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Abstract: As a new type of reflective display, electrowetting display (EWD) has excellent dynamic
display performance, which is based on polymer coatings. However, there are still some issues which
can limit its performance, such as oil backflow and the hysteresis effect which reduces the stability
and response speed of EWDs. Therefore, an effective driving waveform was proposed to overcome
these drawbacks, which consisted of grayscale conversions between low gray levels and high gray
levels. In the driving waveform, to stabilize the EWD at any initial grayscale (low gray levels/high
gray levels), an exponential function waveform and an AC signal were used. Then, the grayscale
conversion was performed by using an AC signal with a switching voltage to quickly achieve the
target grayscale. Finally, another AC signal was used to stabilize the EWD at the target grayscale.
A set of driving waveforms in grayscale ranging across four levels was designed using this method.
According to the experimental results, oil backflow and the hysteresis effect could be effectively
attenuated by the proposed driving waveforms. During conversion, the response speed of EWDs
was boosted by at least 9.37% compared to traditional driving waveforms.

Keywords: electrowetting display; multi-level grayscale; grayscale conversion

1. Introduction

Electrowetting is a phenomenon that changes the wettability between two phases
by applying a voltage between substrates, which could control the movement and shape
of droplets. The conceptual roots of EW technology could be traced back to G. Beni in
1981 [1]. Compared to traditional electrophoretic displays, EWDs based on electrowetting
technology had better performance, with the advantages of a fast response speed, wide
viewing angle, and excellent readability in daylight [2–6]. However, some shortcomings,
such as oil splitting [7–9], oil backflow [10,11], charge trapping [12–14], and the hysteresis
effect [15,16], have a negative impact on EWD quality. The main reason for these multiple
problems was the interaction between the structure of the EWD and its driving mechanism.
Therefore, combining the EWD structure and driving mechanism to design the driving
waveform is an effective way to improve the performance of EWDs [17–23].

In multi-level grayscale conversion processes, oil backflow and the hysteresis effect
could be suppressed to improve the grayscale stability and response speed of EWDs. Oil
backflow, caused by charge trapping which is a phenomenon of trapping charges in an
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insulating layer of EWD pixels, can directly reduce aperture ratio. In recent years, a proposal
was made for a portable driving scheme capable of releasing capture charges through
reverse polarity voltage, resulting in a successful realization of a 4-level grayscale dynamic
video in an active matrix EWD [24]. Simultaneously, a driving waveform containing a
reset signal was suggested for releasing captured charges [25], which could improve the
aperture ratio. As for the hysteresis effect, some scholars have conducted research on
this topic. It has been verified that the use of AC driving waveforms could reduce the
hysteresis of the contact angle during a wetting process [26,27]. To resolve the hysteresis
effect, an amplitude–frequency mixed modulation driving system was proposed, which
could also improve the response speed of EWDs [28]. Furthermore, a multi-waveform
adaptive driving scheme was proposed, which, compared with the square-wave driving
waveform, could reduce the maximum hysteresis difference of the hysteresis curve and
improve the stability of grayscales [29]. These exceptional driving waveforms offer valuable
insights and inspiration for the design of driving waveforms.

In this paper, a combined driving waveform has been proposed to achieve high-
performance multi-level grayscale conversions based on the analysis of the driving principle
of EWDs. An exponential signal was applied to attenuate abrupt variations in the driving
waveform, which could prevent oil splitting. An AC signal was employed to release
trapped charges, leading to improvements in the stability of EWDs. In addition, an AC
signal with a switching voltage was designed to increase the EWDs’ response speed.

2. Driving Mechanism of EWDs

Each pixel of EWD is composed of a substrate, a pixel electrode, an insulating layer,
a pixel wall, colored oil, NaCl solution, a common electrode, and a top plate [30–38]. Its
structure is shown in Figure 1. The insulating layer is composed of a fluoropolymer Teflon
AF 601S2 (DuPont, Wilmington, DE, USA). This material is highly soluble in fluorine-based
solvents, which helps to prevent the electrolysis of liquids in EWDs. Additionally, to
prevent oil from adhering to the pixel wall, it is coated with a hydrophilic and oleophilic flu-
oropolymer surface after plasma treatment. The upper and lower substrates are composed
of ITO (indium tin oxide) glasses. The pixel contains oil made of an anthraquinone-type
dye, an organic polymer with a high molar absorption coefficient and a wide spectral range.
As for the EWD preparation, the process is as follows. Initially, a reticulated pixel wall
is deposited on the panel by using photolithography, and then the panel is divided into
micron-sized pixel grids, where the grid size is the size of an EWD’s pixel. After that, a
non-polar colored oil is filled inside each pixel, and the color of oil matches the displayed
color. Then, the electrolyte solution is filled as a second fluid and the common electrode.
Finally, the substrate is placed and encapsulated by using a pressure-sensitive adhesive,
thus completing the preparation of the EWD.
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The driving process of EWDs is as follows: when the voltage applied between the
two electrodes is below the threshold voltage, the insulating layer becomes hydrophobic,
resulting in a flat spreading of colored oil in pixels. When the voltage between two
electrodes is gradually increased, the interfacial tension presents changes, which further
leads to a change in the contact angle, and the wettability of the insulating layer changes,
resulting in an oleophobic property. In this way, the colored oil moves and deforms.

Equation (1) is the relationship between interfacial tension and contact angle. θ is the
contact angle, γLG is the interfacial tension between liquid and gas, γSG is the interfacial
tension between solid and gas, and γSL is the interfacial tension between solid and liquid.

θ = arcos
γSG − γSL

γLG
(1)

The Lippmann–Young equation can describe the changing process of the droplets’
contact angle on the solid interfacial with a driving voltage, as shown in Equation (2) [39].

cos θV = cos θ0 +
ε0εr

2dγLG
V2 (2)

When the applied voltage is V, the contact angle becomes θV . ε0 is the vacuum dielec-
tric constant, and εr is the relative dielectric constant. d is the thickness of a hydrophobic
insulation layer. From the above conclusion, it is evident that the application of voltage
alters the contact angle of EWDs. Therefore, different effects can be achieved by varying
different driving waveforms for driving EWDs.

3. Experimental Results and Discussion
3.1. Construction of the Experimental Platform

In this experiment, an integrated experimental platform was constructed. The plat-
form consisted of a colorimeter, which could record the EWD’s luminance, and a voltage
amplifier, which was used to amplify the driving voltage of driving waveforms [13]. In the
experiment, the EWD used for testing was designed and manufactured by us, as shown
in Figure 2. The oil color of the EWD was magenta. The panel size was 10 × 10 cm2 and
the resolution was 320 × 240. The pixel size was 150 × 150 µm2 The height of the pixel
wall was 18 µm. The thickness of the insulating layer and the electrode plate was 1 nm and
2.5 µm, respectively.
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3.2. Proposed Driving Waveforms

To stably drive EWDs to achieve maximum luminance and a stable performance at
a target grayscale, a driving waveform based on an exponential function signal and an
AC signal was proposed in the initial driving stage. The exponential function signal could
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drive the EWDs swiftly. The AC signal was used to release tapped charges which could
overcome oil backflow. At the same time, driving waveforms for grayscale conversions
were also designed, as shown in Figure 3a,b.
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Figure 3. Diagrams of the proposed driving waveform. (a) The diagram of the conversion from
low gray levels to high gray levels. (b) The diagram of the conversion from high gray levels to low
gray levels.

As shown in Figure 3a, in the process of conversion from a low gray level to a high
gray level, the driving waveform of the initial driving stage was also used to obtain an
initial grayscale. In addition, a switching voltage was proposed to swiftly drive the EWDs
from a low gray level to a high gray level. In this process, the switching voltage would be
higher than the target voltage of the target grayscale, which could reduce the response time
when the target grayscales were the same. In addition, the negative voltage could suppress
oil backflow. The parameters of the driving waveform are explained in Table 1.

