precluding the collection of widespread observational
data [14,15]. Thus, determining whether representative sampling along elevational gradi-
ents could enable efficient monitoring and enhance forest biomass estimations emerged as
a primary issue to address.

Second, forest biomass carbon stock and sink estimations had increasingly relied
on remote sensing data, ranging from optical images (e.g., Landsat, Sentinel-2, IKONOS,
QuickBird) to SAR (e.g., Sentinel-1, SSDD, ALOS-2) and VOD (e.g., L-VOD, X-VOD, P-VOD)
datasets, each offering unique insights into vegetation structure [16–18]. However, how to
effectively combine multi-source remote sensing data remained to be solved. Specifically,
optical remote sensing imagery provided spectral reflectance of the forest canopy, enabling
the acquisition of features related to the forest’s top canopy, notably leaves [19,20]. However,
it fell short in detecting the structural components of trunks and branches, resulting in
potential bias in forest carbon estimations [21]. Advanced remote sensing techniques such as
LiDAR [22,23] and microwave remote sensing [24,25] could effectively penetrate the forest
canopy, provide forest structure for biomass analysis, and were less susceptible to weather
conditions [26]. For example, C-band SAR data provided by Sentinel-1A/B satellites aboard
the ESA (European Space Agency) had been consistently providing valuable data on forest
vertical structure through multiple polarization modes since 2014 [27,28]. There have
been studies showing the proficiency of SAR data in regional biomass studies [29,30], yet
the penetration power of SAR has limitations in dense or high-biomass forests where it
might underestimate biomass [31]. The L-band vegetation optical depth (L-VOD), which
correlates with aboveground biomass carbon and water content within vegetation, had
been extensively utilized as a proxy for vegetation biomass to monitor changes in carbon
stocks [32,33]. VOD data, notably sensitive to woody biomass and non-saturating at high
levels due to low-frequency microwaves [34], offered an effective biomass proxy. For
instance, Fan et al. [35] detected changes in terrestrial tropical carbon stocks using L-VOD
and found that the tropics were roughly carbon neutral during 2010–2017. Wigneron
et al. [36] further showed that tropical forest biomass was a carbon source during the strong
2015–2016 El Niño event and did not recover to the pre-event level. While methods utilizing
L-VOD were constrained by the assumption that the plant water-holding capacity remained
constant. This assumption could potentially be challenged by climate variations and the
physiological responses of vegetation [37–39]. Therefore, how to effectively combine the
multi-source remote sensing data that reflect the multi-dimensional forest structure and
attributes to accurately quantify forest biomass remained an unresolved issue.

Third, traditional methods that upscaled in situ measurements to regional wall-to-
wall maps failed to capture the detailed spatial variations present in mountainous terrain.
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Such methods often employed pixel-based modeling, which neglected neighboring pixel
information, including textural patterns crucial for depicting spatial variation [40,41]. How-
ever, with advancements in deep learning, particularly Convolutional Neural Networks
(CNNs), these methods showed promise in overcoming various geospatial challenges, as
evidenced by numerous researchers [42–44]. Unlike traditional pixel-based approaches
that formed predictions from isolated pixels, CNNs leveraged the spatial context by consid-
ering information from neighboring pixels, thus offering a more complex representation
of forest biomass distribution [45]. Integrating CNNs with multi-source remote sensing
data, which provided insights into different forest components such as leaves, branches,
and trunks, held the potential to significantly improve the mapping of regional biomass
and carbon sinks.

Forests in Tibet, characterized by intact and natural state [45–47], potentially hold
considerable carbon stock and serve as substantial carbon sinks. The elevation of forest
over Tibet ranges from 8 to 4900 m. The rugged and complex terrain poses challenges
for traditional methods of estimating biomass in mountainous forests, making it an ideal
case study for our research. Hence, our objective is to devise a robust methodology for
estimating forest biomass and biomass carbon sink, with a particular focus on mountainous
forests, exemplified by those in the mountain regions of Tibet. Our research aimed to
answer the following key questions: (1) whether representative in situ measurements along
elevation could improve mountain forest biomass. (2) Do multi-source remote sensing
data outperform single source results? (3) Whether the patch-based deep learning method
outperforms the traditional pixel-based method in mountain forest biomass and carbon
sink estimation. (4) The size of forest biomass carbon stock and carbon sequestration rate
over Tibet.

2. Data Collection
2.1. Study Area

The Tibet Autonomous, situated in southwestern China, boasts a significant altitude
range. This considerable variation in altitude harbors diverse climate types across Tibet [48],
facilitating the growth of plants ranging from subtropical to boreal species. Consequently,
Tibet harbors a forest ecosystem of exceptional biodiversity, earning recognition as one
of China’s three major forested regions [46]. Forest distribution in Tibet is predominantly
concentrated in the mountains and valleys of the Himalayas and the Hengduan Mountains
in the southeast. Noteworthy is the Nyingchi Prefecture, home to China’s largest primeval
forest area and revered as one of the most representative regions for global biodiversity.

2.2. Forest Inventory Data

We conducted in situ measurements (N = 67, red dots in Figure 1) during 2019 and
2023 with a special focus on the elevational gradient. Here, we set the elevation intervals
as 100 m, ensuring that at least one sample was collected every 100 m from 33 m (a.s.l.)
to 4500 m (a.s.l.). Each plot was set as a square of 10 × 10 m. We then measured the
diameter at breast height (DBH), and height of each tree (DBH > 5 cm) and also recorded
tree types. The forest aboveground biomass was obtained using the allometric model of
each tree type. The average biomass of these sample points is 135.4 MgC ha−1, with an
average elevation of 4673.4 m. In addition, we compiled data documented in the literature
(N = 98, blue dots in Figure 1). Data should be measured near or after the year 2015, and
satisfy the following two criteria (1) the inventory should be conducted at the plot scale
rather than at the individual tree level [49]; (2) data should be collected from stable sites
with no recent fires or human disturbances, verified through high-resolution imagery on
Google Earth (interpreted manually from Google Earth high-resolution images). Data
recorded only forest aboveground biomass was transformed into biomass by the shoot-
to-root ratio of 0.35, following Liu et al. [8]. The distribution of inventory data which met
those criteria is shown in Figure 1. However, the observation data were obtained between
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2015 and 2023, while our analysis focused on the period from 2015 to 2020. This temporal
mismatch could potentially introduce uncertainties in our estimation.
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2.3. Microwave Remote Sensing Images

The Sentinel-1 data offer backscatter information in the Interferometric Wide Swath
(IW) mode, capturing both VV (Vertical transmit–Vertical receive) and VH (Vertical transmit–
Horizontal receive) polarizations at a spatial resolution of 10 m. We acquired median value
data spanning the growing seasons (May to September) in 2015 and 2020 using the Google
Earth Engine (GEE) platform [50] (https://earthengine.google.org/, accessed on 10 January
2024). These datasets underwent meticulous pre-processing, including noise elimination,
terrain correction, and radiometric calibration, to ensure accuracy and reliability.

The vegetation optical depth (VOD) data were from the SMOS-ICV2-RE06 L-VOD
product (L-VOD), which provides monthly VOD data at different microwave band frequen-
cies since 2010. The VOD measured at microwave frequencies is related to the vegetation
water content. And the vegetation water content can be related to the biomass and to its
moisture status, which can be parameterized by the gravimetric moisture content Mg (%).
The VOD data we utilized also originate from both the 2015 and 2020 periods, and we
downscaled L-VOD data to 10 m resolution by linear spatial interpolation.

2.4. Optical Remote Sensing Image

We also obtained top-of-atmosphere reflectance data from Sentinel-2 level 2A and
Landsat 8 images during the growing seasons (June to September) of 2015 and 2020 via
the GEE platform. We selected five bands, including green, red, near-infrared, and two
shortwave infrared bands (Table 1). To ensure compatibility with the Sentinel-1 data, we
applied the nearest-neighbor resampling method to adjust the Landsat data to a 10-m
resolution, thereby minimizing uncertainties due to disparities of spatial scale between the
two datasets.

https://earthengine.google.org/
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Table 1. Details of the multi-source remote sensing imagery used in this study.

