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Abstract: Patterned micro-scale thin-film magnetic structures, in conjunction with weak (~few tens
of Oe) applied magnetic fields, can create energy landscapes capable of trapping and transporting
fluid-borne magnetic microparticles. These energy landscapes arise from magnetic field magnitude
variations that arise in the vicinity of the magnetic structures. In this study, we examine means of
calculating magnetic fields in the local vicinity of permalloy (Ni0.8Fe0.2) microdisks in weak (~tens of
Oe) external magnetic fields. To do this, we employ micromagnetic simulations and the resulting
calculations of fields. Because field calculation from micromagnetic simulations is computationally
time-intensive, we discuss a method for fitting simulated results to improve calculation speed.
Resulting stray fields vary dramatically based on variations in micromagnetic simulations—vortex
vs. non-vortex micromagnetic results—which can each appear despite identical simulation final
conditions, resulting in field strengths that differ by about a factor of two.
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1. Introduction

Micromagnetic particles yield a tool in biology for the isolation and quantification of
biomolecules such as DNA [1,2], RNA [3], and proteins [4], as well as whole cells from a
heterogeneous mixture [5]. