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Abstract: Hyperspectral image classification (HSIC) has garnered increasing attention among re-
searchers. While classical networks like convolution neural networks (CNNs) have achieved satis-
factory results with the advent of deep learning, they are confined to processing local information.
Vision transformers, despite being effective at establishing long-distance dependencies, face chal-
lenges in extracting high-representation features for high-dimensional images. In this paper, we
present the multiscale efficient attention with enhanced feature transformer (MEA-EFFormer), which
is designed for the efficient extraction of spectral–spatial features, leading to effective classification.
MEA-EFFormer employs a multiscale efficient attention feature extraction module to initially extract
3D convolution features and applies effective channel attention to refine spectral information. Fol-
lowing this, 2D convolution features are extracted and integrated with local binary pattern (LBP)
spatial information to augment their representation. Then, the processed features are fed into a
spectral–spatial enhancement attention (SSEA) module that facilitates interactive enhancement of
spectral–spatial information across the three dimensions. Finally, these features undergo classification
through a transformer encoder. We evaluate MEA-EFFormer against several state-of-the-art methods
on three datasets and demonstrate its outstanding HSIC performance.

Keywords: hyperspectral image (HSI) classification; multi-feature; channel attention mechanisms;
transformer

1. Introduction

Hyperspectral images (HSIs) are widely used in remote sensing (RS) due to their abun-
dance of spatial and spectral information [1]. Compared with natural images, HSIs consist
of numerous dense and narrow spectral bands [2], allowing for precise identification of land
categories [3–6]. Consequently, HSIs have distinct advantages in various fields based on
these characteristics, including ground material identification [7], precision agriculture [8,9]
and scene understanding [10]. Among these applications, HSI classification emerges as a
critical task.

In recent years, various HSI classification methods have been suggested, including
support vector machine (SVM) [11,12], k-nearest neighbors (KNN) [13,14] and random
forest (RF) [15]. These algorithms have achieved remarkable results by utilizing spectral
information effectively. While SVM performs well in high-dimensional problems, it needs
to select some indispensable parameters [16]. In [17], linear discriminant analysis (LDA)
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was used for HSI classification. However, these classification methods still have much
room for improvement due to their lack of spatial characteristics. Therefore, the extended
morphological attribute profile (EMAP) took texture and morphological features into
consideration [18]. Subsequently, there were also methods to capture texture and edge
features in images based on Gabor filters [19,20]. Nevertheless, these methods fail to
consider the correlation between spatial and spectral information. Thus, in [21–23], spectral
and spatial information were jointly extracted for HSI classification. Nevertheless, these
traditional methods extract shallow texture features and fail to reflect deep connections
between spectral–spatial features. In this thesis, we develop a lower branch beyond the
spectral–spatial features of the HSI itself to perform the processing of the local binary
pattern (LBP) features under the first component band. LBP is an efficient approach for
describing the local texture of an image and generates a binary encoding by comparing
the differences in gray values between a pixel and its neighboring pixels. This operation
can enhance the representation of spatial information by modeling spatial structures such
as edges and corner points in the image. The upper and lower branches combine spectral
and spatial information in order to more comprehensively and accurately describe the
properties of HSI.

Compared with traditional machine learning classification technology, deep learning
(DL) [24] has the characteristics of automatic learning and strong classification ability and is
widely used in HSIC. It is important to note that the CNN model [25,26] stands as the most
prevalent choice because of its proficiency in extracting features efficiently, its adaptability
in handling high-dimensional data processing, its retention of spatial information, and its
capability in managing large-scale data processing. Yang et al. [27] introduced four novel
deep learning models, encompassing both two-dimensional CNN and three-dimensional
CNN. Their research revealed that, while the 2D-CNN model excelled at exploiting spatial
characteristics, it lacked consideration of spectral correlations. On the other hand, 3D-CNN
models, despite having a higher number of network parameters compared to 2D models, ef-
fectively utilize spectral information alongside spatial features. To leverage both spatial and
spectral information, Roy et al. [28] developed a hybrid spectral CNN (HybridSN) that inte-
grates a spectral–spatial 3D-CNN with a spatial 2D-CNN. Unlike models solely reliant on
3D-CNNs, HybridSN incorporates elements of 2D-CNNs to extract a more abstract spatial
representation, consequently streamlining the model’s complexity. Zhu et al. [29] devised
the deformable HSI classification network (DHCNet): a CNN-based method tailored for
hyperspectral image classification. DHCNet integrates deformable convolutional sampling
locations that dynamically conform in size and shape to accommodate the intricate spatial
characteristics found in HSIs. This adaptive feature enables enhanced extraction of spatial
features, leveraging complex structural information more efficiently. Jia et al. [30] proposed
a lightweight convolutional neural network (LWCNN) for HSIC and designed a two-scale
convolutional (DSC) module to process joint spatial–spectral information features [31].
By merging operations, the parameter sizes are greatly reduced. It has the advantage
of efficiency and robustness when solving small-sample-set problems. Gong et al. [32]
developed a multiscale convolutional and diversified metric CNN (DPP-DML-MS-CNN).
Diversifying depth measurements rooted in multiscale features and determinantal point
processes (DPPs) [33] has enhanced the characterization and classification abilities of HSI.
However, general CNN for HSIC tends to focus overly on local information, and it is
difficult to comprehensively capture the trends of spectral band curves. We thus use a
hybrid 3D- and 2D-CNN as a feature extractor to refine representative local features and
combine it deeply with a transformer, which is excellent at global modeling, to adequately
understand the global spectral trend features.

Although a deep neural network provides an invaluable contribution to HSI classifi-
cation, HSIs have a high data dimension and a large number of spectral channels, which
greatly increases the number of parameters of the CNN model, requires more computing
resources and is prone to overfitting problems. Recurrent neural networks (RNNs) [34,35]
can utilize each band in the spectrum by applying the cyclic operator layer by layer, thus
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obtaining fewer training parameters than convolutional neural networks (CNNs) and
making the training and reasoning phases more efficient. By generating GANs [36–38],
the discriminator training process continues to be effective through network confrontation
and competition, which can alleviate the overfitting phenomenon in the training process.
ResNet [39–41] mitigates the problem of disappearing gradients and avoids the loss of
accuracy as the network deepens. In addition to the above methods, there are many classic
deep learning methods such as autoencoders (AEs) [42,43], deep confidence networks
(DBNs) [44,45], complete convolutional networks (FCNs) [46,47] and capsule networks
(CapsNets) [48,49].

