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Abstract: Pixel-level classification of very-high-resolution images is a crucial yet challenging task in
remote sensing. While transformers have demonstrated effectiveness in capturing dependencies, their
tendency to partition images into patches may restrict their applicability to highly detailed remote
sensing images. To extract latent contextual semantic information from high-resolution remote sensing
images, we proposed a gaze–saccade transformer (GSV-Trans) with visual perceptual attention.
GSV-Trans incorporates a visual perceptual attention (VPA) mechanism that dynamically allocates
computational resources based on the semantic complexity of the image. The VPA mechanism
includes both gaze attention and eye movement attention, enabling the model to focus on the most
critical parts of the image and acquire competitive semantic information. Additionally, to capture
contextual semantic information across different levels in the image, we designed an inter-layer short-
term visual memory module with bidirectional affinity propagation to guide attention allocation.
Furthermore, we introduced a dual-branch pseudo-label module (DBPL) that imposes pixel-level
and category-level semantic constraints on both gaze and saccade branches. DBPL encourages the
model to extract domain-invariant features and align semantic information across different domains
in the feature space. Extensive experiments on multiple pixel-level classification benchmarks confirm
the effectiveness and superiority of our method over the state of the art.

Keywords: transformer; semantic segmentation; pseudo-label; high-resolution remote-sensing
images

1. Introduction

With the rapid development of earth observation technology, remote sensing images
are becoming more easily accessible, greatly enriching remote sensing data resources.
At present, remote sensing technology is widely used in fields such as environmental
protection, urban construction, disaster forecasting, and disaster assessment. Driven by
advances in artificial intelligence, semantic information and spatial information in remote
sensing images can be captured through machine learning, which could reduce the reliance
of traditional remote sensing information processing methods on prior knowledge. In
recent years, machine learning models based on convolutional neural networks (CNNs)
have been widely used in the field of semantic segmentation [1,2].

However, CNNs have limitations in their receptive field, as they can only capture local
information. Attempting to obtain global semantic information through stacked convo-
lutional layers and downsampling operations may result in the loss of detailed features.
As illustrated in Figure 1, remote sensing images encompass a significant amount of both
local information and global context information. To reduce the loss of global contextual
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features in the feature extraction process, many scholars have conducted in-depth research
on the optimization of neural network architecture [3,4]. As a traditional neural network
architecture, a deep semantic segmentation network lacks interpretability and reliability.
Li proposed a collaborative boosting framework that combines data-driven deep learning
modules and knowledge-guided ontology reasoning modules to optimize segmentation
performance through the inference channel [5]. However, there are still problems when
it comes to directly inputting remote sensing images into a Fully Convolutional Network
(FCN) because the segmentation results of FCN are not sufficiently refined and lack guid-
ance on prior knowledge. A multi-layer feature structure with a scale-sensing strategy
helps us to distinguish between objects of different sizes for semantic segmentation [6].
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Figure 1. Illustration of the global and local context information. The yellow arrows in the diagram 
represent global context information, the blue arrows represent local context information. 
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Figure 1. Illustration of the global and local context information. The yellow arrows in the diagram
represent global context information, the blue arrows represent local context information.

In recent years, we have observed that transformers based on the self-attention mecha-
nism have stronger global modeling capabilities than convolutional neural networks [7].
Considering the importance of context modeling for segmentation performance, Zheng
replaced the stacked convolutional layer-based encoder with gradually decreasing spatial
resolution with a pure transformer and designed a lightweight and efficient semantic
segmentation model [8]. In existing transformer-based models, tokens are usually size-
invariant, making them unsuitable for visual segmentation tasks. However, the transformer
with a shifted-window attention model (SWIN Transformer) can better adapt to seman-
tic segmentation tasks with different scales. To reduce the loss of spatial information in
the transformer, a stage model with an adaptive fusion module is designed to extract
coarse-grained and fine-grained features at various semantic scales [9]. By embedding the
SWIN Transformer into the classic CNN-based Unet and establishing pixel-level correlation
through the spatial interaction module to enhance the feature representation capability
of blocked objects, the segmentation accuracy can be effectively improved [10]. However,
since the data distribution of remote sensing images from different imaging sensors and
geographical locations is often different, current general deep learning algorithms are not
suitable for semantic segmentation of high-resolution remote sensing images. Semantic seg-
mentation of high-resolution remote sensing images needs to work reliably and accurately
across different sensors and other urban scenarios. However, after traditional deep learning
algorithms have been successfully trained on their source domains, their generalization
capabilities will eventually degrade when applied to new target domains with differences
in data distribution. In response to changes in geographical location and imaging mode,
setting up a dynamic optimization strategy with multiple weak supervision constraints can
effectively reduce the adverse effects of data shift [11].

High-resolution remote sensing images contain rich contextual semantic information,
and it is difficult for transformers to effectively extract contextual long-distance information
in such complex images. Xiao enhances the transformer’s multi-scale representation
by utilizing local features and global representations at different resolutions to achieve
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efficient context modeling [12]. Wei proposed a pyramid transformer encoder with a
foreground-aware module that can supplement long-range dependency information to
achieve accurate semantic segmentation [13]. Song constructed a multi-layer densely
connected transformer with a dual-backbone attention fusion module, which can more
effectively couple local–global context information [14]. Compared with remote sensing
images with low spatial resolution, remote sensing images with high spatial resolution have
richer surface information and texture features. General semantic segmentation algorithms
struggle to deal with complex high-resolution remote sensing images.

In this article, we propose a novel transformer model with dynamic visual perception.
We compare our method with several state-of-the-art methods on two publicly available
datasets to ensure the effectiveness of the proposed method. Additionally, we conduct
cross-domain semantic segmentation experiments and ablation analysis to further ensure
the usability of our proposed method.

Our contributions are as follows:

1. We propose a gaze–saccade transformer with an eye movement attention strategy
(GSV-Trans), which simulates the eye movement model by adding adaptive eye move-
ment attention (AEMA) to the gaze and saccade models for semantic segmentation on
high-resolution remote sensing images.

2. We design an inter-layer short-term visual memory module (ISVM) capable of gener-
ating bidirectional inter-layer affinity for both top-down and bottom-up propagation.
The ISVM module guides the visual perception window in calculating visual attention
by simulating the spatiotemporal memory observed in human dynamic vision.

3. We design a dual-branch pseudo-labeling strategy (DBPL) with pixel-level and
category-level affinity constraints to enhance the model’s capability to extract domain-
invariant features.

Our paper is organized as follows: Section 2 discusses relevant research conducted
in recent years. Section 3 details the overall structure of our proposed method. Section 4
presents and discusses the experimental results. Section 5 analyzes the conclusion and
outlines future research directions.

2. Related Work
2.1. Cross-Domain Semantic Segmentation Algorithm for Remote Sensing Images

In this section, we review recent deep learning-based cross-domain semantic segmen-
tation methods for remote sensing images. The diverse acquisition methods, regions, and
times of the satellite images result in variations in data distribution and style characteris-
tics across different datasets. These variations pose challenges for cross-domain semantic
segmentation tasks in remote sensing images.