As shown in Figure 3b, in the process of conversion from a high gray level to a low
gray level, the driving waveform of the initial driving stage was also used to obtain a high
gray level. A switching voltage was proposed to solve the hysteresis effect and swiftly drive
the EWDs from a high gray level to a low gray level. In this process, the switching voltage
would be lower than the target voltage of the target grayscale, so as to reduce the response
time when the target grayscales were the same. In addition, the negative voltage could
suppress oil backflow. The parameters of the driving waveform are explained in Table 2.
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Table 1. Parameters of the driving waveform.

Parameter Description

VLMAX The target driving voltage which could drive the pixel to a low gray level
VLN A negative voltage which could release trapped charges

VHMAX The target driving voltage which could drive the pixel to a high gray level
VHN A negative voltage which could release trapped charges

VUP
A switching voltage which could drive the pixel swiftly from a low gray level to a
high gray level

T The duration of a driving cycle
T2, T4 The duration of the DC driving process
T3, T5 The duration of the negative voltage

Table 2. Parameters of the driving waveform.

Parameter Description

VLMAX The target driving voltage which could drive the pixel to a low gray level
VHMAX The target driving voltage which could drive the pixel to a high gray level

VHN A negative voltage which could release trapped charges
VLN A negative voltage which could release trapped charges

VDOWN
A switching voltage which could drive the pixel swiftly from a high gray level to a
low gray level

T The duration of a driving cycle

3.3. Realization of Multi-Level Grayscales

The corresponding relationship between the DC driving voltage and the luminance
was measured as shown in Figure 4. The maximum luminance was 680 when 20 V positive
DC voltage was applied. In this paper, the number of grayscales was set to four as an
illustrative example, and the target luminance values of the four grayscales were set to
230, 330, 430, and 530. The target driving voltages were set to 0 V, 8–9 V, 12–13 V, and
15–16 V, respectively. Negative voltage VN was used to release trapped charges. The range
of VN was set to 0 V, 4–5 V, 7–8 V and 8–9 V, respectively. The driving cycle T was set
to 20 ms because 50 Hz is a frequency which could be perceived by human eyes. T1 was
set to 5 ms. T2 was set to 10 ms to drive the EWD at the maximum luminance. T3 was set
to 0.5 ms to release trapped charges, which could prevent oil backflow caused by charge
trapping. T4 was set to 15 ms. T5 was also set to 15 ms to release trapped charges. The
relationship between EWDs’ luminance and VMAX, VN in different grayscales is shown
in Figure 5.
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Figure 5. The EWD’s luminance when different voltages were applied. Assorted colors of curves
represented different VMAXs and VNs applied to EWDs. To take 8_−4 in (a) as an example, 8 is the
value of VMAX , and −4 is the value of VN . (a) Luminance values and applied voltages in the first
grayscale. (b) Luminance values and applied voltages in the second grayscale. (c) Luminance values
and applied voltages in the third grayscale.
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According to Figure 5, the applied positive and negative voltage could influence
the luminance, and the best parameter of the initial driving stage could be obtained.
In the first grayscale, the luminance remained between 304 and 305 when the applied
positive voltage was 8 V. The luminance remained between 332 and 330 when the applied
positive voltage was 9 V. The interquartile ranges (IQRs) were 4 and 1, when the applied
negative voltage was −4 V and −5 V. In the second grayscale, the luminance remained
between 428 and 430 when the applied positive voltage was 12 V. The luminance remained
between 435 and 340 when the applied positive voltage was 13 V. The IQRs were 5 and 3,
when the applied negative voltages were −7 V and −8 V. In the third grayscale, the
luminance remained between 510 and 412 when the applied positive voltage was 15 V. The
luminance remained between 530 and 610 when the applied positive voltage was 16 V. The
IQR was 5 when the applied negative voltage was −8 V. Therefore, the best parameters
could be obtained. VMAX was set to 9 V, 12 V, and 16 V in the first grayscale, the second
grayscale, and the third grayscale, respectively. VN was set to −5 V, −8 V and −8 V in
the first grayscale, the second grayscale, and the third grayscale, respectively. Figure 6
demonstrates the relationship between the driving time and the luminance of the EWD in
the three grayscales.