Transformers have significant advantages when processing sequential data and can
establish global relationships, but they still encounter many challenges, such as limited
spatial feature extraction capabilities or high computational costs [50]. A transformer is a
neural network architecture based on a self-attention mechanism. Its emergence abandons
the traditional RNN or CNN and allows the model to be trained in parallel and to have
global information. The key feature of the transformer model is that it relies on multi-head
self-attention mechanism (MHSAs) to capture dependencies between different elements
in the input sequence, regardless of their position or distance in the sequence. With their
powerful parallel computing capabilities, good scalability, ability to handle long-distance
dependencies and advantages in processing long sequence data, transformers have broad
application prospects in various fields and are still being continuously improved and
expanded. Hong et al. [51] used transformers in HSI classification tasks for the first time.
Later, Sun et al. [52] developed a spectral–spatial feature tokenization transformer (SSFTT)
model to capture spectral–spatial features and high-level semantic features. Tu et al. [53]
introduced an architecture named the local semantic feature aggregation transformer
(LSFAT), which employs local semantic feature aggregation. This design enhances the
capability of transformers to effectively capture long-term dependencies within multiscale
features. Qiao et al. [54] recently developed a new type of hierarchical dual-frequency
transformer network (DFTN) in which a frequency domain feature extraction (FDFE) block
was proposed to capture high-frequency and low-frequency features separately, allowing
the network to effectively utilize the input data. The multi-layer feature information in the
system improves the modeling ability for complex relationships. Wang et al. [55] proposed
a novel extended spectral spatial attention network (ESSAN) for HSI data classification
when training samples are insufficient. For the whole network structure of a transformer,
the information data for its global modeling all come from the token data generated by
local patch transformation. In addition, some transformer networks based on the mask
technique can effectively improve the classification performance in scenarios with insuffi-
cient samples [56,57]; such a technical improvement is also eye-catching. Our proposed
SSEA module achieves further enhancement of the spectral–spatial features by computing
the attention in three dimensions and also skillfully incorporates the LBP information. This
operation achieves high-performance feature refinement for the subsequently generated
token and also eliminates redundant information to a certain extent, providing accurate and
representative global modeling information for the MHSA operation in the transformer.

In this paper, a novel multiscale efficient attention with enhanced feature transformer
is presented for HSI classification. It mainly includes a multiscale efficient attention feature
extraction module, a spectral–spatial enhancement attention module and a transformer
encoder. The ingenious feature extraction method adequately exploits the abundant spatial
and spectral information in HSI. The SSEA module enhances the interaction of spectral infor-
mation with spatial features and LBP features from multiple perspectives. The transformer
encoder fully integrates the key features through multi-head self-attention to optimize the
feature representation. The main contributions of this paper are listed as follows:

(1) MEA-EFFormer is a multiscale efficient attentional feature extraction module that
incorporates an efficient channel attention mechanism with multiscale convolution. It
facilitates the mining of details in spectral–spatial information and solves the problem
of fine-grained feature loss during single-scale sampling.
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(2) MEA-EFFormer uses an SSEA module. Based on three directions, C-H, C-W and H-W,
it captures the dependencies between spectral–spatial LBP information, refines the
scale of the features and improves the perception of the attention mechanisms.

(3) The classification performance of MEA-EFFormer outperforms several classical and
SOTA methods. Experiments on all three well-known datasets show that the proposed
method has excellent classification performance.

2. Materials and Methods

Figure 1 depicts the overarching structure of the HSIC task incorporating the inno-
vative MEA-EFFormer. This architecture is built upon three core components: a spectral–
spatial multiscale efficient attention feature extraction module, a spectral–spatial enhance-
ment attention module, and a transformer encoder module.
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Figure 1. The architecture of the proposed MEA-EFFormer network. The network can be divided
into three stages: data preprocessing, feature extraction and processing, and the transformer encoder.
The data preprocessing stage includes principal component analysis (PCA) to extract the main bands
from the raw HSI and local binary pattern (LBP) extraction. The feature extraction and processing
stage is mainly a multiscale efficient attention feature extraction module and a spectral–spatial
enhancement attention module. Finally, the obtained refined features are fed into the transformer
encoder for classification operations.

2.1. Spectral–Spatial Multi-Feature Convolution Extraction
2.1.1. Multiscale Efficient Attention Feature Extraction Module

Original HSI data contain abundant spatial–spectral features that are manifested
through specific spectrum reflectances and spatial morphologies. Preserving the rela-
tionship between spatial and spectral information is crucial for accurately distinguishing
various land cover in classification tasks. Therefore, we employ a multiscale 3D-CNN
that enables simultaneous extraction from multiple perspectives. The 3D-CNN utilizes
three-dimensional kernels to perform convolution operations on the HSI along the spectral
domain. However, sampling at a single scale may lead to the loss of fine-grained features.
To address this issue, we utilize three distinct types of convolution kernels, each character-
ized by a unique scale size, to enable specialized extraction of relevant features. To prevent
redundancy in high-dimensional data and mitigate the risk of overfitting, we conduct
principal component analysis (PCA) dimensionality reduction on the raw HSI I ∈ Rm×n×l

to I ∈ Rm×n×b prior to 3D convolution operations, where m × n represents the spatial size,
l represents the number of bands in the original hyperspectral data, and b is the number
of bands after PCA. This step aims to retain the most significant bands in order to opti-
mize the model’s performance and ensure the extracted features are more representative.
Subsequently, we partition the HSI data into numerous 3D cubes P ∈ Rs×s×b to facilitate
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convolution operations. The multiscale propagation operation for the jth feature cube at
the (x, y, z) position on the ith layer is expressed as:

α
xyz
ij = θ

(
∑
m

HLi−1

∑
h=0

WLi−1

∑
w=0

RLi−1

∑
r=0

whwr
ijm α

(x+h)(y+w)(z+r)
(i−1)m + bij

)
β

xyz
ij = θ

(
∑m ∑HMi−1

h=0 ∑WMi−1
w=0 ∑RMi−1

r=0 whwr
ijm β

(x+h)(y+w)(z+r)
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)
δ

xyz
ij = θ

(
∑m ∑HSi−1

h=0 ∑WSi−1
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r=0 whwr
ijm δ

(x+h)(y+w)(z+r)
(i−1)m + bij

) (1)

Here, m denotes the feature cube associated with the jth feature cube. The three
types of convolution kernel sizes are represented by HL × WL × RL, HM × WM × RM
and HS × WS × RS. The variables w and b correspond to the weight and bias parameters,
respectively, while θ represents the activation function. The functions α

xyz
ij , β

xyz
ij and δ

xyz
ij

are the extracted features at different scales. To mitigate the sensitive volatility of the
spectral information due to scale changes, we input them into efficient channel attention
(ECA) separately to realize the alignment fusion of the feature maps at different scales.
The process of ECA is illustrated in Figure 2.
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Figure 2. Illustration of ECA. It uses global average pooling and a one-dimensional convolution
operation with an adaptive convolution kernel to compute the weights under each band, followed by
an activation function to implement the mapping of the attention weights.

Efficient channel attention is a mechanism for enhanced modeling of neural networks
by focusing on the importance of different channels within the feature map. It utilizes
lightweight and highly efficient computation to break through the cost limitations of
complex band computation for HSI data. For the spectral–spatial data α

xyz
ij output from

one scale branch, we use the global average pool (GAP) to compress it into a feature map
with a spatial dimension of 1 × 1. Subsequently, the one-dimensional convolution of the
adaptive convolution kernel is utilized to compute the weights under each band, and finally,
a Sigmoid function is introduced to map the weights between 0 and 1. These weights
are then utilized to modulate the original feature map, highlighting information-rich
bands while suppressing relatively irrelevant bands. The size of the adaptive convolution
kernel is generically related to the number of spectral bands under the branch of the scale,
as expressed by the formula:

k =

∣∣∣∣ log2(C)
γ

+
b
γ

∣∣∣∣ (2)

where C is the number of spectral bands characterized, and b and r are set to 1 and 2, respec-
tively. The advantage of this module is that global dependencies between spectral bands
are captured using a small computational cost, and the whole process can be represented
as follows:

out = Sig(Conv(GAP(F), CF)× F), F = α
xyz
ij , β

xyz
ij , δ

xyz
ij (3)
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After performing ECA computation on the three scale branches, we cascade fuse
them with 1 × 1 × 1 unit convolution and extract 2DCNN features uniformly. This is done
as follows:

vxyz
ij = cat(αxyz

ij , β
xyz
ij , δ

xyz
ij )⊗ Filter1×1×1 (4)

vxy
ij = θ

(
∑
m

Hi−1

∑
h=0

Wi−1

∑
w=0

whw
ijmv(x+h)(y+w)

(i−1)m + bij

)
(5)

Here, m represents the feature map associated with the jth feature, while H × W denotes
the dimensions of the 2D convolution kernel. The parameters w and b correspond to the
weights and biases, respectively, and θ represents the activation function. The HSI features
at this time have extensive detailed information and high expressive capability. To further
enhance the surface texture information and capture the spatial fine-grained features, we
next extract the LBP features from the original HSI image.