Some studies have found that adversarial learning can effectively mitigate inter-
domain differences in the feature extraction process. Bai proposed an ensemble model
that combines contrastive learning and adversarial learning to align the two domains
in terms of the representation space and spatial layout. The experiments showed that
the two branches can benefit one another, achieving excellent cross-domain semantic
segmentation performances for remote sensing images [15]. In research that involved
aligning the category levels of different domains, Huan used an integer-programming
mechanism to model the category-level relationship between the source domain and the
target domain, which can effectively improve the alignment of category features between
different domains [16]. Some scholars have focused on extracting deep semantic features of
high-resolution remote sensing images by capturing long-range contextual information.
Mo proposed a transformer framework with a spatial pyramid pool shuffling module that
can extract key details and information from limited visible pixels of occluded objects by
learning long-range dependencies [17]. Peng used multi-scale context patches to guide
local image patches to focus on different fine-grained objects to extract contextual features
on a large scale [18].
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In recent years, transformers have demonstrated excellent performance in the field of
image semantic segmentation [19]. Compared with convolutional networks, the attention
features extracted by transformers contain more contextual information and will not lose
the detailed features of the samples during the downsampling process. Li proposed an
adaptive contextual transformer model with an adjustable sliding window and designed
a point-line-area pseudo-label filtering mechanism based on clustering and boundary
extraction to filter unreliable pseudo-labels [20]. Ma proposed a new general image fu-
sion framework based on cross-domain distance learning and SWIN Transformer, which
achieves full integration of complementary information and global interaction through
attention-guided cross-domain modules [21]. However, despite the transformer’s superior
feature extraction capabilities compared to convolutional neural networks, further improve-
ment and optimization are needed in the field of cross-domain semantic segmentation of
complex high-resolution remote sensing images.

2.2. Deep Learning Models Based on Eye Vision

In this section, we review computational models based on eye vision and explore
network architectures that simulate human vision. To aid comprehension and differen-
tiation, we refer to the center of the visual field as the fovea and the surrounding areas
as the periphery in this paper. The fovea receives a smaller visual range with a higher
resolution, whereas the peripheral vision receives a blurred larger visual range with a lower
resolution [22]. The process of fixating the visual image of a target stimulus at the fovea
when observing a stationary object is called fixation. Saccade, an eye movement that aligns
the fovea with a visual target of interest, is a bottom-up eye movement guided by vision
rather than volition [23]. Jonnalagadda used the difference in the information received
by the fovea and peripheral vision to build an image classification model for the fovea
transformer, which can dynamically allocate resources to more complex images [24]. Shi
proposed a bi-fovea self-attention inspired by the physiological structure and characteristics
of eagle eye bi-fovea vision with a unified and efficient series of general pyramid backbone
networks [25]. Aiming at the problem of depth degradation in transformers, Dai proposed
a converged attention backbone that simulates biological foveal vision and continuous eye
movements [26].

With the advancement of deep learning and medicine, numerous scholars are investi-
gating the similarities and connections between neural networks and the structure of the
eye. However, current computational models based on eye structure predominantly focus
on the gaze model, overlooking the significance of saccades and micro-eye movements
in vision. During the fixation process, the eyeballs do not remain completely still, but
make small eye movements centered on the fixation point to offset the adaptive fading of
the target stimulus [27]. Inspired by the human eye model, we proposed a gaze–saccade
transformer with an eye movement attention strategy, which used an affinity network as an
inter-layer short-term visual memory module to correct the eye movement attention model.

3. Methodology

In this section, we elaborate on the overall architecture of the proposed GSV-Trans
with a gaze–saccade structure and introduce each component of the GSV-Trans in detail.

In this work, we deal with a labeled source domain dataset S and an unlabeled target
domain dataset T that have the same target category but different shooting times, locations,
and styles. We denote xs ∈ RW×H×C and xt ∈ RW×H×C as images sampled from the
labeled source domain S and the unlabeled target domain T. A part of the samples xt1 in
the target domain participates in model training and the remaining samples xt2 serve as
the test set. More precisely, each input to the model training process is two sets of image
pairs {xs1, xs2} and {xs1, xt1}.

Figure 2 shows the overall workflow of our proposed GSV-Trans. We design a trans-
former structure with gaze–saccade parallel branches as the generator in the adversarial
generative network, which can produce domain-similar features. We use the discriminator



Remote Sens. 2024, 16, 1514 5 of 24

designed by Yan [28] to determine whether the domain-similar features obtained by our
proposed GSV-Trans come from the same data domain, to force the GSV-Trans to generate
domain-similar features that can deceive the discriminator.
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To extract long-distance contextual information from images, we designed two visual
perception modes: gaze attention and eye movement attention. Before calculating attention,
a simple complexity calculation module evaluates the complexity of the input image.
When the input image is complex, the bottom-up attention generated by eye movement
attention guides the attention module to allocate more computing power to areas with
richer semantic information. Conversely, when the input image is simple, the top-down
attention generated by gaze attention facilitates the rapid and stable extraction of features
from the central area of the image.

The attention calculation within each block of the transformer is a relatively indepen-
dent process. We aim to enhance the connectivity between blocks and further improve the
overall visual perception ability of the transformer using visual perception attention. There-
fore, we designed the inter-layer short-term visual memory module to generate the affinity
map for each block. After a transformer block performs visual perception calculations and
generates an affinity map through the inter-level short-term memory module, the visual
perception window of the next block is guided by the affinity map of the upper-layer block,
updating the visual center of attention.

The horizontal propagation of the feature map is considered spatial-level propagation,
while the vertical propagation of the affinity map is considered temporal-level propagation.
We fuse semantic information from different levels—temporal and spatial—respectively to
extract long-distance contextual features. Considering the difference in feature distribution
among samples from different domains, we designed a dual-branch pseudo-label module
with pixel-level and category-level affinity constraints. This enhances the ability of the two
parallel branches to extract similar domain features.
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3.1. Gaze–Saccade Parallel Branches

GSV-Trans consists of two parallel branches: the gaze branch (GB) and the saccade
branch (SB). The Gaze Branch comprises 12 gaze blocks, while the Saccade Branch com-
prises 9 saccade blocks. The structure of the gaze block and saccade block is detailed in
Figure 3. The gaze branch simulates the gaze pattern, where the receptive field of the
human eye remains fixed, while the saccade branch simulates the saccade pattern, where
the visual center of the human eye drifts. During fixation, microsaccadic eye movements
are suppressed to maintain the stability of the eyeballs, while rapid and slight visual drift
serves as a slow control mechanism to correct fixation errors. Therefore, we added visual
perception attention to the gaze branch. After each extraction of the visual center by the
self-attention module of the fixed receptive field, it is passed to the next gaze block through
the inter-layer short-term visual memory module.
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Figure 3. Illustration of the gaze and saccade blocks. The gaze block generates affinity maps using
a self-attention map and an inter-layer short-term visual memory module (ISVM). Similarly, the
saccade block generates affinity maps using adaptive eye movement attention (AEMA) and ISVM.
(a) is the process of attention extraction by two gaze blocks through ISVM. (b) is the process of
attention extraction by two saccade blocks through ISVM.

The extraction of the visual center by the eye movement attention module is guided by
images, representing bottom-up attention guidance that is not controlled by consciousness.
A convolutional network is employed to roughly obtain global context feature maps from
different receptive fields. These two attention computing modules enhance the saccade
branch’s capability to extract global contextual long-range features.