Micromachines 2024, 15, x FOR PEER REVIEW 7 of 15 
 

 

According to Figure 5, the applied positive and negative voltage could influence the 
luminance, and the best parameter of the initial driving stage could be obtained. In the 
first grayscale, the luminance remained between 304 and 305 when the applied positive 
voltage was 8 V. The luminance remained between 332 and 330 when the applied positive 
voltage was 9 V. The interquartile ranges (IQRs) were 4 and 1, when the applied negative 
voltage was −4 V and −5 V. In the second grayscale, the luminance remained between 428 
and 430 when the applied positive voltage was 12 V. The luminance remained between 
435 and 340 when the applied positive voltage was 13 V. The IQRs were 5 and 3, when the 
applied negative voltages were −7 V and −8 V. In the third grayscale, the luminance re-
mained between 510 and 412 when the applied positive voltage was 15 V. The luminance 
remained between 530 and 610 when the applied positive voltage was 16 V. The IQR was 
5 when the applied negative voltage was −8 V. Therefore, the best parameters could be 
obtained. 𝑉ெ஺௑ was set to 9 V, 12 V, and 16 V in the first grayscale, the second grayscale, 
and the third grayscale, respectively. 𝑉ே was set to −5 V, −8 V and −8 V in the first gray-
scale, the second grayscale, and the third grayscale, respectively. Figure 6 demonstrates 
the relationship between the driving time and the luminance of the EWD in the three 
grayscales. 

 
Figure 6. The luminance of the EWD when the best parameters were applied. 

3.4. Conversions from Low Gray Levels to High Gray Levels 
Since no voltage needed to be applied to drive the 0-level grayscale, the conversion 

between the zeroth grayscale and the other grayscales was not considered in this section. 
In this section, the parameters shown in Figure 6 were used to achieve low gray levels and 
high gray levels. 𝑉௅ெ஺௑, 𝑉ுெ஺௑, 𝑉௅ே, and 𝑉ுே were set to 9 V, 12 V, −5 V, and −8 V, respec-
tively, when the first grayscale converted to the second grayscale. 𝑉௅ெ஺௑, 𝑉ுெ஺௑, 𝑉௅ே, and 𝑉ுே were set to 9 V, 16 V, −5 V, and −8 V, respectively when the first grayscale converted 
to the third grayscale. The value of 𝑉௎௉ was also evaluated to obtain the best performance. 
Figure 7 shows the relationship between the luminance and 𝑉௎௉ in the different conver-
sion processes within 5 s. 

According to Figure 7, the change in luminance distribution was influenced by 𝑉௎௉. 
In the process of conversion from the first grayscale to the second grayscale, the mean 
luminance values remained at 430, 440, 443, 448, and 457 when 𝑉௎௉ was set to 12.5 V, 13 
V, 13.5 V, 14 V, and 14.5 V, respectively. The IQRs were 3, 7, 7, 8, and 6. In the process of 
conversion from the first grayscale to the third grayscale, the mean luminance values re-
mained at 620 and 627 when the 𝑉௎௉s were set to 16.5 V and 17 V. It is evident that the 
converted luminance was much higher than the target luminance, which led to an unsta-
ble luminance and had an adverse effect on the process of conversions. Therefore, the 𝑉௎௉s 
were set to 14 V, 14.5 V,15 V, and 15.5 V. The mean luminance values remained at 528, 530, 
531, and 589 when the 𝑉௎௉s were set to 14 V, 14.5 V,15 V, and 15.5 V. The IQRs were 15, 

Figure 6. The luminance of the EWD when the best parameters were applied.