2.1.2. LBP Convolution Feature Processing

The local binary pattern (LBP) is an operator used to characterize local features of
an image and has significant advantages such as grayscale invariance and rotational
invariance. The LBP feature provides a description of the texture characteristics of the HSI
surface, which utilizes spatially localized pixel grayscale differences to highlight landscape
detail information. Each pixel in the image is compared as a center pixel with its domain
pixel’s gray value, and binary bits are set for the domain pixel depending on the result.
Subsequently, this is converted to decimal to get the LBP code. The specific computational
operations are as follows:

LBPP,R =
P−1

∑
p=0

2p · Slbp(xp, yp)

Slbp(x) =

{
1, if I(x, y) ≥ Ic

0, if I(x, y) < Ic

(6)

where Slbp is the binary bit of the neighboring pixel, I(x, y) is the grayscale value of the
neighboring pixel, and Ic is the grayscale value of the center pixel. P is the number of pixels
in the neighborhood, R is the radius of the neighborhood, and (xp, yp) are the coordinates
of the pixels in the neighborhood. In the following, we perform a 2D convolution operation
on the LBP spatial features to obtain a feature map with the same dimensions as the spectral–
spatial convolution in the previous section. The operation here is the same as Equation (5).

2.2. Spectral–Spatial Enhancement Attention Module

After extracting the LBP convolution features, we superimpose them onto the spectral–
spatial branching features from the spectral dimension, i.e., M ∈ Rb+1×h×w, with h and
w being the convolution feature map dimensions. Subsequently, the LBP convolution
and spectral–spatial convolution were merged through a 2D convolution unit employing
a 1 × 1 kernel size, resulting in a b-band convolution feature map. This fusion process
effectively combines the complementary information from both convolutions, enriching the
representational power of the feature map. However, the correlation between the original
spectral features and the improved spatial features can significantly impact the final classifi-
cation results. To address this, we propose a spectral–spatial enhancement attention (SSEA)
module that facilitates the interactive enhancement of spatial and spectral information from
two vertical directions and one horizontal direction. The specific process of SSEA is shown
in Figure 3. SSEA establishes the dependency relationship between spectral dimension
C and spatial dimensions H and W by rotational operation and calculates the attention
weights in the three directions C − H, C −W and H −W. Following this, the three types of
correlation weights are combined to promote interaction and strengthen the representation
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of spectral features, thereby ensuring a more comprehensive and nuanced understanding
of the data.

In this stage, the features undergo 90-degree counterclockwise rotation along the H
axis, resulting in dimensions of W × H × C. Following this transformation, both average
and maximum pooling operations are performed in the W dimension. The average pooling
operation calculates the mean value of image regions to smooth the data and suppress noise,
thereby enhancing the stability and coupling of subsequent spectral–spatial information.
In contrast, maximum pooling discards other information by retaining the maximum pixel
value of each region in both the spatial and spectral dimensions. This operation helps to
emphasize the salient features in the image. Finally, an activation function is applied to
generate attention weights between the H and C dimensions; these weights are then used to
modulate the convolution features. The second branch emphasizes the interaction between
the spectral dimension C and spatial dimension W. In this phase, the convolution features
undergo a 90-degree counterclockwise rotation along the W axis, resulting in dimensions of
H × C × W. Attention weights for this branch are computed similarly to those in the first
branch. The third branch is focused on the interaction between spatial dimensions H and W.
It directly applies average and maximum pooling to the convolution features, enhancing
both the original spatial information and the spatial information derived from LBP features.
This approach further sharpens the ability to capture intricate ground category features.
Once the three branches have been computed, their outputs are averaged and aggregated,
fostering interaction between spectral and spatial dimensions and resulting in a richer and
more comprehensive feature representation.

AvgPool

MaxPool

Spectral 

Dimension-C

Spatial 

Dimension-W

Spectral 

Dimension-C

2D Conv

Spectral-Spatial

 Enhancement Attention Feature

Spatial 

Dimension-H

Spatial 

Dimension-W
Spatial 

Dimension-H

Figure 3. Illustration of SSEA. It consists of three branches that establish the dependencies between
the spectral dimension C and the spatial dimensions H and W by means of rotational operations, and
it computes the attention weights in each of the three directions.

2.3. Transformer Encoder Module

The transformer encoder block mainly consists of two residual structures, which
are represented by the multi-head self-attention mechanism (MHSA) module and the
multi-layer perceptron (MLP) module, as shown in Figure 4a. For the enhanced spectral–
spatial features N ∈ Rc×h×w, which were extracted in the previous section, we perform an
embedding flattening operation on their spatial data to obtain a 2D structure N′ ∈ Rc×h×w

that is suitable as input for the transformer, where d = h × w. As shown in Figure 4b, we
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initialize three update matrices WQ, WK, WV to map the input features N′ to Q, K, and V
matrices, respectively, which are composed of h head components:

Q = {Q1, Q2, . . . , Qi, . . . , Qh}
K = {K1, K2, . . . , Ki, . . . , Kh}
V = {V1, V2, . . . , Vi, . . . , Vh}

(7)

where h is the number of heads, and Qi, Ki, Vi ∈ Rc×(d/h). Next, we use them to compute
the attention scores:

SAi = Attention(Qi, Ki, Vi) = Softmax
(

QiKT
i√

d

)
Vi (8)

After obtaining the attention results, we combine the multiple results and perform a
linear transformation to obtain the final global interaction result:

MSA(Q, K, V) = Concat(SA1, SA2, . . . , SAh)W (9)

where W ∈ Rd×d is a parameter matrix used to perform the linear transformation.
Next, the data proceed to the second residual structure MLP. it is composed of two

linear layers. Following it, highly expressive and discriminative spectral–spatial features
are fitted into multiple categories to realize the classification task for HSI.

Norm

Multi-Head

Self-Attention

Norm

MLP

+
+

Scaled Dot-Product Attention

Concat

Linear

Query Key Value

Initialization Weight

(a) (b)

Figure 4. Graphical representation of the transformer encoder: (a) The general structure of encoder
blocks. (b) Multi-head self-attention mechanism.

2.4. Algorithm Summarization for MEA-EFFormer

The overall process of the proposed MEA-EFFormer network is shown in Algorithm 1.
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Algorithm 1 MEA-EFFormer network.

Require:
HSI data I ∈ Rm×n×l ; ground truth Y ∈ Rm×n; PCA bands number b; input patch size
s; training sample rate µ%; attention head number h; epochs E; batch size = 128.

Ensure:
Predicted classification labels for the test dataset.

1: Extract the Ipca features from the HSI data and transform them into multiscale convolu-
tion features α

xyz
ij , β

xyz
ij , δ

xyz
ij by Equation (1).

2: Perform efficient channel attention operation on α
xyz
ij , β

xyz
ij , δ

xyz
ij , and stack to perform

unit convolution and 2D convolution to get Vxy
ij by Equations (3)–(5).