Figure 4 illustrates the specific network structure of the proposed GSV-Trans. The GSV-
Trans is specifically designed for cross-domain semantic segmentation of high-resolution
remote sensing images. Its architecture comprises two main branches: the gaze branch
and the saccade branch, each embodying distinct visual attention mechanisms inspired by
human eye behavior. The gaze branch consists of multiple gaze blocks, each equipped with
self-attention, local perception, and contextual perception modules. This branch mimics
the behavior of fixating on local regions of an image, enabling focused analysis of critical
details. Conversely, the saccade branch comprises several saccade blocks, each featuring
self-attention, global perception, and contextual perception modules. This branch simulates
the panoramic scanning of an image, facilitating the exploration of broader spatial contexts.
A Dual-Branch Pseudo-Label Module is integrated to facilitate information sharing between
the gaze and saccade branches, generating pixel-level and category-level pseudo-labels.
This enhances the model’s generalization capability and cross-domain adaptation. Further-
more, an affinity network is employed to compute inter-layer correlations, aiding in the
propagation and integration of semantic information across different levels of the network.
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Figure 4. Illustration of the semantic segmentation network in GSV-Trans. The visual center propa-
gates horizontally, while the affinity propagates vertically. Effective acquisition of global semantic
information is achieved through the propagation of visual center and affinity maps. The illustrated
network is used to output predicted semantic segmentation results.

3.2. Visual Perception Attention

We designed two types of visual perception attention: gaze attention (GA) and eye
movement attention (EMA). The center of gaze of attention is always the center point of the
image. The gaze center of eye movement attention is the visual center. The visual center is
jointly affected by the affinity of the current block and the previous block. The details of
the extraction of the visual center will be described in Section 3.3.

The foveal area and peripheral vision area of the feature map are divided by the eye
movement guidance module. The feature map received by the visual center is a high-
resolution image, and the peripheral residual light area processes low-resolution features.
After calculating the attention of the foveal area and the peripheral attention, respectively,
the visual fusion module outputs the visual perception attention of the feature map. The
difference between gaze attention and eye movement attention lies in the different methods
of dividing the fovea and peripheral vision. Gaze perception keeps its visual center at the
center of the image. As shown in Figure 5f, the foveal area is fixed as area A, while B1,
B2, C1, and C2 are all peripheral areas. Assume that the input feature map is the treated
receptive field and its area ratio is 1:3. As a top-down attention extraction method, gaze
perception can stably extract features in the center area of the image and reduce the amount
of calculation. In cases in which the semantic information within the image is complex,
we aim to direct the attention module to allocate more computational resources to regions
containing richer semantic content. This approach enables the generation of bottom-up
attention, focusing computational efforts on areas rich in semantic content.
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Figure 5. The division comprises the foveal area and peripheral vision, denoted as LU, RU, LL, and
LR, representing the left upper, right upper, left lower, and lower right areas of the image, respectively.
(a) divides the feature map into four regions: LU, RU, LL, and LR. The foveal area is denoted as area
A, while areas B and C represent the peripheral regions. When the visual center is located in the LU
region, the calculation of EMA is denoted as EMA-LU. The division of the central area and peripheral
regions is shown in (b). When the visual center is in the LL region, EMA calculation is denoted as
EMA-LL, and the division of the central area and peripheral regions is shown in (c). When the visual
center is in the LR region, EMA calculation is denoted as EMA-LU, and the division of the central area
and peripheral regions is shown in (d). When the visual center is in the RU region, EMA calculation
is denoted as EMA-RU, and the division of the central area and peripheral regions is shown in (e).
(f) illustrates the division of central area and peripheral regions for gaze attention. In gaze attention,
the peripheral regions consist of B1, B2, C1, and C2, while the central area is denoted as A.

Figure 5 illustrates the division of the foveal area and peripheral region when the
visual center of the image is situated at different positions. During each patch merge
process, the visual centers corresponding to various levels of semantics vary. This enables
the extraction of multiple visual centers representing diverse semantic information from
the peripheral vision, thereby capturing more long-distance features.

Figure 5b–e depict schematic diagrams illustrating eye movement attention guided by
image semantics. In these diagrams, the foveal area is denoted as area A, while areas B and
C represent the peripheral regions. We assume that the input feature map has an area ratio
of 9:7. Compared to gaze perception, eye movement perception enables the acquisition of
multiple levels of long-distance semantic features and the allocation of more computational
resources to areas rich in semantics. Gaze perception requires fewer computations and is
therefore faster. Consequently, gaze perception is well suited for semantic segmentation
tasks involving lower image complexity, while eye movement perception is better suited
for tasks with higher image complexity.

To address high-resolution remote sensing images with varying complexities, we intro-
duce adaptive eye movement attention (AEMA). As depicted in Figure 6, the determination
of visual perceptual attention is influenced by both the visual center of the affinity map and
the level of image complexity. We perform a simple complexity calculation on the input
image, calculate the standard deviation st and mean m of each layer, and set a complex
coefficient α ∈ [0, 1]. If st ≥ α × m, the image is determined to be a complex image and this
image uses eye movement attention. Otherwise, gaze attention is employed.

The input of TransBlock consists of a pair that combines VPA and Affinity Map. After
the attention calculation guided by visual perception, it outputs a new pair which combines
VPA and Affinity Map. The visual center of the attention module is extracted from the
affinity map, which is represented by the red square in the figure. The input of the visual
perception module is a pair comprising visual center and image complexity, and the output
is the method of calculating VPA. The calculation methods for visual perception attention
include two types: gaze attention (GA) and eye movement attention (EMA). The visual
perception module determines whether attention calculation is based on global attention or
dynamic attention according to different levels of image complexity. GA is well suited for
semantic segmentation tasks involving lower image complexity, while EMA is better suited
for tasks with higher image complexity. For GA, attention calculation is not influenced
by the visual center. Regardless of where the visual center is located in the image, GA’s
calculation method remains as depicted in Figure 5f. For EMA, the different positions of
the visual center in the image determine the various calculation methods of EMA. More
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specifically, depending on the position of the visual center, EMA includes four calculation
methods: EMA-LL, EMA-LR, EMA-LU, and EMA-RU. For example, when the visual center
falls in the upper-left quadrant of the feature map, EMA’s calculation method, as shown
in Figure 5b, involves computing attention separately for regions A, B, and C. This yields
visual center attention and peripheral visual attention, which are then combined to form
EMA-LU attention.
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Figure 6. Illustration of the visual perception attention. The gaze block and saccade block are
collectively referred to as TransBlock. The red square positioned at the center of the affinity map
represents the visual center of the attention map. The affinity map passes the visual center to the
visual perception module and determines whether to calculate GA or EMA visual perception attention
based on image complexity.

3.3. Inter-Layer Short-Term Visual Memory Module

The block diagram of visual perception attention is shown in Figure 7a. Generally,
the attention calculation of the transformer lacks inter-level guidance, resulting in the loss
of certain pieces of semantic information from previous levels. To address this limitation,
we introduce an inter-layer short-term visual memory module aimed at providing affinity
image and visual center guidance for the GSV-Trans. As depicted in Figure 7b, the attention
map produced by multi-head attention is fed into the affinity network to obtain the affinity
map. Considering that the gaze branch pays more attention to global attention while the
eye movement branch focuses on visual perception attention, the affinity map for the gaze
branch is obtained from the attention map of self-attention. Conversely, the eye movement
branch receives the visual perception attention map as input for its affinity calculation.

