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Abstract: In recent years, jamming strategies for Synthetic Aperture Radar (SAR) pertaining to target
detection and identification, such as the creation of false targets, electromagnetic (EM) deception,
and signal spoofing, have been increasingly emphasized. Distinct from traditional SAR jamming
approaches, the introduction of an innovative artificial material cloak in SAR target jamming presents
augmented capabilities. These methods demonstrate a proficient redirection of incident EM waves
in specific or arbitrary directions, effectively masking the vital information linked to critical tar-
gets. This study introduces a broadband SAR target jamming system employing an information
metasurface that incorporates intelligent information processing algorithms in conjunction with a
space-time-coding digital metasurface, endowing it with the capacity to adeptly modulate incident
EM waves. This integration facilitates a versatile approach to jamming, enabling the deployment of
multi-mode protective measures against critical targets. The conducted simulation and experiment
results validate the system’s ability to adjustably produce EM deception and generate multiple false
targets independently of the SAR system. The outcomes of this research significantly advance the
practicality of SAR protection strategies, pushing the boundaries toward more dynamic, broadband,
and controllable scenarios, thereby substantially improving the concealment of critical targets in
highly sensitive conflict areas.

Keywords: deception jamming; image modulation; information metasurface; synthetic aperture
radar (SAR)

1. Introduction

Synthetic Aperture Radar (SAR) is an advanced active microwave imaging system, dis-
tinguished by its immunity to natural atmospheric variables including illumination, cloud
cover, and other adverse meteorological conditions. This characteristic endows SAR with
the capability for consistent, all-weather, and diurnal-nocturnal earth observation, estab-
lishing it as a crucial information acquisition platform in the realm of remote sensing [1,2].
The recent period has seen SAR’s significance burgeon, driven by strides in remote sensing
imaging technology and a marked increase in the deployment of SAR satellites in orbit.
These developments have precipitously improved the quantity and quality of data procured
by SAR systems, thereby catalyzing progress in SAR’s applications and research within its
affiliated domains [3–5]. Notably, target detection and recognition emerge as critical facets
of intelligent interpretation of SAR images, offering rapid identification of various target
attributes such as model, type, location, status, and other information, thereby bolstering
dynamic monitoring of key regions and comprehensive situational assessment tasks [6–8].

Concurrently, this domain has also witnessed a significant increase in research on
countermeasures against SAR target detection and recognition technologies. These strate-
gies aim to disrupt or deceive the SAR system through various means, thereby diminishing
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the accuracy of its detection and recognition capabilities. Such countermeasures include the
generation of false targets, electromagnetic (EM) deception, and signal spoofing techniques.
The strategy of generating false targets involves introducing non-existent target signals
into the environment to confuse the SAR system, thereby increasing the difficulty of the
system in accurately distinguishing real targets from interference targets. Electromagnetic
deception involves the use of electromagnetic interference to distort the signals received by
the SAR system, altering the apparent position or shape of the target and making it difficult
to detect and recognize accurately. Signal spoofing, on the other hand, entails simulating or
replicating the characteristics of SAR signals to mislead the SAR system into mistaking the
deceptive signals for those emanating from actual targets [9–12].

In contrast to traditional countermeasures such as barrage and deception jamming, the
advent of new artificial material cloaks for SAR target jamming has introduced enhanced
possibilities. These innovative artificial materials have demonstrated the capability to
scatter incident EM waves in specific or arbitrary directions, effectively concealing critical
information associated with actual targets [13–15]. The author in [16] proposed an encoded
metasurface based on the FitzHugh-Nagumo spatiotemporal chaos model, employing a
“quantization-coding” method combined with Type-I unit cells designed according to the
Pancharatnam-Berry phase, aimed at significantly reducing the radar cross section (RCS)
and offering a new strategy for stealth technology. Wang et al. introduced a binary digital
coding metasurface based on a low-cost FR4 substrate, utilizing innovative ‘crusades-
like’ cell topologies, to achieve broadband RCS reduction [17]. Furthermore, in [18], the
author utilized a wideband metasurface based on polarization conversion operations to
achieve RCS reduction of an isolated multi-input multi-output antenna through destructive
interference of scattered EM waves from both sides of the designed metasurface. However,
the aforementioned studies only utilized fixed coding metasurfaces, lacking the capability
for spatiotemporal modulation of EM waves, which would greatly limit their application
in real-time electronic countermeasures.

Furthermore, recent studies on electronically controllable time-varying materials, such
as frequency-selective surface absorbers/reflectors and phase-switching screens, have
demonstrated promising potential [19–22]. The authors in [23] proposed an invisibility
cloak metasurface based on the aforementioned materials and artificial intelligence opti-
mization algorithms capable of adapting to dynamic environments without human inter-
vention within milliseconds, advancing cloaking applications for real-time scenarios such as
moving stealth vehicles. These spacetime-varying information metasurfaces can modulate
intra-pulse and inter-pulse SAR signals to induce coherent interference in SAR. In [24,25],
the author proposed a time-domain digital coding switchable active frequency-selective
surface absorber/reflector, which achieves precise control of each harmonic through the
modulation of its parameters, enabling flexible switching between absorption and reflection
states, and validated the distance transformation function through SAR experiments. Such
advancements hold significant prospects for advancing personal privacy protection, imple-
menting EM cloaking, and enhancing security measures concerning SAR target detection
and recognition.

In this study, we introduce a broadband target jamming system for SAR, predicated
on the utilization of an information metasurface. This innovative design amalgamates
intelligent information processing algorithms with space-time-coding digital metasurface
technology, bestowing upon it the ability to deftly modulate incident EM waves [26].
This capability facilitates the establishment of multi-mode jamming defenses, such as EM
deception and the generation of multiple false targets, aimed at safeguarding critical targets.
The structure of the target jammer is characterized by a periodic array of identical 1-bit
digital coding metasurface units. Each unit is encapsulated as a binary configuration,
consisting of a central PIN-diode and a surrounding topologically engineered EM structure.
The reflection phase of the unit can be modulated between distinct states, ‘ON’ (conductive)
and ‘OFF’ (non-conductive), by the switchable PIN-diode, resulting in pronounced phase
discrepancies. When deployed on the target, the jamming system exerts control over
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both the amplitude and phase of the complex backscattering coefficient (CBC), effectively
manipulating the EM signature of the target. As the SAR beam footprint covers the target,
the jamming system swiftly modulates its CBC, inducing abrupt and rapid perturbations
in the typical phase distribution of reflected linear frequency modulation (LFM) signals.
This modulation impedes the SAR sensor’s ability to accurately reconstruct the target’s
image. Notably, when the CBC of the target is adjusted to resemble that of its surroundings,
the resultant SAR images become indistinguishable, achieving effective EM deception.
Additionally, in scenarios involving the application of multiple false targets, the jamming
system orchestrates the spatial arrangement of these false images around the critical target
on the image domain while concurrently obfuscating the actual target’s image.

The content of this article is structured as follows: Section 2 details the construction of
the X-band prototype based on information metamaterial. Section 3 elucidates the opera-
tional principles of the target jamming system, supplemented by simulation experiments
and analytical discussions. In Section 4, we present the validation based on spaceborne SAR
data (targeting the ARJ21 aircraft, utilizing data from the Gaofen-3 satellite’s SAR-aircraft-
1.0 dataset) and flight experiments (targeting a Volkswagen sedan, employing an airborne
SAR platform), demonstrating the system’s capability for adjustable EM deception and the
generation of multiple false targets. A detailed analysis of these results is conducted to
verify the system’s efficacy. Discussion is provided in Section 5, followed by a conclusion
in Section 6.

2. Target Jamming System

The broadband target jamming system for SAR, predicated on the principles of infor-
mation metasurface, is depicted in Figure 1. This device is constructed through the periodic
arrangement of identical 1-bit digital coding metasurface units. Each unit is composed of
two fundamental components: a centrally placed PIN-diode and a surrounding topological
EM structure. A noteworthy characteristic of these metasurface units is the phase variation
they exhibit, which manifests as a π/2 difference between the “ON” (conductive) and
“OFF” (non-conductive) states of the switchable PIN-diode across the frequency range
of 8.08-13.58 GHz. This range effectively encompasses the X-band, thereby indicating
significant phase contrast. Furthermore, through precise adjustments to the dimensions of
the metasurface units, the system demonstrates an exceptional capability for EM scattering
modulation. This modulation spans from the P to Ka band, encompassing the prevalent
operational frequency spectrum of spaceborne and airborne SAR systems.
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Information metasurfaces possess the capability to regulate the propagation charac-
teristics of the reflected EM waves through the manipulation of the state distribution of



