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Abstract: The single-event effects (SEEs) of frequency divider circuits and the radiation tolerance of
the hardened circuit are studied in this paper. Based on the experimental results of SEEs in InP HBTs,
a transient current model for sensitive transistors is established, taking into account the influence of
factors such as laser energy, base-collector junction voltage, and radiation position. Moreover, the
SEEs of the (2:1) static frequency divider circuit with the InP DHBT process are simulated under
different laser energies by adding the transient current model at sensitive nodes. The effect of the time
relationship between the pulsed laser and clock signal are discussed. Changes in differential output
voltage and the degradation mechanism of unhardened circuits are analyzed, which are mainly
attributed to the cross-coupling effect between the transistors in the differential pair. Furthermore, the
inverted output is directly connected to the input, leading to a feedback loop and causing significant
logic upsets. Finally, an effective hardened method is proposed to provide redundancy and mitigate
the impacts of SEEs on the divider. The simulation results demonstrate a notable improvement in the
radiation tolerance of the divider.

Keywords: single-event effect; divider circuit; InP heterojunction bipolar transistor; harden circuit

1. Introduction

With the rapid development of wireless radio applications, circuit systems are encoun-
tering the challenge of processing vast amounts of data. This leads to an unprecedented
growing demand for high-speed and high-frequency circuits, such as millimeter-wave
wireless communication [1], the next-generation optical Ethernet [2], and high digital oscil-
loscopes [3]. Among these applications, the frequency divider circuit plays a crucial role
in analog circuits, as it represents the circuit unit with the highest operating frequency.
Frequency dividers are essential for converting high-frequency signals into low-frequency
signals, commonly used in frequency synthesizers, orthogonal signal generation, and clock
recovery circuits [4–7]. Moreover, an InP/InGaAs heterojunction bipolar transistor (HBT)
excels by virtue of its high gain, mobility, breakdown voltage, and superior linearity charac-
teristics when compared to other millimeter-wave devices, making it the preferred choice
for the implementation of high-speed divider circuits. For instance, in order to achieve
the same frequency, the feature size of an InP HBT is approximately two times larger than
that of a SiGe HBT, along with having a higher breakdown voltage. In other words, InP
HBTs can achieve much higher frequencies for the same feature size. Therefore, InP HBTs
demonstrate the significant potential for applications in high-frequency circuits.

When used in a space environment, InP-based circuits are exposed to a large number of
radiation particles, leading to various steady and transient radiation effects within the devices.
While extensive research has been published on the total dose effects and displacement effects of
InP HBT and circuits [8–12], this paper focuses specifically on the investigation of single-event
effects (SEEs). Currently, most of the research concentrates on the SEEs and hardened methods
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for SiGe HBTs and Si-based CMOS circuits [13–19], with limited research on SEEs of InP-based
circuits. For instance, T. R. Weatherford et al. simulated the SEEs of InP HBTs in emitter-coupled
logic circuits and analyzed the influence of the lifetime of buffer layer materials on SEEs [20].
D. L. Hansen et al. discussed the relationship between cross-section induced by SEEs and
the clock frequency in limiting amplifier circuits [21], and in another paper, they studied the
SEEs and cross-section caused by protons and heavy ions in InP- and SiGe-based shift register
circuits [22]. P. Chu et al. studied the impact of the heavy ion-induced SEEs on clock speed
and driving voltage in InP-based shift register circuits [23]. Y. T. Zhang et al. discussed the
SEEs of InP-based unhardened and hardened trigger circuits [24]. These references analyzed
the effect of SEEs on InP- and SiGe-based limiting amplifier circuits and shift register circuits;
however, the mechanism of SEEs in InP-based frequency divider circuits remains unclear. Thus,
it is essential to delve into the single-event effects in InP-based divider circuits to analyze the
radiation tolerance of circuits.

Due to the limited availability of experimental time and the unpredictable positioning
of heavy ion beams within the circuit, it is difficult to precisely locate sensitive transistors
through heavy ion experiments. Moreover, the analysis of SEE mechanisms mainly relies
on the reverse deduction from test results. However, in this paper, a transient current model
is established based on experimental results of the SEEs in InP HBTs. Furthermore, the
SEEs of the unhardened and hardened broadband static divider circuit with the InP DHBT
process are simulated under different laser energies by adding the transient current model
at sensitive nodes. The detailed changes in the differential output voltage and degradation
mechanism of unhardened circuits are analyzed. The hardened method is proposed, and
the radiation tolerance of the hardened divider is discussed. The transient current model of
SEEs in InP HBTs is presented in Section 2. The analysis of sensitive structures and SEEs
in divider circuits is shown in Section 3. The analysis of the hardened divider circuit is in
Section 4. The conclusion is given in Section 5.

2. Transient Current Model of SEEs in InP HBT

In the previous study, the pulsed laser-induced SEEs of InP HBTs were studied with
different laser energies, the base-collector junction (BC junction) bias, and irradiation
positions [25]. When the pulsed laser ir radiates InP HBTs, numerous electron-hole pairs
are generated in the device. Under the influence of the electric field and the gradient of
carrier concentration, the electron-hole pairs are separated and collected by electrodes
with the function of drift and diffusion. It is obvious that the waveforms of the measured
collector transient currents are similar to a Gaussian distribution, which is a typical model
to describe the transient current induced by SEEs [26]. Therefore, the transient current
model is proposed in Equation (1), which includes various influencing factors:

I(t, E, V, x) = T0 + P(E, V, x) exp
[
−2·( t − t0

w
)

2]
(1)

where T0 is the transient current distribution position parameter, t0 is the center position
of the current distribution, w is the width parameter of the Gaussian distribution, P is the
peak value of the current distribution, E is the pulsed laser energy, V is the BC junction
bias, and x is the distance of irradiation positions away from the center of the device.

Based on measured results of SEEs in InP HBTs [25], when the laser energy varies from
10 pJ to 100 pJ with VCB = 1 V (the bias of base-collector junction) and VBE = 0 V (the bias of
emitter-base junction), and the irradiated position is located at 1.5 µm away from the device
center, the extracted parameter values of transient current model under different laser energies
are shown in Table 1. It is found that except for the peak values of the transient current
(P), the rest of the relevant parameters, including the center moment of the transient current
distribution t0, the width of the current distribution w, and the transient current distribution
position parameter T0, remain largely consistent under different laser energies. The same
phenomenon also occurs under different biases of BC junction and irradiation positions.
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Therefore, only the relationships between the peak value parameters (P) and various laser
energies (E), the BC junction bias (V), and the irradiation positions (x) are considered.

Table 1. The transient current model parameter values with different laser energies.

Laser Energy (E) T0 t0 w P

10 pJ 9.62 × 10−6 A 6.10 × 10−11 s 4.31 × 10−11 s 4.82 × 10−4 A
15 pJ 9.61 × 10−6 A 6.05 × 10−11 s 4.46 × 10−11 s 0.00129 A
50 pJ 9.62 × 10−6 A 6.04 × 10−11 s 4.43 × 10−11 s 0.00287 A
80 pJ 9.63 × 10−6 A 6.03 × 10−11 s 4.51 × 10−11 s 0.00499 A

100 pJ 9.63 × 10−6 A 6.10 × 10−11 s 4.57 × 10−11 s 0.00653 A

Figure 1a–c show the measured results and fitting curves of the transient current peak
values (P) with different conditions. It is found that the peak values rise linearly with the
increase in laser energy (E) and the bias of BC junction (V) in Figure 1a,b. From Figure 1c,
when the pulsed laser irradiates at different positions, the closer to the center of the device,
the greater the peak values. Thus, the nonlinear relationship between peak values and
irradiation positions is fitted, which is in good agreement with the Gaussian distribution.
Therefore, the expression for the peak values (P) is proposed in Equation (2):

P(E, V, x) = aE + bV + c exp
[
−2 ·

( x
197

)2
]
+ d (2)

where a and b represent the slopes of the curves in Figure 1a and Figure 1b, respectively,
and c and d can be calculated by the values in Figure 1c when the laser energy and BC
junction bias are constant. Consequently, the values of parameters are a = 6.29 × 10−5,
b = 1.93 × 10−3, c = 0.025, d = −9.67 × 10−3.
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Figure 1. The relationship between the peak values of transient current and different influence factors:
(a) The laser energy; (b) The biases of BC junction; (c) The irradiation position.
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Substituting Equation (2) into Equation (1), the transient current model I(t, E, V, x) of
the InP HBT can be obtained. The comparison plots between the transient current model
and measured results of the InP HBT are shown in Figure 2a–c. It can be seen that the
transient current model can accurately characterize the impact of SEEs on the collector
current of InP HBTs under different conditions. Therefore, a comprehensive analysis of
SEEs in InP-based circuits can be carried out based on this model.
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Figure 2. The measured and model results of collector transient current with different conditions:
(a) The laser energy; (b) The collector bias; (c) The irradiation position.

The relationship between the laser energy and linear energy transfer (LET) for heavy
ions is shown in Table 2. Based on the Geant4 simulation software 10.4, the LET values
corresponding to different laser energies are simulated and calculated for two incident
particles, 59Ni and 80Br. This calculation aligns with the amount of charge collected by
the collector under various laser energies and considers the emitter, base, and collector
regions as sensitive areas. As can be seen in Table 2, it is evident that the LET values remain
consistent for different particles.
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Table 2. The LET corresponding to different laser energies.

Incident Ions
59Ni 80Br

Laser Energy/pJ Collected Charge/fC Energy/MeV LET/MeV/cm2/mg Energy/MeV LET/MeV/cm2/mg

10 31.89 1.1 3.63 1.1 3.83
15 82.61 2.5 7.29 2.5 7.53
50 222.49 8 18.47 8 19.07
80 331.62 15 28.52 15 28.84
100 416.31 24 36.33 21 36.59

3. Sensitive Structures and SEEs in Divider Circuits
3.1. Basic Functions of Circuits

Figure 3 shows the diagram of the 2:1 broadband static frequency divider circuit with
the InP DHBT process [27–29]. The transient response of the circuit is simulated using RF
simulation software 2019 (Advanced Design System, ADS) based on the 0.8 µm InP DHBT
process provided by the Institute of Microelectronics, Chinese Academy of Sciences. The
core structure consists of two latches (master and slave structure), which are connected in a
series. The inverted output is then connected back to the input. The input buffer module
provides differential clock signals, while the output buffer module employs an emitter
follower to enhance the driving capability of output. The circuit is triggered on the rising
edge of the clock, and it operates within a frequency range of 4 GHz to 58 GHz.
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Figure 3. Diagram of the frequency divider circuit (The red lines represent the connecting lines; Blue
lines represent electronic components).

3.2. Sensitive Structures in Divider Circuits

In both the input and output buffer modules, the performance of the transistors is
stable whether the base is connected to the collector, or the collector is directly grounded.
In addition, when analyzed by the transient current model, it is found that the impact of
SEEs on the transistor with the collector grounded through a resistor is relatively small
compared to core circuit. Therefore, our focus is primarily on the core circuit of the
frequency divider, which consists of a master and slave latch structure. The master stage
operates in a tracking state, while the slave stage is in a hold state until the rising edge of
the next clock. There are four clocked transistors in the core structure, which are always
operating in the amplification state as switches. Additionally, eight transistors are utilized
for data transmission. The stability of the collector voltage of these transistors plays a
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crucial role in achieving the logic function of the frequency divider. Therefore, they are
considered as the most sensitive components in the divider circuit.

3.3. SEEs in the Divider Circuit

The transient current model in Equation (1) is developed by code scripting in ADS,
forming a current module, as shown in Figure 4. The circuits suffering from ion strikes are
simulated by adding the transient current model at sensitive nodes. Assuming that the Q1
transistor in the master stage is affected by a SEE, the collector transient current of Q1 with
different laser energies is shown in Figure 5. The voltage of base-collector junction of Q1 is
0.21 V and the laser focal point is situated 1.5 µm away from the device center. Then, the
single-event effects (SEEs) of the frequency divider circuit can be simulated by connecting
the transient current module to the collector of Q1. An input signal with an amplitude of
−10 dBm and a frequency of 40 GHz is used. The circuit is biased with a negative power
supply and VEE is set at −2.5 V.
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The divider reads data on the rising edge of the clock and holds these data on the
falling edge. In order to study the effect of the time relationship between the pulsed
laser and clock signal, the differential output Q of the divider circuit is simulated when
SEEs occur at the rising edge, high level, falling edge, and low level of the clock signal,
respectively, as shown in Figure 6. It is evident that the greatest effect of SEEs on the output
characteristics occurs at the rising edge of the clock (position 1). Since the frequency divider
is reading the data at this time, the differential voltage caused by SEEs is passed directly
to the output. As the occurrence time of SEEs shifts to the right, the effect of SEEs on the
output is gradually transferred to the next low level of output until the next rising edge of
clock signal (position 5). Thus, it can be inferred that the SEE triggered at the rising edge of
the clock is the worst case. Therefore, the center time of the transient current in Figure 5 is
approximately 0.6 ns, coinciding with the rising edge of the clock signal.
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The changes depicted in Figure 7 are related to the operation mechanism of the fre-
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Figure 6. The effect of the time relationship between the pulsed laser and clock signal.

Figure 7 shows the differential clock and output waveforms of the un-irradiated and
irradiated frequency divider. Starting from 40 pJ, the low voltage of the output gradually
upsets due to SEEs (indicated by the blue arrow) until 111 pJ of laser energy. As indicated
by the red dashed line in Figure 7, the impact of SEEs on the output is limited to the time
interval between 0.6 ns and 0.65 ns. According to the transient current parameters in Table 1,
it is known that the distribution width of the collector transient current under different
conditions is about 44 ps, while the frequency of the output signal in the divider is 20 GHz,
corresponding to a period of 50 ps. Therefore, the influence of the SEEs on the divider
would only last for one period. However, when the laser energy exceeds 112 pJ, as depicted
by the blue curves in Figure 7, the low level within the 0.6 to 0.65 ns completely flips to a
high level due to the SEEs. As a result, when the next rising edge of the clock arrives, the
original high level undergoes a transition to a low level (compared to the green circles),
causing all outputs of the divider to flip after 0.6 ns. This transition results in significant
logic errors.

The changes depicted in Figure 7 are related to the operation mechanism of the
frequency divider [30]. The master stage structure of the divider is shown in Figure 8,
including two pairs of differential transistors for passing and storing the signal, respectively.
The direction of the static tail current IEE is determined by the input voltage of base in the
differential transistors, which always flows towards the transistor with the higher base
voltage. Thus, the collector voltage of the transistors in the differential pair is determined
by the voltage drop across the resistance (Rc). The greater the current (I1) flowing through
Rc, the lower the collector voltage (−RcI1) due to the negative power supply. If transistor
Q1 suffers from a SEE, the total current in the branch where Q1 is located would increase
due to the transient current induced by SEE. As a result, the transient voltage V1 at node
N1 decreases (it was originally at a high voltage level), as shown in Figure 9a.

As seen in Figure 8, there is a cross-coupling between Q1 and Q2 (so as to Q3 and Q4).
Specifically, the collector (C) of Q1 is connected to the base (B) of Q4, while the collector
(C) of Q2 is linked to the collector (C) of Q4. Therefore, the decrease in the base voltage of
Q4 (induced by V1) reduces current flowing through Q4, causing the collector voltage of
Q4 to rise, as well as V2 (it was originally at a low voltage level), as indicated by the blue
arrow in Figure 9b. At the arrival of the next clock’s rising edge, V2 is expected to flip a
high voltage level. However, the increased output (in Figure 7) connected to the base of
Q2, causes the decrease in V2, as indicated by the red arrow in Figure 9b. As a result, the
differential voltage (V = V1 − V2) exhibits a significant decrease in the peak of the positive
voltage and an increase in the peak of the negative voltage after 0.6 ns due to the opposite
variations in V1 and V2, as seen in Figure 9c.
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As can be seen from Figure 3, the change in differential voltage (V) in the master stage
can be transmitted to the output through the slave stage and then fed back to the input via
the inverted output, creating a feedback loop. When the pulsed laser energy is less than
112 pJ, the differential voltage does not flip in Figure 9c. Thus, the logic function of outputs
would not be affected by SEEs, and only the amplitude of the output voltage changes in
Figure 7. As the laser energy exceeds 112 pJ, the peak of the differential voltage (indicated
by the blue arrow) continues to decrease in Figure 9c, and the negative peak continues to
increase (indicated by the red arrow), resulting in an inversion of the high and low levels
of the differential voltage. Subsequently, as a result of the feedback loop, significant logic
errors are introduced into the output signal.
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However, the cross-coupling circuit and feedback loop are indispensable for achieving
the function of the divider. Therefore, it is considered to reduce the cross-coupling between
differential pair transistors in pass and storage cells in order to enhance the radiation
tolerance of the divider circuit.

4. Hardening Analysis of the Divider Circuit

The hardened master stage of the divider is illustrated in Figure 10. Although the
hardened circuit appears to be a simple parallel connection of the two structures in Figure 8,
a careful examination reveals its ingenuity [19]. Effective decoupling is achieved between the
base and collector of the differential pair transistors in pass and storage cells. For instance,
the base electrodes of Q5 and Q6 in the storage cell, which were previously connected to the
collectors of Q2 and Q1 in the pass cell in the unhardened circuit, are now connected to the
collectors of Q3 and Q4 in the pass cell, and the collectors of Q5 and Q6 are connected to the
collectors of Q1 and Q2. A similar connection method is used for Q7 and Q8.
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Figure 10. The master stage of the hardened divider circuit (D*+ and D*− are a pair of differential
inputs in the pass cell).