The affinity propagation method from top to bottom is:

AMlow−1 = ε × [R(AMtop−1)•AMlow−1] + AMlow−1 (1)

The affinity propagation method from bottom to top is:

AMtop = ε × [R(AMlow−1)•AMtop] + AMtop (2)

AMtop is the affinity map of the current block in the upper layer, AMlow−1 is the
affinity map of the upper-level block in the lower layer, and AMtop−1 is the affinity map
of the upper-level block in the upper layer. ε ∈ [0, 1] is a parameter that could adjust the
degree of correction between levels. During the bidirectional affinity propagation process,
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it is necessary for the sizes of two affinity maps to be consistent for the multiplication
operation. R refers to the process of changing the size of the affinity map. Specifically, R rep-
resents the operation of downsampling or upsampling the affinity maps. Downsampling
involves using a 3 × 3 convolution with a stride of 4, while upsampling is accomplished
through bilinear interpolation. The affinity of the upper layer is propagated from top to
bottom to the next layer, while the affinity of the subsequent layer corrects the affinity of
the upper layer from bottom to top. This achieves a two-way spatiotemporal propagation
of affinity.
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(b) is the illustration of the affinity propagation.

The affinity map reflects the significance of different regions within a feature map.
Therefore, we extract the affinity center from the affinity map as the visual center of the
attention module. The visual center is determined as the centroid of the area with the
highest density of pixels sharing the same label. Specifically, we identify the layer with
the highest cumulative sum of positive weights, indicating the prominence of pixels with
identical labels. Subsequently, we compute the pixel center of gravity within this layer.
Negative weights are disregarded, as our work solely emphasizes positive incentives.

3.4. Dual-Branch Pseudo-Label

In cross-domain semantic segmentation tasks, variations in the feature distribution
among samples from different domains can result in inaccurate segmentation outcomes.
To address this challenge, we introduce a dual-branch pseudo-label module that adds
pixel-level and category-level affinity constraints. Figure 8 illustrates the specific structure
of the DBPL module. This module aims to improve the semantic segmentation module’s
capability to generate similar features within the domain.

Within each attention module of both the gaze branch and the saccade branch, gaze
affinity and saccade affinity are obtained through the inter-layer short-term visual memory
module. To obtain pixel-level and category-level affinity constraints, the following process
is used:

Agp =
N

∑
i

[
avg

(
stack

(
Ag1, Ag2, . . . , AgN

)
, axis = 3

)]
(3)

Agc = avg
(
stack

(
Ag1, Ag2, . . . , AgN

)
, axis = 1

)
(4)

Asp =
M

∑
i
[avg(stack(As1, As2, . . . , AsM), axis = 3)] (5)

Asc = avg(stack(As1, As2, . . . , AsN), axis = 1) (6)

Pgs = conv
[
concat

(
Agp × Asc, Asp × Agc

)]
(7)

We denote the pixel-level gaze affinity and category-level gaze affinity as Agp and
Agc. Asp and Asc represent the pixel-level saccade affinity and category-level saccade affin-
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ity. Avg represents the operation of calculating the average of the feature map along the
axis. Stack represents the operation of stacking all affinity maps together. N and M are the
number of blocks of the gaze branch and the saccade branch, respectively. Concat represents
the operation of merging feature maps and conv represents the dimensionality reduction
operation based on convolution. Agp ∈ R1×H×H and Asp ∈ R1×H×H represent the affinity
between each pixel as a single-layer affinity map. Agc ∈ RN×H×H and Asc ∈ RN×H×H rep-
resent the affinity between categories, N is the number of categories. Pgs ∈ RN×H×H is the
pseudo-label of the GSV-Trans segmentation model that imposes bidirectional constraints
on the gaze branch and the saccade branch.
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Figure 8. Illustration of the dual-branch pseudo-label. The solid arrows represent the data flow
transmission path. The dashed arrows represent branch data flow. During the computation process,
the branch data flow passes through each module of both the Gaze Branch and the Saccade Branch
separately. The ellipsis indicates that the branch data flow passes through the affinity map output of
each block.

The input image pairs are {xs1, xs2} and {xs1, xt1}. xs1 and xs2 belongs to the same
domain, xs1 and xt1 belongs to the different domain. In the process of training the model,
only the source domain sample has the label L. P̃gs is the pseudo-label obtained after
semantic segmentation of the source domain image. The target domain image obtains
the pseudo-label {Agc, Asc} through the gaze–saccade parallel branch. The process of the
pseudo-label loss function is as follows:

Lossps = − 1
N

N

∑
n=1

K

∑
k=1

Ln,k ln P̃gs,n,k (8)

Losspt = − 1
N

× ∑
i

Agc[i]× log

(
1

1 + exp
(
−Asc[i]

))+
(
1 − Agc[i]

)
× log

(
exp

(
−Asc[i]

)
1 + exp

(
−Asc[i]

)) (9)

Lossps is the pseudo-label loss of the source domain image; Losspt is the pseudo-label
loss of the target domain image. The loss function consists of the loss function of the
segmenter and the loss function of the discriminator. The loss function of the GSV-Trans is

LF = Lseg + λadv,FLadv,F + λpsLossps + λptLosspt (10)

Lseg = −
K

∑
i=1

N

∑
n=1

Ln
i log p(n|xi ) (11)

where K is the total number of pixels in each image, p(n|xi ) is the probability that the
i-th pixel in x is predicted to be class n, and Ln

i ∈ {0, 1} is the corresponding label as a
binary vector.

Ladv,F = − log(D(xt, xs1)) (12)
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D represents the score by which the discriminator determines a pair of images to be
from the same domain. The loss function of the discriminator is:

LD = − log(D(xs1, xs2))− log(1 − D(xt, xs1)) (13)

The model training process of GSV-Trans is shown in Algorithm 1.

Algorithm 1: Training Process of GSV-Trans

Input: Samples xs with labels L from the source domain, xt from the target domain, the training
iterations N, gaze branch GB(•), saccade branch SB(•), affinity net A(•), and discriminator D.
Output: Prediction mask PS of xs, prediction mask Pt of xt.
For i = 1 to N
Obtain attention map: Ags = GB(xs), Ass = SB(xs),Agt = GB(xt),Ast = SB(xt).
Obtain affinity map: A f s = A(xs), A f t = A(xt).
Update A f s and A f t by Equations (1) and (2).
Obtain pixel-level affinity pseudo-label Ag and category-level affinity pseudo-label As by
Equations (3)–(6).
Obtain pixel label Pgs by Equation (7).
Compute pseudo-label loss by Equations (8) and (9): Lossps

(
Pgs, L

)
, Losspt

(
Ag, As

)
.

Updating GB(•) and SB(•) by minimizing LF = Lseg + λadv,F Ladv,F + λpsLossps + λptLosspt.
Updating D by minimizing LD = − log(D(xs1, xs2))− log(1 − D(xt, xs1))

4. Experiments

In this section, we first introduce the remote sensing image datasets and provide
implementation details. Subsequently, we explore the effectiveness of each module of
GSV-Trans. To further evaluate the performance of GSV-Trans, we conduct comparative
experiments with algorithms that have demonstrated satisfactory results in the field of
cross-domain semantic segmentation in recent years.

4.1. Datasets and Evaluation Metrics

ISPRS Vaihingen challenge dataset is a benchmark dataset of the ISPRS 2D semantic
labeling challenge in Vaihingen, which is a village with many historic buildings, residential
buildings, and small detached houses. It contains 32 three-band IRRG (Infrared, Red, and
Green) VHR RSIs, each with a resolution of 2500 × 2000. Among the images, only 16 have
pixel-level labels, including impervious surfaces, buildings, low vegetation, trees, and cars.
From these labeled images, we randomly chose 10 for the training set, while the remaining
labeled images constituted the testing set. The training images were cropped to a size of
512 × 512 with a 200-pixel overlap in both width and height.

ISPRS Potsdam Challenge Dataset comprises 38 IRR VHR RSIs, each with a resolution
of 6000 × 6000 and a ground sample distance (GSD) of 5 cm. The Potsdam dataset was
obtained from aerial photographs of Potsdam city in Germany using aircraft sensors. It
consists of four bands (Infrared, Red, Green, and Blue), forming two types of images: IRRG
and RGB. Among them, only 24 images have pixel-level labels for impervious surfaces,
buildings, low vegetation, trees, and car classes. We randomly selected 15 images from
the labeled images as the training set and the remaining labeled images as the testing set.
We cropped the images in the training set to a size of 512 × 512 with a width and height
overlap of 200 pixels, respectively. The test images were cropped into patches of the same
size, with no overlap. Moreover, we applied horizontal flipping and vertical flipping to
augment the training set and resize the images with a factor of {0.5, 1.5} to enlarge the
training set.

The evaluating metrics follow the official advice. We adopt the Intersection over Union
(IoU), mIoU, F1 score (F1), and mF1 as the evaluation criteria:

IoU
(

Pm, Pgt
)
=

∣∣Pm ∩ Pgt
∣∣∣∣Pm ∪ Pgt
∣∣ (14)
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mIoU =
1
N

N

∑
i=1

IoUi (15)

where N, Pm and Pgt are the number of categories, the set of predicted pixels, and the set of
ground truth pixels. ∩ and ∪ represent intersection and union operations.

F1 = 2
Pre × Rec
Pre + Rec

, Pre =
tp

tp + f p
, Rec =

tp
tp + f n

(16)

mF1 =
1
N

N

∑
i=1

F1iLadv,F = − log(D(xt, xs1)) (17)

where tp, f p, and f n represent the true positives, false positives, and false negatives,
respectively.

4.2. Comparison Method and Implementation Details

To assess the performance, we conduct a comprehensive comparison between our
proposed GSV-Trans model and several existing models, including TriADA [28], MCD [29],
ResiDualGAN [30], CIA-UDA [16], DAFormer [31], SWIN-Unet [32], and SegVitv2 [33].
MCD is an unsupervised domain adaptation method for aligning source and target dis-
tributions based on task decision boundaries. It optimizes the feature extraction network
through a max–min game to generate more efficient domain-invariant features. TriADA
is a domain adaptation (DA) segmentation model that combines triplet feature sets from
two domains. ResiDualGAN is an adversarial generative network featuring an in-network
resizer module to mitigate differences in sample scale. CIA-UDA is an inter-domain cate-
gory alignment algorithm with style transfer. In recent years, some transformer structures
based on self-attention have been applied to the task of semantic segmentation of images.
DAformer consists of a transformer encoder and a multi-level context-aware feature fusion
decoder. SWIN-Unet is a SWIN transformer with a Unet-like structure and a shift window.
SegViTv2 adopts a novel attention-to-mask decoder module for efficient semantic segmen-
tation. It incorporates a shrunk structure in the encoder, which reduces computational costs
significantly while maintaining competitive performance. Additionally, to further evaluate
the effectiveness of GSV-Trans, we designed a baseline model trained solely on the source
domain. This baseline model serves as a reference to assess the degree of domain shift.

To ensure the fairness of the experiments, the algorithm mentioned above is employed
as the generator component of the generative adversarial network model in cross-domain
semantic segmentation. The proposed GSV-Trans is compared with state-of-the-art seman-
tic segmentation methods on both the ISPRS Vaihingen dataset and the ISPRS Potsdam
Challenge dataset. In the semantic segmentation network, we utilize the SGD optimizer
with a momentum of 0.9 and a weight decay of 0.0001. The initial learning rate is set to
0.00025. For the discriminator, we employ the Adam optimizer with betas of (0.9, 0.99), and
the initial learning rate is set to 0.0001. The range of learning rates was determined through
a series of preliminary experiments, while the remaining parameters followed common
ranges observed in previous works in the field of semantic segmentation. The model was
trained in 100,000 iterations on a GeForce RTX 3090 GPU device. These experiments were
conducted using the PyTorch framework, version 1.7.1.

4.3. Cross-Domain Semantic Segmentation Task from Potsdam-IRRG to Vaihingen

We conducted a series of cross-domain semantic segmentation experiments from
Potsdam to Vaihingen. Before the experiments, we resized the training images in both
the Potsdam and Vaihingen datasets to a size of 512 × 512 pixels, with an overlap of
200 pixels in width and height. The test set images from both datasets were cropped
into small patches of size 512 × 512 pixels without overlap. To augment the training set
of Potsdam, we applied horizontal and vertical flipping as well as image resizing. The
model was trained using 5415 labeled training images from Potsdam and 3232 unlabeled
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training images from Vaihingen. Additionally, 810 test images from Vaihingen were used
for evaluation.

4.3.1. Ablation Study from Potsdam-IRRG to Vaihingen

We conducted ablation experiments using the Vaihingen dataset to verify the effec-
tiveness of each model in our proposed architecture. The results are shown in Table 1. In
ablation experiments, ISVM must be introduced with AEMA because ISVM is obtained
through AEMA.

Table 1. Ablation comparison experiments from Potsdam-IRRG to Vaihingen (%). “GB” and “SB”
indicate the gaze branch and the saccade branch. “ISVM” indicates the inter-layer short-term visual
memory module. “AEMA” indicates the adaptive eye movement attention. “DBPL” indicates the
dual-branch pseudo-label.

GB SB ISVM AEMA DBPL mIoU mF1
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In addition, AEMA cannot be removed to separately analyze the SB structure because
the attention module in SB uses adaptive eye movement attention. The mIoU and mF1 of
GB that only calculate global self-attention after removing AEMA are 49.2% and 62.6%,
respectively, which means that GB has basic semantic segmentation capabilities. After
the AEMA module was inserted into GB, mIoU and mF1 increased by 2.9% and 2.0%,
respectively, which proves that the adaptive eye movement module we proposed can
effectively improve the performance of the transformer structure. The introduction of
ISVM increased mIoU and mF1 by 1.5% and 2.2%, respectively, significantly improving
the semantic segmentation accuracy of the model. Compared with the single-branch
GB structure, the dual-branch model with GB and SB has mIoU and mF1 increased by
4.6% and 4.5%, respectively, which means that the dual-branch structure can significantly
improve the model’s ability to extract domain-invariant features.

After introducing ISVM to the dual-branch structure with the eye movement module,
mIoU, and mF1 increased by 1.1% and 1.2%. The introduction of DBPL further improved
the consistency between the model’s prediction results and the actual labels. The above
ablation experimental results in the Vaihingen dataset demonstrate the effectiveness of
each key step in the GSV-Trans.

4.3.2. Compare with Other Methods from Potsdam-IRRG to Vaihingen

Table 2 shows the cross-domain semantic segmentation results of GSV-Trans and
other methods on Potsdam to Vaihingen. MCD is a typical algorithm that uses the max–
min game to extract domain-invariant features. In the semantic segmentation task of
high-resolution remote sensing images with complex semantic information, the mIoU and
mF1 of MCD are only 41.4% and 58.8%—13.7% and 10.8% lower than the GSV-Trans.
Compared with the generative adversarial networks TriADA and ResiDualGAN, which use
convolutional structures as the basic network model, the mIoU and mF1 of the GSV-Trans
we proposed based on the attention module have been significantly improved, indicating
that the attention module can learn richer features details from complex remote sensing
images. CIA-UDA is an algorithm for inter-domain category alignment with style transfer.
The semantic segmentation performance of CIA-UDA slightly improved compared to
the previous algorithms, but the mIoU and mF1 were still 2.8% and 3.9% lower than the
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GSV-Trans, indicating the effectiveness of our proposed category-level and pixel-level
pseudo-labeling strategies.

Table 2. The segmentation comparison results (%) of the mIoU and mF1 of the cross-domain semantic
segmentation task from Potsdam-IRRG to Vaihingen.

Method
Car Building Tree Low Veg Surface Avg

IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 mIoU mF1

Baseline 7.2 24.5 42.1 51.4 35.6 50.1 23.1 46.1 26.8 33.2 26.9 41.1
MCD 16.7 34.6 56.1 69.6 46.2 68.1 30.3 49.4 57.8 72.3 41.4 58.8

TriADA 26.5 40.3 73.5 80.9 54.0 70.2 38.4 59.1 64.6 77.8 51.4 66.0
ResiDualGAN 28.1 42.8 73.5 80.5 54.2 71.7 40.7 57.2 64.1 76.5 52.1 65.6

CIA-UDA 28.5 44.0 72.9 78.2 53.8 70.8 39.5 58.2 65.8 77.2 52.3 65.7
DAFormer 28.7 44.5 73.1 80.7 54.1 71.2 39.8 58.6 63.5 76.0 51.8 66.2
SWIN-Unet 28.1 43.1 71.0 80.2 53.0 70.0 36.1 57.6 64.2 77.3 50.4 65.6

SegVitv2 28.9 45.3 74.5 83.6 56.2 72..4 37.1 58.0 66.2 78.9 52.6 66.5
GSV-Trans 30.1 47.1 75.1 85.8 57.9 73.4 43.7 60.9 67.5 80.6 55.1 69.6

In addition, to evaluate the context information awareness capability of GSV-Trans
and the effectiveness of the dual-branch structure, we conducted cross-domain semantic
segmentation experiments using DAFormer and SWIN-Unet, which also have transformer
structures. DAFormer inserts a context-aware module in the decoder, while our GSV-Trans
obtains context awareness through visual perception in the encoder. The mIoU and mF1 of
the GSV-Trans are 3.3% and 3.4% higher than those of the DAFormer, respectively, proving
that compared to adding a context-aware module to the decoder, adding context awareness
to the encoder can significantly enhance the learning and expression capabilities of the
model. Compared with SWIN-Unet, which has a Unet-like structure and shift window,
the mIoU and mF1 of our gaze–saccade dual-branch structure have been improved by
4.7% and 4.0%, respectively, proving that the gaze–saccade dual-branch structure can learn
richer semantic information than the Unet-like structure. Compared to SegVitv2, GSV-Trans
achieved an increase of 2.5% and 3.1% in mIoU and mF1 scores, respectively. As shown in
Table 2, the semantic segmentation results of GSV-Trans in each category exceed those of
other algorithms.

In addition, we visualize the cross-domain semantic segmentation results of GSV-Trans
and the aforementioned algorithm from Potsdam to Vaihingen to intuitively demonstrate
the advantages of the GSV-Trans. As shown in Figure 9, we provide visualization results
for the Vaihingen dataset. It is evident from Figure 9 that the GSV-Trans can produce
reasonable predictions in high-resolution cross-domain semantic segmentation tasks.

We conducted further comparative analysis using CIA-UDA and ResiDualGAN, which
outperformed other comparative methods in the semantic segmentation task from Pots-
dam to Vaihingen, to further evaluate the segmentation performance of GSV-Trans. The
experimental visualization results are shown in Figure 10. Compared with other methods,
the experimental results of GSV-Trans are more consistent with the ground truth (GT). In
Figure 10a, GSV-Trans accurately identifies two buildings that are far apart, indicating
its ability to extract the feature consistency of similar pixels in long-distance contexts.
Figure 10b reveals that the boundary demarcation capabilities of CIA-UDA and ResiDual-
GAN are significantly weaker than those of GSV-Trans. Both CIA-UDA and ResiDualGAN
incorrectly identify the tree shadow part belonging to the impervious surface in Figure 10c
as low vegetation, while GSV-Trans accurately distinguishes between low vegetation and
impervious surface. Additionally, GSV-Trans achieves satisfactory results in capturing edge
features (Figure 10d). Moreover, Figure 10e shows that GSV-Trans can accurately identify
scattered small area pixels and extract the boundaries of trees and low vegetation.
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4.4. Cross-Domain Semantic Segmentation Task from Vaihingen to Potsdam-IRRG

We conducted a series of cross-domain semantic segmentation experiments from
Vaihingen to Potsdam. Before the experiments, we cropped the images in the training sets
of Potsdam and Vaihingen to a size of 512 × 512, with an overlap of 200 pixels in width and
height, respectively. The test set images of Potsdam and Vaihingen were cropped into small
patches of 512 × 512 in size without overlap. We applied horizontal and vertical flipping
as well as image resizing to augment Potsdam’s training set. The model was trained using
5415 labeled training images from Potsdam and 3232 unlabeled training images from
Vaihingen, with 810 test images from Vaihingen used for evaluation. Similarly, the model
was trained using 3232 labeled training images from Vaihingen and 5415 unlabeled training
images from Potsdam, with 1296 test images from Potsdam being used for evaluation.

4.4.1. Ablation Study from Vaihingen to Potsdam-IRRG

To further verify the effectiveness of each key step of GSV-trans, we also conducted
ablation experiments on the Potsdam dataset. The source domain and target domain were
Vaihingen and Potsdam, respectively. The results are shown in Table 3. The introduction of
adaptive eye movement attention increased the mIoU and mF1 of the GB model by 2.0% and
1.5%, respectively. This demonstrates that adaptive eye movement attention significantly
improves the ability to extract distant contextual features compared to self-attention. The
deployment of ISVM increased the mIoU and mF1 of GB with AEMA by 2.1% and 1.1%,
respectively. This proves that the short-term memory model with affinity guidance can
effectively improve the segmentation accuracy of the model. Compared with the single-
branch structure with only GB, the mIoU and mF1 of the GB and SB dual-branch models
increased by 7.3% and 3.0%, respectively. This indicates that the dual-branch structure can
effectively improve the model’s ability to obtain global contextual features and different
levels of semantic information.