Multi-Source Remote
Sensing Dataset Band Description Spatial Resolution

Sentinel 1
VV Vertical transmit–Vertical receive

10 mVH Vertical transmit–Horizontal receive

VOD SMOS-ICV2-RE06 L-VOD VOD 0.25◦

Sentinel-2A

Band 3 Green

10 m
Band 4 Red
Band 8 Near-infrared

Band 11 Shortwave infrared
Band 12 Shortwave infrared

Landsat 8 OLI

Band 3 Green

30 m
Band 4 Red
Band 5 Near-infrared
Band 6 Shortwave infrared
Band 7 Shortwave infrared

3. Method

To provide a benchmark of mountainous forest biomass and estimated changes in
biomass, that is the biomass carbon sink, we proposed a deep learning method that inte-
grated a Residual Convolutional Neural Networks based model, ResNet, with a relatively
large number of in situ measurement data, microwave remote sensing (Sentinel-1 and
VOD), and optical imagery (Sentinel-2A and Landsat 8). Initially, we compiled multi-source
remote sensing data covering the years 2015 to 2020. We then aligned in situ measurements
with the remote sensing data to ensure spatial consistency, incorporating neighboring
information as additional input for ResNet regression (Step 1 in Figure 2). Subsequently,
we trained and optimized the ResNet model to minimize the loss value (Step 2 in Figure 2).
The well-optimized ResNet model was then deployed to predict regional forest biomass at
the pixel level. Changes in forest biomass were subsequently translated into forest biomass
carbon sink (Steps 3 and 4 in Figure 2).
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3.1. ResNet CNN Model

The principle of Convolutional Neural Networks (CNN) was that the convolutional
structure was added to the traditional Deep Neural Network (DNN) model. The ResNet
model introduced a novel architectural innovation known as residual learning to the tradi-
tional CNN model, primarily through the use of residual blocks [51]. Each block contained
a shortcut connection that bypassed one or more layers with an identity mapping. This
approach allowed the model to learn the additive residuals of the underlying mapping,
rather than the entire mapping at once, which avoided the vanishing gradients and the
degradation problem, and enabled much deeper networks to be trained effectively. Fur-
thermore, the core of the algorithm are convolutional layers, which apply convolution
operations to the input images using learnable filters. These filters act as feature detectors,
capturing patterns and spatial relationships within the images. Following convolution,
pooling layers are employed to down-sample the feature maps, reducing computational
complexity and preventing overfitting by retaining only the most relevant information. The
extracted features are then passed through fully connected layers, where they are trans-
formed and aggregated to produce the final regression output. Each layer is activated using
rectified linear unit (ReLU) activation functions, facilitating non-linear transformations
and enhancing model expressiveness. In our case, we constructed ResNet model under
the Google TensorFlow framework [52]. Our ResNet architecture comprises a series of
convolution layers, repeated four times in this instance, followed by a pooling layer and
six fully connected layers. The parameters employed in this architecture include Convo-
lution layers: these utilize a kernel size of 3 × 3, a stride size of 1 × 1, and a filter size
initially set to 64, with an increment by a factor of 2 as the model depth increases. The filter
size regulates the number of features extracted by convolution. Pooling layers: utilizing
max pooling, these layers extract the maximum value of each feature with a stride size of
1 × 1. Residual blocks: these blocks consist of multiple convolutional layers followed by
identity shortcut connections, which skip one or more layers. Fully connected layers: the
architecture includes six fully connected layers. These parameters are carefully chosen to
optimize feature extraction and model performance across varying depths. To optimize
the algorithm’s performance, we employed techniques such as grid search to fine-tune
hyperparameters, weight regularization (L2 regularization) to prevent overfitting, and
dropout layers to randomly deactivate neurons during training, thereby promoting model
generalization.

3.2. Other Machine Learning

To demonstrate the proficiency of the ResNet model in estimating forest biomass
carbon, we conducted a comparative analysis with traditional machine learning approaches,
including Random Forest (RF), Support Vector Machine (SVM), eXtreme Gradient Boost
(XGBoost) and a Deep Neural Network (DNN) that had no convolutional layers to extract
neighboring information, and two advanced deep learning methods, AlexNet and VGG.
We optimized and fine-tuned all the models to ensure that the superior performance of
ResNet was not solely due to model tuning. The RF model consisting of 3000 decision trees
(ntree = 3000), an SVM model with a “rbfdot” kernel and a penalty coefficient of C = 5 and a
XGBoost with 1000 base-classifiers and 0.01 learning rate was ultimately selected (Figure 2).
Furthermore, to determine whether the convolutional structure was the main reason the
ResNet model effectively captured forest biomass in mountainous areas, we also established
a DNN model without a convolutional structure. Parameters were set to be consistent with
the fully connected structure in a CNN. AlexNet and VGG share the same convolutional
layer parameters (3 × 3 kernel size; 64 filter size) and fully connected structure (6 layers
with L2 regularization and Dropout) with ResNet. However, they lack residual modules,
and AlexNet has shallower convolutional layers (3 layers) compared to VGG and ResNet
(8 layers).
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3.3. Validation and Accuracy Assessment