Remote Sens. 2024, 16, 1499 4 of 18

their constituent units and are typically composed of sub-wavelength basic units arranged
in either periodic or aperiodic structures, characterized by specific geometric shapes. The
analysis and study of their principles in controlling EM waves often employ the gener-
alized law of reflection and refraction. Assuming that the phase gradient generated by
the metasurface is denoted as ∇Φ, the EM waves undergo refraction and reflection at the
interface, satisfying the following conditions:

nik0sin(θi)+∇ϕ = ntk0sin(θt) (1)

nik0sin(θi)+∇ϕ = nik0sin(θr) (2)

where θi, θt, and θr are the angles of incidence, refraction, and reflection, respectively. ni and nt
represent the refractive indices of the incident and refracted spaces, and k0 denotes the wave
vector in vacuum. The above equation represents the law of refraction and reflection assisted
by information metasurfaces, also known as the generalized law of refraction and reflection.
The generalized laws of refraction and reflection elucidate that through the meticulous design
of metasurface unit structures on the interface—including their geometric shape, dimensional
attributes, and material composition—and the strategic arrangement of these units, one can
achieve precise control over the propagation directions of both reflected and refracted EM
fields. By leveraging these generalized laws, it becomes feasible to engineer specific target
scattering profiles through the modulation of the width of planar metallic slits.

The equivalent circuit theory, along with the inversion method utilizing transmission
matrix S-parameters, is employed to conduct research on the accurate transformation,
reconstruction, and regulation of EM target scattering features in this article. Typically, the
equivalent impedance of subwavelength configurations is comprised of both resistance R
and reactance X, formulated as Z = R + jX. R is influenced predominantly by the losses
within the structure, whereas X is influenced by the structural design.

In the scenario illustrated in Figure 2a concerning a reflective information metasurface,
it is hypothesized that the admittances (inverse of impedances) for the incident space,
metasurface layer, and intermediary medium layer are designated as Y1, YS, and Y2,
respectively, where Y1 =

√
ε1
µ1

and Y2 =
√

ε2
µ2

. The EM wave incident in the negative

direction along the Z-axis passes through the metasurface and the medium layer before
being reflected by the ground metal plane. Meanwhile, EM waves propagating in both
forward and backward directions coexist within the incident space and the medium layer.
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The electric field amplitudes of EM waves propagating in the forward and backward
directions within each layer are denoted by Ai and Bi, respectively. At the interface of the
metasurface, the boundary conditions of Maxwell’s equations can be applied to obtain:

A1 + B1 = A2 + B2 (3)
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Y1(A1−B1) = Y2(A2−B2) + YS(A2+B2) (4)

When EM waves propagate through the dielectric layer, they satisfy the following
equation: (

A2
B2

)
=

(
exp(− ikd) 0

0 exp(− ikd)

)
·
(

A3
B3

)
(5)

where, k represents the propagation constant in the dielectric layer. Therefore, the transmis-
sion matrix of the entire structure is described as follows:(

A2
B2

)
=

1
2Y1

(
Y1 + YS + Y2 Y1 + YS − Y2
Y1 − YS − Y2 Y1 − YS + Y2

)
·
(

exp(− ikd) 0
0 exp(−ikd)

)
·
(

A3
B3

)
(6)

Assuming that EM waves are fully reflected by the ground metal plane, the reflection
coefficient is −1, that is, A3 = −B3. Substituting into Equation (6), the expression for the
reflection coefficient can be obtained as follows:

S11 =
B1

A1
=

(Y1−YS − Y2)exp(− ikd)− (Y1−Ys − Y2)exp(ikd)
(Y1+YS + Y2)exp(− ikd)− (Y1+Ys − Y2)exp(ikd)

(7)

Similarly, for the single-layer transmissive information metasurface shown in Figure 2b,
it can be concluded that:

S11 =
B1

A1
=

Y1−YS − Y2

Y1+YS + Y2
(8)

S21 =
A2

A1
=

2Y1

Y1+YS + Y2
(9)

For a more comprehensive discussion, please refer to the principles of equivalent
circuit theory and the methodology of S-parameter inversion as delineated in reference [27].