Table 3. Ablation comparison experiments from Vaihingen to Potsdam-IRRG (%). “GB” and “SB”
indicate the gaze branch and the saccade branch. “ISVM” indicates the inter-layer short-term visual
memory module. “AEMA” indicates the adaptive eye movement attention. “DBPL” indicates the
dual-branch pseudo-label.
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Additionally, we observe that the introduction of DBPL helps align domain-similar
features from the category and pixel levels, resulting in an improvement of mIoU and mF1
of the dual-branch structure by 1.1% and 1.2%, respectively. To verify the importance of
bidirectional affinity propagation for visual perception, we inserted the ISVM module
into the dual-branch model, resulting in increases in mIoU and mF1 of 1.3% and 1.8%,
respectively. The ablation experimental results of the ISVM module and the DBPL module
demonstrate that the short-term visual memory model with affinity guidance and the
dual-branch pseudo-labeling strategy significantly improve the segmentation performance
of the model.

4.4.2. Compare with Other Methods from Vaihingen to Potsdam-IRRG

Table 4 presents the cross-domain semantic segmentation results of GSV-Trans and
other methods on the Vaihingen to Potsdam task. The experimental results of the baseline
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show that trees and low vegetation in the Potsdam dataset exhibit significant differences
between domains and pose challenges for accurate segmentation in cross-domain tasks.
Compared with the baseline, GSV-Trans achieved significant increases in IoU for trees and
low vegetation of 31.6% and 30.5%, respectively. Additionally, the F1 scores on trees and
low vegetation increased by 24.3% and 29.0%, respectively. These results indicate that
GSV-Trans is capable of producing accurate cross-domain semantic segmentation results,
even in scenarios with large differences in feature distribution between domains. The mIoU
and mF1 scores of MCD are 21.1% and 20.4% lower than those of GSV-Trans, respectively.
This reflects the limitations of the generalized inter-domain category alignment method
in the semantic segmentation task of high-resolution remote sensing images. Compared
to SegVitv2, GSV-Trans achieved increases of 1.8% and 1.5% in mIoU and mF1 scores,
respectively. This indicates that SegViTv2, which is suitable for typical scenes, performs
less effectively in cross-domain semantic segmentation of high-resolution remote sensing
images compared to our proposed GSV-Trans.

Table 4. The segmentation comparison results (%) of the mIoU and mF1 of the cross-domain semantic
segmentation task from Vaihingen to Potsdam-IRRG.

Method
Car Building Tree Low Veg Surface Avg

IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 mIoU mF1

Baseline 40.1 52.5 44.3 53.1 20.9 44.6 29.5 46.2 40.8 60.2 35.1 51.3
MCD 41.4 55.1 42.8 50.3 35.6 56.2 43.7 58.2 53.7 66.7 43.4 57.7

TriADA 59.9 69.1 71.5 81.2 48.6 66.8 57.9 72.1 68.3 81.9 61.2 74.2
ResiDualGAN 58.7 68.5 72.9 82.9 46.9 65.1 53.2 67.9 61.7 77.1 58.7 72.3

CIA-UDA 57.5 67.6 71.3 82.8 47.6 66.2 55.3 68.0 65.1 78.5 59.4 72.6
DAFormer 58.6 69.9 71.2 82.5 47.4 66.3 56.6 69.9 67.1 81.7 60.2 74.1
SWIN-Unet 57.1 70.6 70.6 81.3 46.0 64.8 53.6 67.8 63.2 78.1 58.1 72.5

SegVitv2 60.1 75.1 73.9 84.6 50.1 67.2 58.9 73.8 70.5 82.4 62.7 76.6
GSV-Tran 62.2 76.7 75.2 85.8 52.5 68.9 60.0 75.0 72.6 84.1 64.5 78.1

As shown in Table 4, the semantic segmentation results of GSV-Trans outperform
those of other algorithms in each category. The experimental results demonstrate that
our proposed GSV-Trans can effectively explore rich contextual long-range information in
high-resolution remote sensing images, surpassing several other algorithms in extracting
domain similarity features with smaller differences between domains.

Figure 11 presents the visualization results of the above model on the Vaihingen
dataset. Compared with several other algorithms, GSV-Trans generates more accurate
pixel-level category predictions. To further evaluate the segmentation performance of
GSV-Trans, we conducted a comparative analysis using TriADA and DAFormer, which
outperformed other methods in the semantic segmentation task from Vaihingen to Potsdam.
The experimental visualization results are shown in Figure 12.

In Figure 12a, the occlusion of the car by trees causes TriADA and DAFormer to incor-
rectly identify the car as low vegetation. However, GSV-Trans successfully identifies the
car blocked by trees, demonstrating its ability to effectively identify incomplete objects that
are occluded. Figure 12b,c illustrate that GSV-Trans accurately captures pixel boundaries
of different categories, indicating its excellent edge feature capture capabilities. Finally,
Figure 12d,e show GSV-Trans has outstanding recognition ability for small pixel areas in
complex images.

Table 5 presents the segmentation comparison results for the cross-domain semantic
segmentation task between the Vaihingen and Potsdam datasets, considering different
combinations of source and target domains. The model achieves an IoU of 65.2% and
an F1 score of 79.6% when the Vaihingen dataset is used as the source domain and the
Potsdam-RGB dataset as the target domain. These results indicate effective semantic
segmentation, with a relatively high intersection over union and F1 score, showcasing the
model’s ability to generalize well to the target domain. Conversely, when the Potsdam-RGB
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dataset serves as the source domain and the Vaihingen dataset serves as the target domain,
the performance slightly decreases, yielding an IoU of 56.8% and an F1 score of 70.2%.
Despite the decrease compared to the previous scenario, the model still demonstrates
reasonable segmentation results, although not as high as when Vaihingen serves as the
source domain. When using the Potsdam-IRRG dataset as the source domain and the
Vaihingen dataset as the target domain, the model achieves an IoU of 55.1% and an F1
score of 69.6%. These scores are slightly lower than those obtained in the previous scenario,
indicating a comparable performance between Potsdam-RGB and Potsdam-IRRG when
transferred to the Vaihingen dataset. The model demonstrates consistent performance
when transferring from Vaihingen to Potsdam-IRRG, with an IoU of 64.5% and an F1 score
of 78.1%. These results suggest that the model generalizes well across different domains,
maintaining effective semantic segmentation capabilities even when the target domain
involves different spectral bands.
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Table 5. The segmentation comparison results (%) of the mIoU and mF1 of the cross-domain semantic
segmentation task.

Source Domain Target Domain
Avg

IoU F1

Vaihingen Potsdam-RGB 65.2 79.6
Potsdam-RGB Vaihingen 56.8 70.2
Potsdam-IRRG Vaihingen 55.1 69.6

Vaihingen Potsdam-IRRG 64.5 78.1
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4.5. Affinity Map

In the inter-layer short-term visual memory module, we utilize the affinity network
to extract the affinity map from the attention map generated by multi-head attention. The
affinity map indicates the attention head’s level of interest in the semantic information
across different areas. We utilize the affinity center as the visual center and establish affinity
constraints at both the pixel level and category level, respectively.