We employed a 10-fold cross-validation method to randomly reserve 20% of the
training data as independent validation data to assess the uncertainty of biomass mapping
at field measurement scales. Specifically, the cross-validation process was repeated 10 times,
with each validation dataset being non-repeated to reduce the particularity of validation
results. In addition, we extracted biomass values corresponding to the training sample
locations from the forest biomass dataset used for comparison, and evaluated the dataset
accuracy by contrasting their differences with the true values at sample points. We also
randomly selected 80% of the training samples for model training, with the remaining
20% used for model validation. For accuracy quantification, we utilized the coefficient of
determination (R2) and root mean square error (RMSE) (Equations (1) and (2)).

R2 = 1 − ∑i(ŷi−yi)
2

∑i(yi − yi)
2 (1)

RMSE =

√
1
m∑m

i=1(ŷi−yi)
2 (2)

where m is the number of observations, yi and ŷi is the ith observed dependent vari-
able value and the predicted y value for the ith observation from the regression model,
respectively; and yi is the mean of all y values.

4. Result and Discussion
4.1. Validation of Mountain Forest Biomass Mapping

To validate the robustness of our proposed deep learning-based algorithm, we ran-
domly reserved 20% of in situ measurements as independent validation samples. Figure 3
illustrates the scatter plot presenting this comparison. Each point on the plot represented a
measured biomass value along with the corresponding prediction generated by our ResNet
model. The validation showed that the proposed model could capture well the variation in
mountain forest biomass at the plot scale, revealing a high coefficient of determination (R2)
of 0.80. Furthermore, the root mean square error (RMSE) was found to be 15.8 MgC ha−1,
indicating a low level of discrepancy between the measured and predicted forest biomass
values. Notably, the RMSE constituted only 10.1% of the average forest biomass estimated
by the ResNet model, highlighting the model’s robust performance in accurately estimating
forest biomass in mountainous regions.
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4.2. Comparative Studies
4.2.1. Comparison in Different Field Sampling Strategies

To reveal the importance of in situ observations across elevational gradients in estimat-
ing mountainous forest biomass, we compared results using elevation gradient sampling
(N = 67), and with traditional random sampling from the literature review (N = 98). The
comparison revealed that elevational gradient sampling strategy, though small in numbers
(67 vs. 98), surpassed traditional random sampling strategy in R2 by 15.1% (Table 2) in
terms of estimating mountain forest biomass. We further assessed the impact of elevational
interval settings of in situ measurements on the results, considering intervals of 100 m
(N = 67), 200 m (N = 32), 300 m (N = 19), and 500 m (N = 12). Here, one measurement was
randomly selected at each interval, and the Monte Carlo method [53] was used to augment
the sample size, ensuring a consistent sample size after sampling. The results showed that
as the elevational interval increased, the accuracy of the results decreased rapidly, with
R2 dropping from 0.63 to 0.51 and RMSE increasing from 22.4 to 24.8 MgC ha−1. These
results highlighted the crucial role of field observation data spanning different elevational
gradients, and emphasizes the need for comprehensive sampling strategies that capture
the variability in forest characteristics along elevation gradients to improve the accuracy of
biomass estimates in complex mountain ecosystems.

Table 2. Estimations using different field sampling strategies.

R2 RMSE (MgC ha−1)