3: Obtain the Ilbp features by Equation (6) from HSI data and transform them into the
convolution features Vxy

lbp by Equation (5).
4: for i = 1 to E do
5: Perform SSEA operation on Vxy

ij and Vxy
lbp to achieve enhancement of spectral–spatial

features.
6: Perform multi-head self-attention in the transformer encoder.
7: end for
8: Employ the attention outputs and feed them into a linear layer to determine the

corresponding labels.
9: Employ the trained model on the test dataset to acquire predicted labels.

3. Experiment and Analysis

In this section, we employ three well-known HSI datasets—Indian Pines (IP), Salinas
(SA) and Pavia University (PU)—to evaluate the effectiveness of the proposed method, and
we use three metric indicators to give a quantitative assessment of the classification results.

3.1. Data Description
3.1.1. Indian Pines

This dataset was acquired by the AVIRIS sensor over a test site in northwestern Indi-
ana, USA. It has a spatial resolution of 20 m per pixel and covers an area of 145 × 145 pixels.
After removing the water absorption bands, the dataset contains 200 spectral bands for
analysis. The ground truth for Indian Pines identifies 16 distinct classes, including vari-
ous crops, forests and other natural vegetation types. This dataset is frequently used to
benchmark HSIC algorithms. Figure 5 illustrates the false-color image and labeling map
of Indian Pines, and the specific division of the training and testing sets of the samples is
shown in Table 1.

Table 1. Training and test samples in Indian Pines, Salinas and Pavia University datasets.

ID
Indian Pines Salinas Pavia University

Land Cover Class Training Test Land Cover Class Training Test Land Cover Class Training Test

C01 Alfalfa 3 43 Brocoli_green_weeds_1 11 1998 Asphalt 67 6564
C02 Corn-notill 72 1356 Brocoli_green_weeds_22 19 3707 Meadows 187 18,462
C03 Corn-mintill 42 788 Fallow 10 1966 Gravel 21 2078
C04 Corn 12 225 Fallow_rough_plow 7 1387 Trees 31 3033
C05 Grass-pasture 25 458 Fallow_smooth 14 2664 Painted metal sheets 14 1331
C06 Grass-tree 37 693 Stubble 20 3939 Bare Soil 51 4978
C07 Grass-pasture-mowed 2 26 Celery 18 3561 Bitumen 14 1316
C08 Hay-windrowed 24 454 Grapes_untrained 57 11,214 Self-Blocking Bricks 37 3645
C09 Oats 1 19 Soil_vinyard_develop 32 6171 Shadows 10 937
C10 Soybean-notill 49 923 Corn_senesced_green_weeds 17 3261
C11 Soybean-mintill 123 2332 Lettuce_romaine _4wk 6 1062
C12 Soybean-clean 30 563 Lettuce_romaine_5wk 10 1917
C13 Wheat 11 194 Lettuce_romaine_6wk 5 911
C14 Woods 64 1201 Lettuce_romaine_7wk 6 1064
C15 Buildings-Grass-Trees 20 366 Vinyard_untrained 37 7231
C16 Stone-Steel-Towers 5 88 Vinyard_vertical_trellis 10 1797

Total 513 9736 Total 271 53,858 Total 428 42,348
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(a) (b)

Figure 5. Indian Pines dataset. (a) False-color map. (b) Ground-truth map.

3.1.2. Salinas

This dataset was captured by the AVIRIS sensor; the Salinas dataset focuses on the
Salinas Valley in California. It offers a higher spatial resolution of 3.7 m per pixel with
dimensions of 512 × 217 pixels. Similar to Indian Pines, the Salinas dataset typically uses
204 spectral bands after water absorption band removal. The ground truth comprises
16 classes representing agricultural fields, vineyards, and bare soil. Researchers often use
this dataset to explore the challenges of classifying crops with finer spatial details. Figure 6
illustrates the false-color image and labeling map of Salinas, and the specific division of the
training and testing sets of the samples is shown in Table 1.

(a) (b)

Figure 6. Salinas dataset. (a) False-color map. (b) Ground-truth map.

3.1.3. Pavia University

The ROSIS sensor collected this dataset over an urban area in Pavia, Italy. It boasts
a high spatial resolution of 1.3 m per pixel. The dataset contains 103 spectral bands and
covers an image size of 610 × 340 pixels. Pavia University offers 9 land-cover classes
focused on urban features. This dataset is commonly used to study the classification of
urban environments and to address the challenge of working with noisy spectral bands.
Figure 7 illustrates the false-color image and labeling map of Pavia University, and the
specific division of the training and testing sets of the samples is shown in Table 1.
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(a) (b)

Figure 7. Pavia University dataset. (a) False-color map. (b) Ground-truth map.

3.2. Experimental Setting
3.2.1. Evaluation Criteria

In order to quantitatively evaluate the experimental results, three quantitative evalu-
ation metrics were employed: overall accuracy (OA), average accuracy (AA) and kappa
coefficient. First, OA measures the ratio between the number of correctly classified sam-
ples in a dataset and the total number of samples. OA provides an overall assessment of
classification performance by indicating the model’s ability to correctly classify samples.
Second, AA calculates the average accuracy for each category in the dataset. It provides
an evaluation of the model’s performance on different categories and helps to determine
whether the model performs well uniformly across all categories. Finally, the kappa coef-
ficient measures the agreement between the predictions and the true classification while
taking into account the stochastic agreement. A kappa value close to 1 indicates that there is
strong agreement between prediction and true categorization beyond random consistency.

3.2.2. Environment Configuration

The proposed method was implemented using the PyTorch 2.2.0, while the traditional
classical methods used for comparison were executed in the MATLAB R2018b environment.
The computational setup included an Intel Xeon Silver 4314 CPU (Intel Corporation,
Santa Clara, CA, USA) with 256 GB of RAM, along with an NVIDIA GeForce RTX 4090
GPU server (ASUS, Taipei, Taiwan) equipped with 24 GB of memory. In the comparison
involving deep learning and transformer-based methods, parameters were configured as
follows: the number of epochs was set to 100, and a batch size of 128 was employed.

3.2.3. Parameter Setting Adjustment

In this subsection, we analyze the impact of several important parameters on the
classification results of the proposed network. These parameters are patch size, reduced
spectral dimension, learning rate of the network, and the number of attention heads.

Figure 8 illustrates the impact of patch size on the classification metrics OA, AA and
kappa. On all three datasets, the accuracy generally increases as the patch size increases.
This is likely because larger patches capture more spectral information, which can help the
model better distinguish between different classes. However, there is a point of diminishing
returns at which increasing the patch size further does not improve accuracy. This is because
larger patches may also include irrelevant information that can confuse the model. The
specific patch size that yields the best accuracy varies depending on the dataset. For Indian
Pines and Pavia University, the highest accuracies are achieved with a patch size of 13 × 13.
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For Salinas, the best accuracy is achieved with a patch size of 15 × 15. Moreover, our
proposed network achieves relatively good and stable performance over a wide range
of patch sizes, e.g., [11 × 11, 19 × 19]. This demonstrates that our proposed network has
certain robustness to the parameter of patch size.

(a) (b) (c)
Figure 8. Patch size as a function of OA, AA and kappa. (a) Indian Pines (IP). (b) Salinas (SA).
(c) Pavia University (PU).

Figure 9 shows the classification results as a function of the reduced spectral dimen-
sions. The reduced spectral dimensions indeed have a strong impact on the performance of
the proposed network; however, the proposed network can achieve relatively stable results
when the reduced dimensions lie in the range of [15, 35] for all three datasets. Specifically, it
achieves the best performance when the reduced dimension is 20 for Indian Pines. For the
Salinas and Pavia University datasets, the optimal values of the reduced dimensions are
25 and 30, respectively.

(a) (b) (c)
Figure 9. Effect of reducing spectral dimensionality on OA, AA and kappa coefficient: (a) Indian
Pines (IP). (b) Salinas (SA). (c) Pavia University (PU).

Figure 10 plots the impact of the learning rate on the classification accuracy. For three
datasets, the learning rate of the proposed network indeed has a strong impact on the
performance. It can be seen that on the three datasets, the OA, AA and kappa curves of the
proposed network all show a trend of first increasing and then decreasing, indicating that
these three indicators all have an optimal value. In addition, when the learning rate is in
the range [5 × 10−5, 1 × 10−3], the quantitative indicator values obtained by the proposed
network are relatively stable, indicating that the network has certain robustness to the
learning rate parameter. In the subsequent classification, we set the learning rate to 1× 10−3.

(a) (b) (c)
Figure 10. Effect of learning rate on OA, AA and kappa coefficient: (a) Indian Pines (IP). (b) Salinas
(SA). (c) Pavia University (PU).
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Figure 11 plots the number of attention heads as a function of the classification ac-
curacy. The performance of the proposed network is quite stable when the number of
attention heads lies in the range of [2, 32]. When the number is eight, the network achieves
optimal performance.

(a) (b) (c)
Figure 11. Effect of the number of attention heads on the OA, AA and kappa coefficient. (a) Indian
Pines (IP). (b) Salinas (SA). (c) Pavia University (PU).

3.3. Ablation Study

We performed an ablation experiment employing a 5% sample rate on the Indian
Pines dataset. The framework was deconstructed into six discernible sections: principal
component analysis (PCA), multiple scales (MS), efficient channel attention (ECA), LBP
feature branch (LBP), spectral–spatial enhancement attention module (SSEA) and trans-
former encoder (TE). Subsequently, a comprehensive evaluation was conducted utilizing
performance metrics including OA, AA and the kappa coefficient. The outcomes of these
ablation experiments are meticulously tabulated in Table 2 for reference and analysis.

In Case 1, we eliminate the PCA component of the network and input all 200 bands of
the Indian Pines dataset into the model. The amount of data computed is more than six
times that of our proposed method. The large amount of redundant data being fed into the
model computation also brings about a slight decrease in the accuracy metric.

In Case 2, we cancel the MS component of the network and employ a single-scale
CNN to extract the HSI features. At this time, the accuracy metrics are all significantly
decreased, especially the AA accuracy. This demonstrates the remarkable advantage of the
MS component for exploiting the details of the imbalanced category samples.

In Case 3, we eliminate the ECA component of the network and do not compute the
attention to the spectral dimension information. At this point, the degradation of AA
accuracy is also obvious due to the direct and rough integration of the spectral information
at multiple scales. This demonstrates that the ECA component can significantly mitigate
the sensitivity of spectral information to scale transformations.

In Case 4, we directly cut the lower branch of the network and do not use the LBP
features for spatial information enhancement. The AA accuracy decreases significantly in
this case. This indicates that LBP features can provide effective spatial feature enhancement
for samples with unbalanced distributions so as to provide the model’s capture of the data
as a whole.

In Case 5, we remove the SSEA module so that spectral–spatial information and LBP
features are merely stacked and fed into the network. Each accuracy metric at this time is
slightly decreased. This suggests that the fusion and de-redundancy operations within the
SSEA module on the features can extract finer representations, which is conducive to the
downstream recognition of the ground surface categories.

In Case 6, the transformer encoder is replaced with a deep residual convolutional
network, and all accuracy metrics drop severely. This shows that with purely local features,
it is difficult to carry out effective data modeling and the model lacks the overall consider-
ation of global information. And it also further proves that the transformer is favorable
for capturing trends within the global spectral curve and for calculating long-distance
spatial information.
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Table 2. Ablation experiment results (The optimal results are bolded).

Cases
Component Indicators

PCA MS ECA LBP SSEA TE OA (%) AA (%) k ∗ 100

1 × ✓ ✓ ✓ ✓ ✓ 97.27 94.19 96.88
2 ✓ × ✓ ✓ ✓ ✓ 96.92 93.07 96.48
3 ✓ ✓ × ✓ ✓ ✓ 97.03 92.66 96.61
4 ✓ ✓ ✓ × ✓ ✓ 97.18 92.04 96.78
5 ✓ ✓ ✓ ✓ × ✓ 97.14 93.61 96.74
6 ✓ ✓ ✓ ✓ ✓ × 95.31 90.97 92.24
7 ✓ ✓ ✓ ✓ ✓ ✓ 97.44 94.69 97.07

In addition, we conducted additional ablation experiments for the three branches of
the SSEA module to explore the impact of each branch on the final classification results.
The results, as shown in Table 3, show that the computation of attention with the absence
of any branch causes a decrease in the accuracy metric. This also proves that computation
using each branch of our proposed SSEA module effectively strengthens the degree of
coupling between spectral–spatial and LBP-HSI for refinement of feature representation.

Table 3. Ablation experimental results on spectral–spatial enhancement attention module (The
optimal results are bolded).

Cases
Combination of Branches Indicators

Spe-C Spa-W Spe-C Spa-H Spa-W Spa-H OA (%) AA (%) k ∗ 100

1 × ✓ ✓ 97.11 94.43 96.76
2 ✓ × ✓ 97.03 92.66 96.61
3 ✓ ✓ × 97.18 92.04 96.78
4 ✓ ✓ ✓ 97.44 94.69 97.07

3.4. Classification Results

In this subsection, we compare the proposed MEA-EFFormer network with state-of-
the-art classifiers using quantitative and qualitative measures. These classifiers include
random forest (RF) [58], support vector machine (SVM) [11], 1D-CNN [59], 2-DCNN [60],
3DCNN [61], HybridSN [28], GAHT [62], SpectralFormer [51], SSFTT [52] and GSC-ViT [63].
Tables 4–6, respectively, provide quantitative results of the compared algorithms on the
Indian Pines, Salinas and Pavia University datasets. The parameter settings of the com-
parison methods were set according to the optimal settings of the reference source texts.
To ensure the generality of the experimental results, we conducted ten separate rounds of
each experiment and retained the means and variances. From the tables, it can be seen that
traditional classification methods have a significant gap compared to deep learning meth-
ods. Among deep learning classifiers, methods based on transformers generally achieved
better results; this is a benefit of the deep exploration of long-distance relationships be-
tween features. It is evident that our MEA-EFFormer method achieves the highest OA, AA
and kappa values across all three datasets.

As well-known methods for HSIC in recent years, SSFTT and GSC-ViT effectively
integrate spatial–spectral features from HSI and enhance feature discrimination through
the integration of transformer networks. Compared with SSFTT on the Indian Pines
dataset, MEA-EFFormer demonstrated a 0.47% increase in OA, a 1.26% increase in AA
and a 0.53% increase in kappa while reducing bias by 0.11, 1.17, and 0.13, respectively.
This comparison highlights the superior performance of MEA-EFFormer for enhancing
classification accuracy and stability through the incorporation of multiscale information
and an SSEA strategy for exploring discriminative features of land-cover objects.
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Table 4. Classification accuracy of Indian Pines dataset using various methods (optimal results
highlighted in bold).