Building upon the theoretical foundation of information metasurface, the construction
and subsequent testing of a prototype system designed for broadband target jamming in
SAR applications, incorporating a matrix of 900 units (arranged in a 30 × 30 configuration),
have been undertaken in this section. The output voltage from a Field-Programmable Gate
Array (FPGA) is utilized to control the state (either ‘on’ or ‘off’) of each unit within the
metasurface array. This mechanism allows for the modulation of the overall EM scattering
state of the information metasurface, as depicted in Figure 3.
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Information Metasurfaces are functional materials capable of altering the scattering
properties of incident EM waves. The CBC of a metasurface is defined as

σ0 = Aejφ (10)

where A is the amplitude coefficient and φ is the phase coefficient. In this study, we
disregard the amplitude coefficient A and set it to a constant value of 1. Due to current
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hardware limitations, precise phase modulation of metasurfaces is challenging; hence, we
employ bit numbers to represent the discrete number of phase states that metasurfaces can
achieve. In our research, we set the discrete phase states for 1-bit modulation to typical
values of [0, π]. Assuming a 1-bit phase modulation for the metasurface, it adds the
corresponding relative phase π to the incident EM wave in each time slice of width Tc in
the original signal. Thus, the modulation function of the information metasurface on the
incident EM wave can be expressed as

f (t) =
∞

∑
i=−∞

σ0i·g(t − iTe) (11)

where Ri is the CBC of the metasurface in the i-th time slice, and g(·) is the rectangular gate
function with a width of Tc. Consequently, the echoed signal modulated by the metasurface
can be represented as

J(t) = s(t)·g(t) (12)

s(t) represents the unmodulated radar echo signal.
The experimental outcomes regarding the reflection amplitude and phase for diverse

encoding sequences of the prototype are delineated in Table 1. The variation in the ampli-
tude of the reflected wave is confined within a range of 12.85 dB, while the reflection phase
exhibits a linear progression from 0 to 125◦, evidencing a robust linear correlation. These
findings underscore the capability of the information metasurface in the high-precision
manipulation of EM scattering characteristics.

Table 1. The reflection amplitude and phase.

Encoding Sequence Amplitude (dB) Phase (◦)

1111111. . .1111111 6.25 125
0101010. . .0101010 3.94 63

. . . . . . . . .
0111011. . .0111110 12.85 79
0000000. . .0000000 0 0

The actual gain in 9.6 GHz at 0◦ and 30◦ beam directions is shown in Figure 4, with
tests conducted using a horizontally polarized linear feed source. The phase distributions
for 0◦ beam direction, 30◦ beam direction, and random diffuse reflection are presented in
Figure 5, where different colors represent the phase of each unit on the metasurface. It is
noteworthy that the information metasurface with a random diffuse reflection state has
a lower amplitude of CBC compared with those for beam directions of 0◦ and 30◦. The
metasurface array exhibits good beam scanning characteristics, with the maximum tunable
gain around 9.6 GHz reaching up to 21.7 dB at 0◦. The gain for the E-plane and H-plane at
30◦ is on average 3 dB lower than at 0◦ within the 9.3–10 GHz range. The sidelobe level
(SSL) is less than −12.9 dB at 0◦ and less than −10 dB at 30◦.
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In this work, precise modulation of the digital state for metasurface units is achieved
by embedding radio frequency switches within the unit structure, utilizing the switching be-
tween “ON” (conductive) and “OFF” (non-conductive) states of PIN diodes. Furthermore,
by employing FPGA technology for the metasurface, this research innovatively integrates
the jamming digital encoding array with the EM physical characteristics of the information
metasurface, facilitating intelligent control over the metasurface’s jamming effects. When
the jamming system installed on critical targets is activated as the satellite-borne SAR beam
covers the target, it can flexibly and effectively modulate parameters such as phase, ampli-
tude, and polarization of the target’s SAR echo, introducing abrupt and rapid perturbations
into the typical phase distribution of reflected LFM signals. This modulation impedes the
SAR sensor’s ability to accurately reconstruct the target’s image, thereby enabling effective
jamming and protection of the target, as illustrated in Figure 6.
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3. Target Jamming System Signal Model and Modulation Method
3.1. The Model of the SAR Echo Signal

The echo signal for a point target, characterized by CBC denoted as σ0 = A′
0exp(jφ0),

is described as follows:

S0(τ, η) = A′
0exp {jφ0}wr

(
τ − 2R(η)

c

)
wa(η − ηc)× exp

{
− j4πf0R(η)

c

}
exp

{
jπKr

(
τ − 2R(η)

c

)2
}

(13)

where τ and η are the range and azimuth time, respectively, and wr and wa correspond
to the respective profiles. The carrier frequency is denoted by f0, c represents the speed
of light, R(η) indicates the slant range, and Kr refers to the chirp slope. If the CBC σ0 of
a point target undergoes rapid changes with a frequency of 1/Tp, the expression for the
range signal with a pulse duration of Tr can be given as follows:

Sr(τ) = A′
0exp(jφ0)wr

(
τ

Tr

)
exp

{
jπKrτ2

}
(14)

The quantity of changes, denoted as N, is equivalent to the quotient obtained by
dividing the pulse duration Tr by the period Tp. Consequently, the expression for the range
signal may be articulated as follows:

Sr(τ) = ∑N
i=1 A′

0iexp{jφ0i}wr

(
τ − τi

Tp

)
exp

{
jπKrτ2

}
(15)

where A′
0i and φ0i represent the specific amplitude and phase of CBC within the short

temporal duration Tp. Subsequently, a Fast Fourier Transform is employed, culminating in
the derivation of the expression within the frequency domain:

Sdr(f) = ∑N
i=1 A′

0iexp {jφ0i}Wr

(
f − fi

Bp

)
H(f) (16)

where Bp symbolizes the product of Tp and Kr, and H(f) signifies the Fourier transform of
the quadratic phase term. It is noteworthy that the time-bandwidth product is adequately
minimal, thereby rendering the stationary phase principle non-applicable under these
conditions [28]. Customarily, matched filtering is utilized in SAR sensors to attenuate
the effects of the quadratic phase term. As a result, the residual terms subsequent to this
processing step are delineated as follows:

S′
dr(f) = ∑N

i=1 A′
0iexp {jφ0i}Wr

(
f − fi

Bp

)
(17)

Subsequently, the Inverse Fast Fourier Transform is applied to transform the frequency-domain
representation S′dr(f) back into the time-domain signal for the purpose of pulse compression.

S′
r(τ) = ∑N

i=1

∣∣Bp
∣∣A′

0iexp {jφ0i}sinc
(
Bpτ

)
exp{−j2πfiτ} (18)

Within the short temporal duration, the waveform and phase are modified by A′
0i and

φ0i, respectively, introducing an interference effect on the imaging results that corresponds
to distinct variations in the CBC. Considering the symmetry between range and azimuth
signals, and the significantly higher range sampling frequency fs in comparison to the pulse
repetition frequency, a parallel influence is exerted on the azimuth signal. This culminates
in analogous outcomes within the two-dimensional image domain in turn.

3.2. The Simulation of a Point Target

To demonstrate the effectiveness of the proposed jamming method, a spaceborne SAR
simulation experiment involving nine point targets is conducted. Notably, to correspond
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with the experiments in the next section based on the SAR-Aircraft-1.0 dataset of the
Gaofen-3 satellite, the satellite orbit and radar system parameters of the spaceborne SAR
are set to match those of the Gaofen-3 satellite, as listed in Tables 2 and 3 [29]. The SAR
system operates in a staring spotlight mode and assumes no squint angle. The scene center
resolution is 0.55 m × 0.59 m (slant range × azimuth). The geometry of the simulated scene
is shown in Figure 7, including the distribution of targets on the surface of the earth and
the slant range plane after deramping.

Table 2. Parameters of the Gaofen-3 satellite orbit.

Parameters Value

Eccentricity 0.0015
Ascending node 0◦

Inclination 98.4◦

Semi-major axis 7126.4 km
Argument of perigee 270◦

Table 3. Simulated spaceborne SAR staring spotlight acquisition.

Parameters Value

Wavelength 5.35 cm
Transmission bandwidth 240 MHz

Sampling rate 300 MHz
Slant range 7126.4 km

Incidence angle 42◦

Antenna azimuth beam width 0.45◦

Coherent integration angle 1.5◦

Squint angle at aperture center 0◦

Nominal doppler centroid 16.857 KHz
PRF 5.364 KHz

Scene center resolution 0.55 m × 0.59 m
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The simulation for the point target P5 serves to validate the phase modification of the
information metasurface, as depicted in Figure 8. It is discernible that microsecond-level
variations in the CBC for the information metasurface induce defocusing of the SAR image
in both the azimuth and range directions, corroborating the prior analysis of SAR echo
signals. Figure 8b, c illustrate the amplitude of the SAR echo and its two-dimensional
spectrum. Notably, in contrast to those of an echo from point target P5 not modulated,
as shown in Figure 9, the information metasurface is capable of rapidly and precisely
adjusting the phase of its reflected EM waves without altering the amplitude of the CBC.
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This adjustment follows the jamming digital encoding array in Figure 8d, thereby achieving
the intended jamming effect while maintaining the CBC’s amplitude unchanged.
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The simulation results for a 3 × 3 array of point targets, each integrated with informa-
tion metasurfaces (ranging from point P1 to P9), are primarily employed to validate the
efficacy of multi-mode jamming protections. These protections, inclusive of EM deception
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and the generation of multiple false targets, are explicitly designed to safeguard critical
targets. As illustrated in Figure 10, by modulating the CBC of different information meta-
surfaces, such as P1 and P6, the amplitude and phase of the corresponding SAR image can
be artificially manipulated. This manipulation facilitates the transformation of the SAR
image of point P3 into that of point P6, with distinct contours representing different CBCs,
thereby accomplishing the objective of EM deception. Specifically, the amplitude of CBC for
point P1 escalates from −14.16 dB (mode I, Figure 10a) to −3.31 dB (mode II, Figure 10b),
whereas point P6 exhibits a diametrically opposite trajectory.
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Furthermore, the introduction of a finite Dirac comb function ∑t2
j=−t1

δ(i − j) to modify
the CBC phase of point P3 effectively generates multiple false targets, as clearly visible
within the blue region depicted in Figure 11. Notably, when the CBC phase of P3 is adjusted
by a time-limited impulse train with an amplitude of 0.75π, two false images of P3 emerge
within the region demarcated by blue dashed lines, forming around it along the azimuth
direction. The underlying reason for this phenomenon is the multiplication of the finite
Dirac comb function with the echo signal in the frequency spectrum, which is equivalent to
the convolution of their inverse fast Fourier transforms in the time domain. This operation
shifts the energy of the echo signal to incorrect positions, thereby resulting in the emergence
of multiple spurious images. Therefore, the utilization of a finite Dirac comb function
with varying periods and amplitudes can produce false targets at different locations and
in varying quantities within the SAR image domain. The flexibility of this method offers
new possibilities for electronic countermeasure strategies, allowing for the adjustment
of jamming tactics based on specific scenarios to meet diverse tactical requirements. It
is particularly noteworthy that, in comparison to the SAR image profile of point P6, the
profiles of the false targets P3

′ and P3
′′ exhibit certain inaccuracies, with the main lobe

showing slight deformation and the side lobes displaying irregular amalgamations. This
occurrence is primarily due to the incomplete segmentation of the signal spectrum, which
affects the correct reconstruction of the frequency components of the echo signal, thereby
producing distorted false targets in the SAR image. This finding underscores the importance
of precision in signal processing during jamming operations, especially when designing
complex jamming patterns using information metasurface, necessitating meticulous control
over the spectral processing of the jamming digital encoding array to ensure the accuracy
and effectiveness of the jamming effects.
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4. Verification of the Target Jamming System
4.1. Verification Based on Spacebrone SAR Data

In this section, we conduct a comprehensive evaluation, analysis, and discussion
on the implementation of adjustable EM deception and the generation of multiple false
targets for the ARJ-21 aircraft (length 33.46 m, wingspan 27.28 m) located within the Beijing
Capital International Airport area. The Gaofen-3 satellite’s SAR-Aircraft-1.0 dataset is
employed, utilizing a single polarization imaging mode and spotlight imaging technique,
with the satellite orbit and radar system parameters consistent with those described in
Tables 2 and 3 [29]. As depicted in Figure 12, the ARJ-21 aircraft target positioned above
the right side of the airport terminal is presented in the SAR image with a clear resolution
of approximately 1 m. Through the use of intelligent SAR target detection and recognition
algorithms, the aircraft’s model, type, location, and status information can be effectively
confirmed, enabling its differentiation from other types of aircraft within the airport region.
Leveraging high-precision SAR imaging technology, in conjunction with advanced image
processing and analysis algorithms, specific features of the ARJ-21 in Figure 12b, such as the
wings, tail, and fuselage contours, are distinctly identifiable. This provides robust technical
support for airport security management and aircraft monitoring.
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However, as depicted in Figure 13a, by analyzing the CBC of the surrounding envi-
ronment, when the information metasurface jamming system prototype is activated on
the ARJ-21 aircraft, the target’s image is rapidly modulated to align with the surrounding
environment. The specific features of the target are effectively concealed, in alignment with
the aforementioned theoretical predictions, thereby achieving adjustable EM deception
based on the information of the surrounding environment. Furthermore, when the phase
is adjusted using the finite Dirac comb function method proposed above on the jamming
system prototype deployed on the ARJ-21 aircraft, two false targets can be generated as
needed to confuse potential threats or surveillance systems. These false targets not only
visually simulate the basic characteristics of the ARJ-21 aircraft in the SAR image but
also reflect similar EM characteristics in intelligent SAR target detection and recognition,
thereby enhancing the survivability and stealth of the target in complex environments.
The corresponding imaging results are displayed in Figure 13b. However, it is important
to emphasize that the false images of the target appear somewhat illusory and indistinct
within the region demarcated by blue dashed lines. This limitation may arise from the
incomplete matching of filters in pulse compression due to the division of the frequency
spectrum. This aspect will be further investigated and refined in subsequent research
efforts. It is worth mentioning that by finely adjusting the parameters of the information
metasurface jamming system prototype, such as phase, amplitude, and frequency, it is
possible to customize the quantity, spatial distribution, and characteristics of the false
targets in alignment with specific threat scenarios. This approach significantly enhances
the realism and credibility of the SAR jamming deception effect.
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4.2. Verification for the Flight Experiment

To validate the efficacy of the information metasurface jamming system prototype
in real-life situations, airborne SAR flight experiments were conducted. The SAR system
utilized for the flight experiments is depicted in Figure 14a, employing state-of-the-art
phased array antennas and digital beamforming technology, with the corresponding radar
parameters listed in Table 4. Figure 14b displays the proposed jamming system proto-
type, measuring 1800 cm2 and comprising 900 metasurface units. By employing FPGA
technology, the digital encoding array was integrated into the jamming system prototype,
facilitating real-time intelligent control over the metasurface’s EM characteristics.

This experiment was conducted in the northern valley of Miyun Airport in Beijing, China,
utilizing an airborne SAR platform operating in spotlight mode to achieve a ground-distance
resolution of 0.15 m. Additionally, to assess the performance of the jamming system prototype,
the experiment was specifically designed with a series of flight paths to ensure comprehensive
detection of the target from various angles and distances for a thorough analysis of the
jamming effects. The flight experiment layout, including the precise location of the critical
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target, is detailed in Figure 15, where the aircraft’s flight altitude was set at 3000 m, targeting
the ground with a 50◦ down-looking angle. As can be seen from Figure 16, the protected
target selected for this experiment was a black Volkswagen sedan characterized by a steel shell
with dimensions of 4.95 m in length, 1.84 m in width, and 1.45 m in height, parked beside
a roadway and surrounded by low-lying vegetation with an average height of 1 to 1.8 m.
Under these experimental conditions, the information metasurface jamming system prototype
was installed on the top of the vehicle, designed to effectively reflect SAR echoes. During
the experiment, the digital encoding array was dynamically integrated into the information
metasurface in real-time via FPGA, allowing flexible adaptation to different usage scenarios
and corresponding adjustments to achieve optimal jamming effects. Notably, this information
metasurface jamming system prototype comprises 900 units and operates at a total power of
merely 9.43 watts, indicating its efficiency in generating effective jamming outcomes while
maintaining a low energy consumption level.
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Table 4. Parameters of airborne radar system.