Elevation gradient sampling
(Total, N = 67) 0.63 22.4

Traditional random sampling
(N = 98) 0.53 24.6

Elevation gradient sampling
(interval = 200 m, N = 32) 0.59 23.9

Elevation gradient sampling
(interval = 300 m, N = 19) 0.56 24.7

Elevation gradient sampling
(interval = 500 m, N = 12) 0.51 24.8

4.2.2. Comparison of Different Sources of Remote Sensing Data

Multi-source remote sensing data offer a comprehensive view of vegetation structure,
with Sentinel-2 and Landsat providing information on leaf characteristics; Sentinel-1 C
band backscatter reflecting trunk and branch features, and L-VOD indicating vegetation
water content. We first revealed a relationship between each remote sensing data and
forest biomass at the field measurement scale. Scatter plots (Figure 4) indicated that the
Sentinel-1 VV and VH bands (Figure 4a,b) outperform L-VOD (Figure 4c) and optical
data from Sentinel-2 (Figure 4d–g) and Landsat (Figure 4h,i) in predicting field-measured
forest biomass. However, Sentinel-1 data still saturated at high forest biomass above
150 MgC ha−1, potentially underestimating high-biomass forests. Here, it should be
emphasized that the weaker performance of L-VOD for biomass may be due to the loss of
information and blurring caused by its lower resolution data. Furthermore, we conducted
a comparative analysis using different sources of remote sensing data. Our analysis
revealed that relying solely on single-source remote sensing data yielded limited accuracy
in estimating forest biomass (Table 3). For instance, using Sentinel-2 and Landsat data alone
to capture leaf characteristics resulted in an incomplete representation of forest structure
and subsequently led to suboptimal biomass estimates (R2 = 0.65, RMSE = 23.3 MgC ha−1).
It was noted that using optical data alone could significantly bias mountain forest biomass,
as the underestimation could reach ~50% when compared with multi-source data results
(107.0 ± 11.0 MgC ha−1 vs. 162.8 ± 21.9 MgC ha−1). Similarly, employing Sentinel-1
data, which primarily reflects trunk and branch characteristics, provided only a partial
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insight into forest biomass dynamics (R2 = 0.57, RMSE = 28.7 MgC ha−1). In contrast, when
integrating multi-source remote sensing data, including Sentinel-2, Landsat, Sentinel-1,
and L-VOD, our model achieved significantly improved performance in estimating forest
biomass (R2 = 0.80, RMSE = 15.8 MgC ha−1). By leveraging the complementary information
from each data source, our model was able to capture a more comprehensive range of
vegetation structure features, leading to enhanced accuracy in biomass estimation.
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(a) VV, (b) VH bands from Sentinel-1, (c) Vegetation Optical Depth (VOD), (d–g) reflectance data from
Sentinel-2, and (h–l) Landsat 8. All remote sensing-based data have been normalized.

Table 3. Comparison in forest biomass accuracy using different sources of remote sensing data.

Features R2 RMSE (MgC ha−1)

Sentinel-2A + Landsat OLI 0.65 23.3
Sentinel-1 0.57 28.7

Sentinel-2A + Landsat OLI + Sentinel-1 0.78 18.1
Sentinel-2A + Landsat OLI + Sentinel-1 + VOD 0.80 15.8
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4.2.3. Comparison with Pixel-Based Method

To reveal the effectiveness of incorporating spatial context into the ResNet model for
enhancing forest biomass estimation, we conducted a comparative analysis with traditional
pixel-based machine learning methods. Here, training and validation samples were kept
the same. The ResNet model, equipped with convolutional layers capable of capturing spa-
tial features within the forest canopy, outperformed traditional pixel-based methods such
as RF (R2 = 0.59, RMSE = 29.3 MgC ha−1) and SVM (R2 = 0.56, RMSE = 30.4 MgC ha−1).
This superiority was evident in the evaluation results presented in Table 4, where ResNet
exhibited higher accuracy levels, particularly during validation at the plot scale. Additionally,
XGBoost outperformed other machine learning methods with an R2 value of approximately
0.66. However, its performance remains weaker than that of the ResNet model. This is pri-
marily because XGBoost, despite algorithmic improvements [21,54], operates on individual
pixels and lacks a convolutional structure, which prevents it from fully exploring spatial
distributions like ResNet does. To ascertain the impact of the convolutional structure, that
could consider the spatial context in ResNet, we constructed a pixel-based DNN model devoid
of convolutional layers. This model relied solely on single-pixel information for forest biomass
estimation and has other structures same to ResNet. Our analysis revealed a marked discrep-
ancy in performance, with the DNN model trailing behind CNN notably (R2 = 0.68 vs. 0.81,
RMSE = 24.1 vs. 15.6 MgC ha−1). This disparity highlighted the critical role played by the con-
volutional structure. Incorporating spatial context allowed a model like ResNet to “understand”
and process such multi-dimensional data, enabling it to recognize and analyze complex pat-
terns and relationships within the data that are essential for accurate forest biomass estimation,
especially in challenging and varied landscapes like mountainous regions.

Table 4. Comparison with the pixel-based method for forest biomass estimation.