To further evaluate the capability of our proposed inter-layer short-term visual mem-
ory module in extracting key pixels for image classification and localization, we present
visualization results of the affinity map in Figure 13. Figure 13a–c display the visualiza-
tion results of the affinity graph generated by GSV-Trans in the cross-domain semantic
segmentation experiment from Vaihingen to Potsdam. Figure 13a demonstrates that the
designed affinity network accurately locates and identifies small targets such as cars. The
visualization result in Figure 13b illustrates that the affinity network accurately distin-
guishes between semantic information related to trees and low vegetation by capturing the
semantic features of trees. Figure 13c demonstrates that the affinity map accurately captures
activation coverage of the target area and generates an effective object localization mapping.
Figure 13d presents the visualization result of the affinity graph generated by GSV-Trans
in the cross-domain semantic segmentation experiment from Vaihingen to Potsdam. The
visualization result in Figure 13d illustrates that the designed affinity network accurately
identifies and locates scattered small target areas. Additionally, the visualization results
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of the affinity map demonstrate that the inter-layer short-term visual memory module
effectively extracts semantic information that aids in segmentation and localization.
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Figure 14. Confusion matrix of GSV-Trans: (a) represents the Confusion matrix from Vaihingen to 

Potsdam-IRRG, while (b) represents the Confusion matrix from Potsdam-IRRG to Vaihingen. 

5. Conclusions 

In this paper, we proposed a novel transformer model with dynamic visual percep-

tion. The main framework of the model consists of a dual-branch architecture comprising 

a gaze branch and a saccade branch. The gaze branch simulates the fixed receptive field 
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Figure 13. Affinity Map of GSV-Trans. (a–c) depict visualizations of the affinity map from Vaihingen
to Potsdam. (d) illustrates the visualization of the affinity map from Potsdam to Vaihingen. The red
color indicates a high value, while the blue color indicates a low value.

4.6. Confusion Matrix

In addition, to further analyze the segmentation of samples between classes in different
domains, we present the confusion matrix of GSV-Trans in Figure 14. Figure 14a,b depict
the confusion matrices obtained by cross-domain semantic segmentation of GSV-Trans on
Potsdam to Vaihingen and Vaihingen to Potsdam, respectively. Figure 14a demonstrates the
excellent high-precision segmentation performance of GSV-Trans on buildings, trees, and
surfaces in the Vaihingen dataset. Figure 14b illustrates that GSV-Trans achieves extremely
high accuracy in cars, buildings, low vegetation, and surfaces in the Potsdam dataset. The
results of the confusion matrix demonstrate that GSV-Trans effectively learns features that
amplify inter-class differences while reducing inter-domain differences.

Remote Sens. 2024, 16, x FOR PEER REVIEW 22 of 25 
 

 

BuildingCar Tree Low Veg SurfaceInput Image

(a)

(b)

(c)

(d)

 
Figure 13. Affinity Map of GSV-Trans. (a–c) depict visualizations of the affinity map from Vaihingen 
to Potsdam. (d) illustrates the visualization of the affinity map from Potsdam to Vaihingen. The red 
color indicates a high value, while the blue color indicates a low value. 

4.6. Confusion Matrix 
In addition, to further analyze the segmentation of samples between classes in differ-

ent domains, we present the confusion matrix of GSV-Trans in Figure 14. Figure 14a,b 
depict the confusion matrices obtained by cross-domain semantic segmentation of GSV-
Trans on Potsdam to Vaihingen and Vaihingen to Potsdam, respectively. Figure 14a 
demonstrates the excellent high-precision segmentation performance of GSV-Trans on 
buildings, trees, and surfaces in the Vaihingen dataset. Figure 14b illustrates that GSV-
Trans achieves extremely high accuracy in cars, buildings, low vegetation, and surfaces in 
the Potsdam dataset. The results of the confusion matrix demonstrate that GSV-Trans ef-
fectively learns features that amplify inter-class differences while reducing inter-domain 
differences. 

0.002 0.860

0.001 0.013

0.010 0.051

0.825 0.128

0.001 0.066 0.295 0.567

0.015 0.056 0.087

0.077

0.029

0.072

0.8020.040

0.373 0.093 0.143 0.158 0.233

0.00

1.00

0.20

0.40

0.60

0.80

0.001 0.824

0.004 0.009

0.007 0.099

0.666 0.309

0.001 0.022 0.128 0.804

0.004 0.066 0.085

0.069

0.033

0.046

0.8320.012

0.706 0.082 0.042 0.038 0.131

0.00

1.00

0.20

0.40

0.60

0.80

Car

Building

Tree

Low Veg

Surface

Car Building Tree Low veg Surface

Car

Building

Tree

Low Veg

Surface

Car Building Tree Low veg Surface
Predicted Label

Tr
ue

 L
ab

el

(a) Potsdam to Vaihingen (b)Vaihingen to Potsdam 

Tr
ue

 L
ab

el

Predicted Label

 
Figure 14. Confusion matrix of GSV-Trans: (a) represents the Confusion matrix from Vaihingen to 
Potsdam-IRRG, while (b) represents the Confusion matrix from Potsdam-IRRG to Vaihingen. 

5. Conclusions 
In this paper, we proposed a novel transformer model with dynamic visual percep-

tion. The main framework of the model consists of a dual-branch architecture comprising 
a gaze branch and a saccade branch. The gaze branch simulates the fixed receptive field 
pattern of the human eye, while the saccade branch simulates the drifting of the human 

Figure 14. Confusion matrix of GSV-Trans: (a) represents the Confusion matrix from Vaihingen to
Potsdam-IRRG, while (b) represents the Confusion matrix from Potsdam-IRRG to Vaihingen.

5. Conclusions

In this paper, we proposed a novel transformer model with dynamic visual perception.
The main framework of the model consists of a dual-branch architecture comprising a gaze
branch and a saccade branch. The gaze branch simulates the fixed receptive field pattern of
the human eye, while the saccade branch simulates the drifting of the human visual center
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during saccades. By introducing adaptive visual perception attention modules in both
the gaze branch and saccade branch, our method effectively captures global contextual
semantic information from images. The inter-layer short-term visual memory module
integrates rich semantic information from both the temporal level and the spatial level,
providing visual center guidance for the adaptive visual perception attention module. To
obtain domain-invariant features that amplify inter-class differences while minimizing
inter-domain differences, we designed a dual-branch pseudo-label module. This module
possesses pixel-level and category-level affinity constraints to enhance the ability of two
parallel branches to extract domain-similar features.

The cross-domain semantic segmentation experiments conducted on the Vaihingen
and Potsdam datasets confirmed the effectiveness of the proposed GSV-Trans. Our pro-
posed method has shown promising results in cross-domain semantic segmentation tasks
on remote sensing datasets, but still has limitations. Firstly, the performance of our method
may vary depending on the specific characteristics of the datasets, such as the complexity
of the scenes, the quality of annotations, and variations in lighting and weather condi-
tions. Secondly, although we have achieved competitive performance compared to existing
methods, there is still room for improvement in terms of computational efficiency and
generalization capability, especially when dealing with larger-scale datasets or more di-
verse domain shifts. For future work, we aim to address these limitations and further
advance the field of cross-domain semantic segmentation. One direction is to explore more
sophisticated attention mechanisms or architectural modifications to enhance the model’s
ability to capture fine-grained semantic information and adapt to different domain shifts
more effectively. Additionally, investigating semi-supervised or unsupervised learning
approaches could alleviate the dependency on fully annotated datasets and facilitate model
training in scenarios where labeled data are scarce or costly to obtain. Furthermore, extend-
ing our research to include experiments on datasets from various geographic regions and
environmental conditions would provide a more comprehensive evaluation of the proposed
method’s robustness and generalization capability. Overall, by addressing these challenges
and exploring new research avenues, we aim to develop more robust, efficient, and versatile
solutions for cross-domain semantic segmentation in remote sensing applications.
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