3.4. Conversions from Low Gray Levels to High Gray Levels

Since no voltage needed to be applied to drive the 0-level grayscale, the conversion
between the zeroth grayscale and the other grayscales was not considered in this section.
In this section, the parameters shown in Figure 6 were used to achieve low gray levels and
high gray levels. VLMAX, VHMAX, VLN , and VHN were set to 9 V, 12 V, −5 V, and −8 V, re-
spectively, when the first grayscale converted to the second grayscale. VLMAX , VHMAX , VLN ,
and VHN were set to 9 V, 16 V, −5 V, and −8 V, respectively when the first grayscale
converted to the third grayscale. The value of VUP was also evaluated to obtain the best
performance. Figure 7 shows the relationship between the luminance and VUP in the
different conversion processes within 5 s.
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According to Figure 7, the change in luminance distribution was influenced by VUP.
In the process of conversion from the first grayscale to the second grayscale, the mean
luminance values remained at 430, 440, 443, 448, and 457 when VUP was set to 12.5 V,
13 V, 13.5 V, 14 V, and 14.5 V, respectively. The IQRs were 3, 7, 7, 8, and 6. In the process
of conversion from the first grayscale to the third grayscale, the mean luminance values
remained at 620 and 627 when the VUPs were set to 16.5 V and 17 V. It is evident that the
converted luminance was much higher than the target luminance, which led to an unstable
luminance and had an adverse effect on the process of conversions. Therefore, the VUPs
were set to 14 V, 14.5 V,15 V, and 15.5 V. The mean luminance values remained at 528, 530,
531, and 589 when the VUPs were set to 14 V, 14.5 V,15 V, and 15.5 V. The IQRs were 15, 18,
4, and 7. In the process of conversion from the second grayscale to the third grayscale, the
mean luminance values remained at 525, 532, 533, 531, and 534 when VUP was set to 16.5 V,
17 V, 17.5 V, 18 V, and 18 V, respectively. The IQRs were 8, 6, 7, 5, and 4. Eventually, the best
parameters could be obtained when the VUPs were set to 12.5 V, 15 V, and 18 V in the three
conversion processes.

3.5. Conversions from High Gray Levels to Low Gray Levels

During the conversion from high gray levels to the zeroth grayscale, there was no
need to design a conversion driving waveform, because no voltage was applied in this
process. As for other conversion processes, the driving waveforms and parameters were
tested. VLMAX, VHMAX, VLN , and VHN were set to 9 V, 12 V, −5 V, and −8 V, respec-
tively, when the second grayscale converted to the first grayscale. VLMAX, VHMAX, VLN ,
and VHN were set to 9 V, 12 V, −5 V, and −8 V, respectively, when the third grayscale
converted to the first grayscale. VLMAX , VHMAX , VLN , and VHN were set to 9 V, 16 V, −5 V,
and −8 V, respectively, when the third grayscale converted to the second grayscale. The
value of VDOWN was also evaluated to obtain the best performance. Figure 8 shows the
relationship between the luminance and VDOWN in the different conversion processes.
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(a) Conversion process from the first grayscale to the zeroth grayscale. (b) Conversion process
from the second grayscale to the zeroth grayscale. (c) Conversion process from the third grayscale to
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different VDOWNs were applied. (e) Conversion process from the third grayscale to the first grayscale
when different VDOWNs were applied. (f) Conversion process from the third grayscale to the second
grayscale when different VDOWNs were applied.