Algorithm R2 RMSE (MgC ha−1)

ResNet 0.80 15.8
DNN 0.68 24.1

XGBoost 0.66 23.3
RF 0.59 29.3

SVM 0.56 30.4

4.2.4. Comparison with Other Advanced Deep Learning Methods

To reveal the effectiveness of including residual learning and deep neural network
structures in the ResNet model for enhancing forest biomass estimation, we compared
results with two other advanced convolution-based deep learning methods: AlexNet and
VGG. AlexNet, with its simple three-layered architecture, offered a baseline with shallow
depth, while VGG presented a more intricate setup with eight layers, yet without the
residual learning integral to ResNet. Our comparative analysis indicated that the shallow
depth model AlexNet performed poorly, achieving a model accuracy of only 87.5% (Table 5).
Although increasing the depth of the model appeared to improve the performance of VGG,
it still did not match that of ResNet. VGG’s accuracy lagged by 7.5%, potentially owing
to the absence of residual connections, which are vital for the efficient training of deep
networks. Residual connections streamline in ResNet introduced “shortcuts” that skip
layers, simplifying gradient backpropagation and preventing diminishing gradients. This
approach speeded up training while maintaining data integrity, enabling deeper network
structures without added complexity. In this way, ResNet could reach high accuracy with
complex deep networks in forest biomass mapping.



Remote Sens. 2024, 16, 1481 11 of 16

Table 5. Comparison in forest biomass accuracy using different CNN models.

Algorithm R2 RMSE (MgC ha−1)

ResNet 0.80 15.8
VGG 0.74 18.2

AlexNet 0.70 21.1

4.3. Benchmark Mapping of Mountainous Forest Biomass over Tibet

After obtaining satisfactory validation results at the plot scale, we proceeded to gen-
erate a comprehensive wall-to-wall forest biomass map for the year 2020 (Figure 5). Our
analysis revealed that regional forest biomass ranges from 95.2 to 275.3 MgC ha−1, with
an average of 162.8 ± 21.3 MgC ha−1. This equals a total carbon storage of approximately
2.05 PgC, constituting 40.2% of the entire forest carbon storage 5.10 PgC on the Tibetan
Plateau [55]. Notably, the mountainous forests harbor high carbon density, with nearly
90% of the forest biomass exceeding 135 MgC ha−1. This is significantly higher than
forests in eastern regions at similar latitudes in China (86.0 ± 10.6 MgC ha−1) [56], as well
as flat regions (slopes lower than 10 degrees) in China (61.3 ± 22.4 MgC ha−1). Forest
biomass reveals large spatial variation, regions with higher forest biomass are predomi-
nantly concentrated in Shannan City, situated in the southeastern part of Tibet, where the
average biomass is approximately 1.24 times higher than that of the entire Tibetan region
(202.4 ± 24.3 MgC ha−1). Conversely, regions such as Nagqu and Chamdo in northeastern
Tibet exhibit relatively lower forest biomass, attributed to the constraints of low temperature
and limited water availability. Furthermore, forest biomass exhibits significant variation
with the elevation. With increasing elevation, the forest biomass accumulation began to
be inhibited.
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biomass estimated by the newly proposed deep learning method, that integrates CNN with Sentinel-1
and Landsat data. The inset displays the frequency of forest biomass. (b) Mean elevational value of
forest biomass over Tibet.

4.4. Forest Biomass Carbon Sink over Tibet

We then estimate changes in forest biomass during 2015–2020 (Figure 6). The mean
forest biomass increased from 162.3 to 168.2 MgC ha−1, resulting in regional carbon storage
increasing from 0.85 to 1.07 PgC. This indicates an annual forest biomass carbon sink of
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3.35 ± 0.08 TgC year−1. Warming and wetting climate, along with CO2 fertilization
contributed to the forest biomass carbon sink [57,58]. The size of the carbon sink varied
significantly across the elevation, with lower elevation forests (below 2500 m) generally
experiencing a larger carbon sink. Local forest afforestation and natural forest protection
projects likely contributed to this observed increase in carbon sink size [59]. High-elevation
forests (above 4000 m) constitute only 32.9% of the total forest area in Tibet, yet their
carbon sink capacity accounts for 41.8% (1.40 TgC year−1) of the total carbon sink. Notably,
forests near the treeline (elevation > 4500 m) also make a substantial contribution to
carbon sequestration, with an annual carbon sink of 0.97 ± 0.03 TgC year−1. The warming
climate would facilitate trees upslope expansion [60], which also contributes to the regional
carbon sink.
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Figure 6. Spatial pattern of the forest biomass carbon sink between 2015 and 2020. (a) Distribution of
forest biomass carbon sink. The inset displays the frequency of forest biomass carbon sink. (b) Mean
elevational value of forest biomass carbon sink over Tibet. The red region indicates a decrease in
biomass and the green region is an increase.