No.
Traditional Classifiers Deep-Learning-Based Classifiers

RF SVM 1D-CNN 2D-CNN 3D-CNN HybridSN GAHT SpectralFormer SSFTT GSC-ViT MEA-EFFormer

1 1.95 ± 1.83 3.41 ± 2.49 22.09 ± 6.6 30.0 ± 7.39 43.72 ± 11.76 32.79 ± 4.7 62.56 ± 11.32 27.67 ± 6.93 72.56 ± 17.18 40.7 ± 4.91 87.67 ± 7.79
2 57.73 ± 18.2 48.14 ± 4.75 90.16 ± 1.16 90.16 ± 2.06 92.19 ± 1.48 89.93 ± 2.52 94.26 ± 1.38 80.06 ± 1.83 94.67 ± 0.69 95.76 ± 1.12 95.19 ± 0.54
3 34.24 ± 10.38 37.99 ± 3.2 94.94 ± 2.19 94.65 ± 2.05 96.12 ± 1.51 91.04 ± 2.45 95.73 ± 2.88 91.65 ± 2.61 96.5 ± 1.14 98.64 ± 0.98 98.81 ± 0.69
4 4.98 ± 1.5 11.36 ± 1.93 82.41 ± 7.27 82.63 ± 5.2 78.66 ± 4.03 77.5 ± 6.6 90.94 ± 2.82 68.3 ± 4.45 92.9 ± 2.7 94.91 ± 3.04 94.73 ± 2.15
5 64.46 ± 5.99 61.2 ± 2.17 98.87 ± 1.45 98.67 ± 1.51 99.54 ± 0.6 98.85 ± 0.7 97.73 ± 3.26 97.45 ± 0.8 99.93 ± 0.1 98.82 ± 0.84 99.98 ± 0.07
6 55.76 ± 17.52 61.62 ± 12.91 98.67 ± 0.7 98.99 ± 0.42 99.74 ± 0.17 99.06 ± 0.68 97.75 ± 1.22 97.12 ± 0.56 98.87 ± 0.53 98.29 ± 0.58 99.22 ± 0.48
7 4.0 ± 5.06 1.6 ± 1.96 54.44 ± 23.49 59.26 ± 22.28 98.52 ± 1.81 55.19 ± 15.93 61.48 ± 31.91 12.59 ± 7.26 94.44 ± 9.83 88.89 ± 10.61 97.04 ± 6.79
8 54.98 ± 21.31 57.81 ± 12.68 99.96 ± 0.09 99.87 ± 0.18 100.0 ± 0.0 99.85 ± 0.4 99.4 ± 0.49 98.15 ± 2.3 99.6 ± 0.64 99.98 ± 0.07 99.45 ± 0.51
9 2.22 ± 4.44 1.11 ± 2.22 63.16 ± 12.23 61.58 ± 11.05 72.63 ± 16.94 64.74 ± 16.48 86.32 ± 9.76 26.32 ± 7.06 79.47 ± 10.38 80.0 ± 10.99 80.53 ± 4.74
10 50.79 ± 19.74 38.4 ± 5.3 94.45 ± 1.7 93.7 ± 1.77 91.84 ± 2.58 94.21 ± 1.77 92.18 ± 9.13 86.04 ± 1.25 96.46 ± 1.04 97.38 ± 1.12 97.8 ± 0.52
11 75.19 ± 14.49 68.72 ± 3.11 95.94 ± 1.88 95.72 ± 0.88 95.02 ± 1.65 95.46 ± 0.88 97.39 ± 0.59 91.89 ± 1.24 98.76 ± 0.29 98.06 ± 0.42 98.73 ± 0.32
12 23.11 ± 8.69 19.74 ± 3.6 83.57 ± 6.9 82.2 ± 4.48 81.76 ± 3.29 79.86 ± 4.15 90.53 ± 2.67 66.71 ± 5.55 91.47 ± 1.31 92.86 ± 1.23 90.39 ± 1.77
13 18.37 ± 7.58 45.0 ± 15.07 99.38 ± 0.5 99.38 ± 0.79 98.67 ± 0.7 98.56 ± 0.99 88.41 ± 8.34 98.21 ± 1.88 100.0 ± 0.0 97.18 ± 1.38 100.0 ± 0.0
14 84.84 ± 10.0 75.72 ± 6.73 99.56 ± 0.31 99.7 ± 0.28 98.5 ± 1.53 96.57 ± 1.7 98.8 ± 0.49 98.95 ± 0.65 99.17 ± 0.31 99.85 ± 0.10 99.26 ± 0.32
15 13.93 ± 4.63 27.75 ± 4.64 85.48 ± 5.82 83.95 ± 5.92 86.57 ± 2.96 81.61 ± 3.24 91.66 ± 3.52 90.0 ± 3.15 94.69 ± 3.8 90.84 ± 3.31 95.86 ± 1.65
16 1.69 ± 1.8 10.12 ± 3.01 92.07 ± 6.31 92.76 ± 5.95 88.28 ± 6.68 85.98 ± 11.75 63.91 ± 8.97 56.21 ± 5.33 85.29 ± 4.23 87.13 ± 3.55 80.46 ± 6.93

OA (%) 56.08 ± 8.24 52.67 ± 1.96 93.98 ± 0.84 93.78 ± 0.54 93.91 ± 0.68 92.66 ± 0.73 95.12 ± 1.28 88.57 ± 0.62 96.97 ± 0.28 97.01 ± 0.30 97.44 ± 0.17
AA (%) 34.26 ± 4.64 35.61 ± 2.24 84.70 ± 2.45 85.20 ± 2.19 88.86 ± 1.79 83.82 ± 1.77 88.07 ± 2.42 74.21 ± 0.89 93.43 ± 1.74 91.21 ± 1.50 94.69 ± 0.57
k × 100 49.48 ± 9.09 46.02 ± 2.26 93.13 ± 0.96 92.90 ± 0.62 93.05 ± 0.77 91.62 ± 0.84 94.42 ± 1.48 86.92 ± 0.70 96.54 ± 0.32 96.59 ± 0.34 97.07 ± 0.19

Table 5. Classification accuracy of Salinas dataset using various methods (optimal results highlighted
in bold).

No.
Traditional Classifiers Deep-Learning-Based Classifiers

RF SVM 1D-CNN 2D-CNN 3D-CNN HybridSN GAHT SpectralFormer SSFTT GSC-ViT MEA-EFFormer

1 23.82 ± 18.27 56.82 ± 28.67 99.71 ± 0.37 99.88 ± 0.17 99.99 ± 0.02 99.78 ± 0.3 99.93 ± 0.16 99.38 ± 0.3 99.98 ± 0.03 99.32 ± 0.5 99.98 ± 0.03
2 50.95 ± 42.42 75.92 ± 19.78 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 99.85 ± 0.42 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
3 14.88 ± 22.89 57.54 ± 5.5 99.99 ± 0.02 100.0 ± 0.0 99.99 ± 0.02 99.47 ± 0.45 100.0 ± 0.0 99.98 ± 0.05 99.98 ± 0.04 99.83 ± 0.21 100.0 ± 0.0
4 4.18 ± 6.32 34.52 ± 13.48 96.28 ± 1.44 94.26 ± 2.68 93.82 ± 2.74 94.86 ± 2.82 98.48 ± 1.53 94.58 ± 1.49 98.33 ± 0.99 92.54 ± 4.17 97.62 ± 0.99
5 6.73 ± 8.32 59.23 ± 7.03 99.95 ± 0.11 99.86 ± 0.21 99.21 ± 0.64 99.21 ± 0.47 99.65 ± 0.24 98.86 ± 0.47 99.33 ± 1.25 97.36 ± 0.76 99.92 ± 0.14
6 68.04 ± 34.3 74.01 ± 5.14 100.0 ± 0.0 99.76 ± 0.7 99.9 ± 0.24 99.94 ± 0.11 97.67 ± 0.71 99.95 ± 0.09 99.85 ± 0.14 99.87 ± 0.16 99.96 ± 0.07
7 91.08 ± 2.45 79.04 ± 13.67 99.97 ± 0.06 99.95 ± 0.06 99.92 ± 0.14 99.58 ± 0.37 99.87 ± 0.11 99.91 ± 0.09 99.16 ± 1.01 99.89 ± 0.12 99.1 ± 0.62
8 79.07 ± 16.99 67.52 ± 8.16 88.55 ± 1.04 88.02 ± 1.47 90.42 ± 1.79 86.82 ± 3.63 94.65 ± 0.8 84.85 ± 0.69 93.46 ± 0.94 89.99 ± 1.47 95.09 ± 0.94
9 77.78 ± 38.86 64.66 ± 15.31 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 99.83 ± 0.14 100.0 ± 0.0 100.0 ± 0.0 99.99 ± 0.02 99.92 ± 0.05 100.0 ± 0.0
10 33.34 ± 36.65 46.85 ± 2.77 98.25 ± 0.74 97.74 ± 0.92 98.79 ± 0.39 97.88 ± 1.78 99.94 ± 0.07 98.23 ± 0.48 98.73 ± 0.49 98.03 ± 0.46 98.36 ± 0.86
11 18.51 ± 33.65 10.01 ± 11.83 99.38 ± 0.47 99.13 ± 1.21 99.33 ± 0.64 98.43 ± 1.67 97.61 ± 1.17 98.51 ± 0.81 99.74 ± 0.26 97.06 ± 1.91 99.75 ± 0.19
12 5.41 ± 8.79 39.61 ± 13.54 99.81 ± 0.25 99.84 ± 0.21 99.61 ± 0.37 98.73 ± 1.07 99.66 ± 0.3 99.81 ± 0.32 99.48 ± 0.37 95.61 ± 4.25 99.39 ± 0.37
13 17.27 ± 34.49 18.33 ± 12.4 94.34 ± 10.6 95.63 ± 5.78 94.96 ± 4.1 92.13 ± 6.54 95.15 ± 2.85 97.14 ± 1.94 95.42 ± 3.07 74.4 ± 14.45 94.25 ± 2.64
14 15.62 ± 31.09 31.65 ± 13.26 97.82 ± 2.18 97.81 ± 2.28 97.06 ± 2.13 96.57 ± 4.11 86.67 ± 1.14 96.07 ± 1.65 95.86 ± 1.9 93.03 ± 3.55 95.39 ± 2.28
15 27.18 ± 19.38 56.11 ± 6.93 87.09 ± 1.01 87.33 ± 1.72 85.67 ± 4.22 86.27 ± 4.79 92.68 ± 1.16 85.17 ± 1.46 89.49 ± 1.18 82.6 ± 2.82 91.79 ± 1.15
16 21.14 ± 27.89 49.0 ± 13.96 99.28 ± 0.16 99.16 ± 0.11 99.09 ± 0.14 98.6 ± 1.2 99.99 ± 0.02 99.94 ± 0.05 99.49 ± 0.17 96.89 ± 1.03 99.72 ± 0.19

OA (%) 49.29 ± 9.65 59.91 ± 3.89 95.48 ± 0.33 95.32 ± 0.42 95.60 ± 0.42 94.70 ± 0.61 97.26 ± 0.21 94.35 ± 0.19 96.81 ± 0.22 94.19 ± 0.55 97.42 ± 0.27
AA (%) 34.69 ± 14.32 51.30 ± 4.10 97.53 ± 0.67 97.40 ± 0.44 97.36 ± 0.41 96.75 ± 0.53 97.62 ± 0.25 97.02 ± 0.17 98.02 ± 0.23 94.77 ± 1.12 98.15 ± 0.23
k × 100 41.70 ± 10.89 55.34 ± 4.33 94.97 ± 0.37 94.79 ± 0.46 95.10 ± 0.48 94.10 ± 0.67 96.95 ± 0.24 93.72 ± 0.21 96.44 ± 0.24 93.53 ± 0.62 97.13 ± 0.30

Table 6. Classification accuracy of Pavia University using various methods (optimal results high-
lighted in bold).

No.
Traditional Classifiers Deep-Learning-Based Classifiers

RF SVM 1D-CNN 2D-CNN 3D-CNN HybridSN GAHT SpectralFormer SSFTT GSC-ViT MEA-EFFormer

1 63.15 ± 27.63 40.51 ± 12.69 95.42 ± 2.52 96.09 ± 1.17 95.43 ± 1.24 94.54 ± 2.07 96.68 ± 2.36 93.78 ± 0.84 97.05 ± 1.21 89.17 ± 1.62 97.37 ± 0.69
2 93.89 ± 9.44 78.54 ± 4.51 99.41 ± 0.47 99.74 ± 0.15 99.52 ± 0.74 99.36 ± 0.47 99.82 ± 0.11 99.77 ± 0.16 99.89 ± 0.05 99.78 ± 0.18 99.94 ± 0.03
3 4.08 ± 2.83 21.1 ± 6.26 77.62 ± 6.96 82.52 ± 5.78 73.12 ± 4.41 76.41 ± 4.93 87.29 ± 4.38 72.25 ± 3.19 85.35 ± 6.65 76.03 ± 4.42 88.67 ± 2.07
4 19.31 ± 10.7 39.51 ± 4.94 91.32 ± 2.74 90.35 ± 1.98 87.72 ± 3.04 86.44 ± 3.64 82.98 ± 3.72 84.94 ± 2.36 93.65 ± 1.04 88.48 ± 1.51 93.33 ± 1.22
5 28.12 ± 26.35 48.56 ± 17.35 99.76 ± 0.33 99.68 ± 0.37 99.85 ± 0.15 99.81 ± 0.26 99.5 ± 0.35 98.64 ± 0.44 99.55 ± 0.42 99.89 ± 0.15 99.13 ± 0.48
6 28.18 ± 25.37 31.82 ± 4.73 93.84 ± 3.22 94.54 ± 1.17 97.19 ± 1.71 96.18 ± 1.86 98.84 ± 1.19 91.58 ± 1.54 99.5 ± 0.39 91.13 ± 2.68 99.98 ± 0.04
7 25.13 ± 19.44 15.78 ± 9.6 93.15 ± 5.25 93.12 ± 3.74 96.26 ± 3.08 94.31 ± 4.03 99.02 ± 1.15 93.55 ± 2.99 99.86 ± 0.26 88.56 ± 4.77 99.96 ± 0.09
8 19.26 ± 11.6 25.26 ± 1.97 85.58 ± 4.57 82.65 ± 8.29 89.18 ± 3.03 86.27 ± 4.78 95.35 ± 2.63 81.06 ± 1.04 92.3 ± 2.77 78.65 ± 2.58 92.85 ± 1.1
9 10.75 ± 12.87 27.65 ± 26.7 89.36 ± 6.71 88.77 ± 4.79 92.34 ± 6.66 89.1 ± 4.32 73.62 ± 4.18 71.51 ± 4.91 94.4 ± 2.52 92.78 ± 3.33 92.4 ± 3.08