According to Figure 8, VDOWN could affect the performance of EWDs. In the processes
of conversion from other grayscales to the zeroth grayscale, the luminance nearly descended
to 230. In the process of conversion from the second grayscale to the first grayscale, the
luminance first swiftly dropped from 430 to less than 300, then rose to between 330 and
350, and finally stabilized at 330 when VDOWN was set to 6 V or 6.5 V. The luminance first
swiftly dropped from 430 to about 335, then rose to 350, and finally stabilized at 330 when
VDOWN was set to 7 V. The luminance first swiftly dropped from 430, then dropped slowly,
and finally stabilized at 330 when VDOWN was set to 7.5 V, 8 V, or 8.5 V. In the process
of conversion from the third grayscale to the first grayscale, the luminance first swiftly
dropped from 530 to less than 330, then rose to 345, and finally stabilized at 330 when
VDOWN was set to 6 V. The luminance first swiftly dropped from 530 to about 330, then
rose to 353, and finally stabilized at 330 when VDOWN was set to 6.5 V. The luminance
first swiftly dropped from 530, then slowly dropped, and finally stabilized at 330 when
VDOWN was set to 7 V, 7.5 V, or 8 V. The luminance first swiftly dropped from 530, then
slowly increased a little, and finally stabilized at 330 when VDOWN was set to 8 V or 8.5 V.
In the process of conversion from the third grayscale to the second grayscale, the luminance
first swiftly dropped from 530 to less than 400, then rose to about 440, and finally slowly
stabilized when VDOWN was set to 9 V, 9.5 V, 10 V, or 10.5 V. The luminance first swiftly
dropped from 530 to about 330, then slowly dropped, and finally stabilized at 330 when
VDOWN was set to 7 V. In summary, switching voltage could reduce the hysteresis effect,
resulting in a faster grayscale conversion. Eventually, the best parameters could be obtained
when VDOWNs were set to 7.5 V, 7.5 V, and 11 V in the three processes of conversion.

3.6. Performance of the Proposed Driving Waveform

Traditional driving waveforms were used to contrast the performance of the proposed
driving waveform. Compared to the proposed driving waveform, the traditional driving
waveform did not use VUP and VDOWN in the process of conversion. The luminance
curves of the traditional driving waveform and the proposed driving waveform are shown
in Figure 9.
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According to Figure 10, compared to the traditional driving waveform, the proposed
driving waveform had a better performance. In the process of conversion from the first
grayscale to the second grayscale, the luminance of the proposed driving waveform in-
creased from 330 to 430 and remained at 430, while the luminance of the traditional driving
waveform always remained at 420. In addition, the proposed driving waveform had a
shorter response time. In the process of conversion from the first grayscale to the third
grayscale, the luminance of the proposed driving waveform increased from 330 to 530 and
remained at 530, while the luminance of the traditional driving waveform could remain at
over 600. In addition, the proposed driving waveform had a shorter response time. In the
process of conversion from the second grayscale to the third grayscale, the luminance of the
proposed driving waveform increased from 430 to 530 and remained at 530, while the lumi-
nance of the traditional driving waveform always remained at about 525. Apart from this,
the proposed driving waveform had a shorter response time. In the process of conversion
from the second grayscale to the first grayscale, the luminance decreased from 430 to 330
and remained at 330, while the proposed driving waveform had a shorter response time.
In the process of conversion from the third grayscale to the first grayscale, the luminance
decreased from 530 to 330 and remained at 330, while the proposed driving waveform had
a shorter response time. In the process of conversion from the third grayscale to the second
grayscale, although the luminance decreased from 530 to 430 and remained at 430, the
proposed driving waveform had a shorter response time. Overall, the proposed driving
waveform decreased the response time of EWDs, resulting in an improved performance, as
shown in Table 3.

Table 3. Performance of the proposed driving waveform.

Initial Gray Level Target Gray Level Response Speed Improvement Ratio

1 2 46.28%
1 3 9.37%
2 3 17.29%
2 1 49.6%
3 1 24.14%
3 2 60.53%
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4. Conclusions

In order to improve the response speed and stability in the conversion process of multi-
level grayscales in EWDs, a new combined driving waveform was proposed in this paper,
which was based on an exponential function and AC signals. Compared to the traditional
driving waveform, the application of the proposed driving waveform could be a helpful
solution to suppress the oil backflow and hysteresis effects for EWDs during the conversion
of the four-level grayscale, which could provide a certain research direction for the design
of driving waveforms and promote the progress of paper-like display technology.
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