We further compared our results with existing forest biomass carbon sink estimation
(Table 6). Xu et al. [24] estimated global forest aboveground biomass and biomass carbon
sink using a random forest method combined with ICESat/GLAS lidar data, MODIS, SRTM
digital elevation model, and climate variables. We transformed aboveground biomass into
total biomass, considering the root-to-shoot ratio. Liu et al. [8] provide changes in forest
biomass based on VOD datasets. However, compared to our results, the previous estimation
of mountainous forest biomass carbon sink (0.0068–1.19 TgC year−1) [8,24] is less than half
of our results. The underestimation of forest biomass carbon sink is primarily attributed to
the underestimation of mountain forest carbon stocks (0.01–0.7 PgC) in Tibet due to the
lack of forest structure information and valid in situ measurement data. Specifically, the
mean forest biomass over mountainous Tibet reaches only 40.0 and 102.9 MgC ha−1, which
is 4 times less than our estimation. The validation results using our independent samples
(N = 62) indicate that neither of these datasets effectively estimates the biomass of forests in
the Tibetan region (Figure 7). This comparison shows models lacking representative field
observation and spatial context can notably undervalue the biomass of mountain forests.
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Table 6. Comparison in existing mountain forest biomass carbon sink estimation in Tibet.

Biomass
(MgC ha−1)

Carbon Stocks
(PgC)

Carbon Sink
(TgC year−1) Method Data

This study 162.6 5.10 3.35 ResNet

Sentinel-2A
Landsat OLI

Sentinel-1
VOD

Liu et al. [8] 40.0 0.01 0.0068

The empirical
relationship of convert
VOD to aboveground

biomass carbon

VOD

Xu et al. [24] 102.9 0.7 1.19 Random forest

GLAS
MODIS

QuikSCAT
WorldClim

SRTM
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4.5. Limitation and Perspective

Here, we revealed significant elevational distribution of mountain forest biomass
carbon stock and sink. However, the temporal mismatch between observation data (2015–
2023) and our analysis period (2015–2020) could introduce uncertainties. Field observations
were scarce at high elevations, especially near the treeline, and we lack repeated sampling
to quantify biomass changes at the field scale. Future studies should include repeated
sampling, particularly at high elevations. Furthermore, forest biomass varied greatly across
sunny and shaded slopes, but we lack detailed comparative data on terrain aspect-related
differences along the elevation gradient. Finer sampling could refine our understanding of
microtopography’s impact on forest biomass and the carbon cycle in mountainous regions.
Regarding remote sensing, we utilized optical, SAR, and VOD data for mapping forest
biomass but omitted satellite LiDAR data from sources like ICESat/GLAS, ICESat-2 and
GEDI. Integrating canopy height and direct vertical structure data from these sources
might enhance our biomass estimates and provide better insights into the carbon cycle of
mountain forests.

5. Conclusions

In summary, our study advances the benchmark mapping of forest biomass and
biomass carbon sinks in mountainous regions. We introduce a deep learning-based method
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that integrates microwave remote sensing (C band data from Sentinel-1, and L-VOD data)
with optical images (Sentinel-2A and Landsat 8). The Resnet model used in our study could
automatically learn information from complex spatial features and distribution characteris-
tics unique to mountainous forests, evidenced by comparison with the pixel-based method,
advanced deep learning methods, and single-source remote sensing data. Our research also
presents high-resolution (10 m) mapping of biomass and biomass carbon sink dynamics
across mountainous forests during 2015–2020, thereby aiding in our understanding of
how forests respond to climate change, especially in rugged mountainous regions. The
magnitude of the forest carbon sink across high elevations of mountains can serve as a
basis for formulating regional strategies to enhance carbon sequestration in response to
climate change. However, it should be noted that our estimation still lacks observation
data near the upper range limit of trees, especially near the treeline position due to the
difficulty of access. The use of UAV-based or satellite-based LiDAR may be promising in
those high-elevational forest carbon accounting.
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