OA (%) 59.18 ± 8.44 52.93 ± 1.59 94.89 ± 0.72 95.12 ± 0.55 95.33 ± 0.50 94.69 ± 0.57 96.40 ± 0.63 93.00 ± 0.33 97.46 ± 0.35 92.82 ± 0.34 97.72 ± 0.24
AA (%) 32.43 ± 9.57 36.53 ± 2.81 91.72 ± 1.62 91.94 ± 1.05 92.29 ± 1.34 91.38 ± 1.16 92.57 ± 1.03 87.45 ± 0.66 95.73 ± 0.86 89.38 ± 0.88 95.96 ± 0.38
k × 100 42.45 ± 12.58 37.36 ± 2.00 93.19 ± 0.96 93.50 ± 0.73 93.79 ± 0.67 92.93 ± 0.76 95.21 ± 0.84 90.64 ± 0.45 96.62 ± 0.47 90.42 ± 0.46 96.97 ± 0.32

For the Salinas dataset, GAHT obtained the second-best classification accuracies in
terms of OA, AA and kappa. This is a benefit of the group-aware hierarchical transformer
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strategy in the network, which is good at classifying scenarios with objects that are rela-
tively concentrated and uniform. However, MEA-EFFormer still achieves classification
results that are similar to or even better than GAHT. Specifically, it improves OA by more
than 0.16%, AA by more than 0.53% and kappa by more than 0.18%. This result further
demonstrates the effectiveness of the proposed network for HSIC.

Finally, for the Pavia University dataset, which is known for its high spatial com-
plexity, our method also achieves the best classification results, especially in terms of AA.
This shows that MEA-EFFormer can effectively utilize the existing samples for global
information even when dealing with scenarios with uneven sample distributions.

In a word, the proposed network has a significant advantage over the state-of-the-art
transformer classifiers on these three well-known datasets and achieves the best results in
terms of OA, AA and kappa.

3.5. Visual Evaluation

To qualitatively compare the performance of different algorithms, we illustrate the
classification maps of different methods on the Indian Pines, Salinas and Pavia University
datasets in Figures 12–14, respectively.

It can be clearly seen from the figures that the traditional methods exhibit numerous
noisy points in the classification maps across the three datasets, indicating that their
classification accuracies are relatively low. This is primarily attributed to the inherent
limitations of traditional methods in terms of feature representation and exploration in high-
dimensional data, which results in an inability to capture deep-level feature representations
effectively. In contrast, the classification maps generated by deep neural network classifiers
are generally smoother compared to those produced by traditional methods, aligning with
the quantitative results. Particularly, transformer methods stand out for their superior
performance: yielding classification maps that deliver satisfactory results both within
categories and at their boundaries.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 12. Maps depicting the classifications on Indian Pines dataset using various methods.
(a) Ground truth. (b) RF. (c) SVM. (d) 1D-CNN. (e) 2D-CNN. (f) 3D-CNN. (g) HybridSN. (h) GAHT.
(i) SpectralFormer. (j) SSFTT. (k) GSC-ViT. (l) MEA-EFFormer.

Notably, on the Indian Pines and Salinas datasets, the classification maps generated by
the proposed MEA-EFFormer demonstrate enhanced classification performance, and the
classification results of the boundary pixels are all relatively precise. At the same time,
the smoothness and consistency of the classification maps are also appealing inside each
category. For example, the “orange area” in Figure 13j is more accurate than for the other
classification maps.

For the Pavia dataset, due to its high spatial resolution, the distribution of objects is more
dispersed and the boundaries are more complex. The classification accuracy of most classifiers
is lower, and there are many noise points in the classification map. However, the proposed
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network MEA-EFFormer can still obtain a relatively satisfactory result. For example, the “gray
area” in Figure 14l is significantly more accurate than that of other classification maps.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 13. Maps depicting the classification of Salinas dataset using various methods. (a) Ground
truth. (b) RF. (c) SVM. (d) 1D-CNN. (e) 2D-CNN. (f) 3D-CNN. (g) HybridSN. (h) GAHT. (i) Spectral-
Former. (j) SSFTT. (k) GSC-ViT. (l) MEA-EFFormer.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 14. Maps depicting the classification of Pavia University dataset using various methods.
(a) Ground truth. (b) RF. (c) SVM. (d) 1D-CNN. (e) 2D-CNN. (f) 3D-CNN. (g) HybridSN. (h) GAHT.
(i) SpectralFormer. (j) SSFTT. (k) GSC-ViT. (l) MEA-EFFormer.
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3.6. Model Complexity and Efficiency Analysis

We analyzed the computational efficiency of several common deep-learning-based
methods on the Pavia University dataset with a sampling rate of 1%. The results are shown
in Table 7; our proposed method achieves a moderate advantage in terms of training time
and parameter size while achieving the leading classification accuracy.

Table 7. Comparison of trainable parameters, testing times and accuracy of approaches based on
deep learning on Pavia University dataset (the optimal results are bolded).

Deep-Learning-Based Approaches

3D-CNN HybridSN GAHT SpectralFormer SSFTT GSC-ViT MEA-EFFormer

Testing Time (s) 6.39 7.29 13.69 18.52 7.24 10.85 8.54
Params. (K) 462.486 K 797.57 946.83 128.8 148.3 77.90 436.625

OA (%) 95.33 ± 0.50 94.69 ± 0.57 96.40 ± 0.63 93.00 ± 0.33 97.46 ± 0.35 92.82 ± 0.34 97.72 ± 0.24

For training time, we ranked second among the several classes of transformer-based
methods that we compared. As for SSFTT, the simple fact is that it only performs con-
volutional extraction of a hybrid on raw HSI data, whereas MEA-EFFormer additionally
uses LBP data for spatial information augmentation, which results in a slight increase in
time. With the 3D-CNN and HybridSN methods, the runtime is faster since they only use
convolutional networks.

For the model parameter sizes, our method is also preferred to most of the methods.
The smaller parameter sizes of SpectralFormer and SSFTT are due to the fact that they
are too simple, as they only have a single scale in the feature extraction stage, while our
method adopts a multiscale strategy to fully exploit the spectral–spatial information in
the HSI data. This is an important reason why MEA-EFFormer achieves higher accuracy.
For GSC-ViT, the method itself is known for its light weight, and there is an obvious gap
with the proposed method in terms of accuracy.

In summary, our proposed MEA-EFFormer can keep the computational efficiency as
low as possible with small parameter sizes under the premise of leading accuracy, which
again proves the superiority of our method.

4. Conclusions

In this paper, we propose a method called multiscale efficient attention and enhanced
feature transformer (MEA-EFFormer) for hyperspectral image classification. We obtain
further-refined spectral–spatial information through multiscale efficient attention feature
extraction module. Then, we combine two-dimensional convolution features with local
binary mode (LBP) spatial information, which effectively improves the representation of
features. Then, we use the spectral–spatial enhancement attention module to make the
feature enhanced. Finally, we classify these features through transformer encoders. Our
experimental results on three HSI datasets show that the proposed method has excellent
performance compared with other classification methods. Although our method achieves
remarkable results in experiments, we also recognize that there is room for improvement.
In the future, we will continue to work to improve our approach. We plan to introduce
more efficient feature extraction and attention mechanisms as well as to optimize model
structure and parameter settings to achieve better classification performance. At the same
time, we also encourage other researchers to explore and innovate in this field and to jointly
promote the development of HSIC technology.
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