Parameters Value

Wavelength 3.13 cm
Transmission bandwidth 1200 MHz

Sampling rate 1500 MHz
Sub-antenna length 0.3 m

Incidence angle 50◦

Squint angle at aperture center 0◦

Equivalent velocity 180 m/s
PRF 2 KHz

Platform height 3 km
Azimuth and range swath (ground range) 8 km × 5 km

The flight results are presented in Figure 17. A discernible comparison of the target’s
jamming effect in the different operational modes of the jamming system is observed. When
the information metasurface-based jamming system prototype remains deactivated, the
EM scattering characteristics of the critical target vehicle are clearly identifiable in the SAR
image (as shown in Figure 17b), marked by a green square. This feature does not match
the SAR characteristics of the surrounding vegetation, making the target easily identifiable
by intelligent SAR target detection and recognition algorithms. Conversely, when the
information metasurface-based jamming system prototype is activated, the EM scattering
characteristics of the critical target vehicle become blurred in the SAR image (as shown
in Figure 17d), marked by a red square, blending seamlessly with the SAR characteristics
of the surrounding vegetation, effectively reducing the accuracy of intelligent SAR target
detection and recognition algorithms. The similarity between the SAR imaging features of
the protected target and the surrounding vegetation background is 87.2%, thereby achieving
effective EM deception. When the digital encoding array based on the finite Dirac comb
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function method is integrated into the jamming system prototype (with the variation
frequency set at 1250 KHz), it is distinctly observable in the SAR image (as depicted in
Figure 17e) that two false targets of information metasurface, as indicated by amber squares.
If the information metasurface covers the entire body of the vehicle, it becomes clearly
observable that two false targets, resembling the critical target vehicle, emerge. These
differ significantly from the SAR characteristics of the surrounding vegetation, effectively
confusing intelligent SAR target detection and recognition algorithms.
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By employing techniques such as field experiment data collection and large-scale EM
simulations, we are able to acquire CBC for scenes in various terrain environments. By
rapidly adjusting the CBC of the information metasurface within the jamming system, it
can swiftly adapt to electromagnetic camouflage in diverse types of scenarios, thereby
safeguarding critical targets.

5. Discussion

With the assistance of information metasurfaces, the SAR target jamming system
can integrate intelligent information processing algorithms with space-time-coding dig-
ital metasurface units, adeptly modulating the SAR’s reflected echoes. This allows for
effective disruption of intelligent SAR target detection and recognition algorithms, for
instance, through the generation of false targets, signal spoofing, and EM deception. Fur-
thermore, the proposed jamming system fundamentally leverages the target’s inherent
spatio-temporal changeable CBC, unlike other SAR jamming systems that require extensive
a priori system parameters. This approach is effective for any type of airborne/spaceborne
SAR system. From the perspective of SAR signal processing, this spatio-temporal change-
able CBC effectively introduces a modulatable amplitude and phase component into the
echo signals, thereby altering the SAR image of the protected target significantly. It is
noteworthy that through precise adjustments to the dimensions of the metasurface units,
the system demonstrates an exceptional capability for EM scattering modulation across
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a wide frequency range, from the P to the Ka band, covering the operational frequency
spectrum of prevalent spaceborne and airborne SAR systems.

In subsequent research, it is aimed to be expanded upon more intelligent information
processing algorithms, thereby enabling the deployment of a broader array of protective
measures for critical false targets. Exploration of the conformal design of the jamming
system, in conjunction with the EM scattering characteristics of the protected targets, to
generate more realistic decoys will also be conducted. Moreover, an extension of this
concept, based on information metasurfaces, to the infrared and visible spectra, is planned,
aiming to achieve jamming protection against other types of radar systems.

6. Conclusions

In summary, we have introduced a broadband SAR target jamming system utilizing
an information metasurface, controlled via a FPGA, and presented a prototype system as
an illustrative example. Simulation results, based on the SAR-Aircraft-1.0 dataset from
the Gaofen-3 satellite and flight experiment results with an airborne SAR, have elucidated
effective protection measures, including adjustable EM deception and the generation
of multiple false targets. However, certain limitations, such as the emergence of fuzzy
false target images, necessitate further investigation and resolution. Future research will
concentrate on refining the target jamming system, expanding the array of protective
measures against critical targets, and conducting tests in collaboration with more complex
spaceborne SAR systems. Moreover, we plan to extend this concept based on information
metasurfaces to the infrared and visible light spectra, aiming to achieve comprehensive
radar jamming protection.
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