In such circumstances, when Q1 experiences SEEs, only the collector of Q5, which is
directly connected to Q1, is significantly affected. Conversely, the collectors of Q6, Q7, and Q8
indirectly connected to Q1 through the base are less affected. Figure 11 shows the transient
waveforms of the collector voltages of Q5 to Q8 under 200 pJ pulsed laser irradiation. It is
evident that the voltages of other ports remain stable except for Q5. Therefore, Q5 and Q8 are
chosen as one differential pair, while Q6 and Q7 are considered as another pair to transmit
the signal to the slave stage and outputs. This configuration provides a degree of redundancy
against SEEs, which ensures that at least one of the differential outputs is relatively less affected.
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A similar hardened method is also applied to the slave stage and output buffer
structure. The diagram of the hardened divider is shown in Figure 12. Furthermore, the
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performance of the unhardened and hardened divider is summarized and compared with
some previously reported dividers in Table 3. It is found that the hardened static frequency
divider proposed in this paper demonstrates competitively lower power dissipation.
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Table 3. Comparison with some previously reported dividers.

References Process The Highest Input
Frequency/GHz

The Number of
Transistors

Power
Dissipation/mW

Ref. [30] 0.7 µm InP DHBTs 83 30 620

Ref. [31] 0.7 µm InP DHBTs 48 42 264

Ref. [32] 0.7 µm InP DHBTs 43 42 230

Ref. [33] 0.8 µm InP DHBTs 62 22 380

Ref. [34] 0.8 µm InP DHBTs 40 30 650

Ref. [28] 0.8 µm InP DHBTs 62 34 382

Ref. [35] 0.8 µm InP DHBTs 66 42 424

The unhardened circuit in this paper 0.8 µm InP DHBTs 58 28 219

The hardened circuit in this paper 0.8 µm InP DHBTs 50 44 348

The simulation results of differential outputs Q* and Q with different laser energies
in the hardened frequency divider are shown in Figure 13a,b. Compared to Figure 7,
on the one hand, the differential output Q* of hardened circuit in Figure 13a exhibits a
gradual change from 80 pJ of laser energy, and the low voltage flips after 260 pJ. In this
circumstance, only a single bit flips even when laser energy is beyond 600 pJ, without
triggering the flipping of all data. On the other hand, what is more important in Figure 13b
is that no flipping occurs in another differential output Q until 600 pJ and the logic function
is unaffected by SEEs. Only the voltage amplitude gradually decreases starting from 200 pJ.
It is mainly attributed to the effective decoupling of the differential pair transistors. In
addition, the differential outputs in the hardened dividers play a crucial role in offering
complementary adjustments to the input, effectively preventing significant logic errors.
Therefore, it is indicated that at least one of the differential outputs in the hardened divider
can maintain the correct logic function, which significantly improves the circuit’s radiation
tolerance to SEEs and provides reliable performance.
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5. Conclusions

In this paper, the SEEs of the unhardened and hardened broadband static divider
circuit with the InP DHBT process are studied under different laser energies by adding
the transient current model at sensitive nodes. The core structure of the frequency divider
consisting of master and slave stages is considered to be a sensitive structure. The effect
of the time relationship between the pulsed laser and clock signal is discussed. It can
be inferred that the SEE triggered at the rising edge of the clock is the worst case. The
significant variation in the differential voltage caused by the SEE is mainly attributed to
the cross-coupling effect between the differential pair transistors. When the laser energy
is less than 112 pJ, the differential voltage remains stable, and the impact of SEEs on the
amplitude of the divider output is minimal. Thus, the logic function of outputs would not
be affected by SEEs. However, when the laser energy exceeds 112 pJ, an upset of the high
and low levels of the differential voltage is induced, causing significant logic upsets in the
subsequent outputs due to the feedback loop. Based on the analysis of SEE mechanisms
in the frequency divider circuit, an effective hardened method is proposed to decouple
the differential pair transistors. Two basic units are connected in parallel to generate dual
differential outputs, providing redundancy for SEEs. Simulation results show that one of
the differential outputs is less affected by SEEs, ensuring the normal logic function of the
divider and greatly improving the radiation tolerance of the circuit to SEEs.
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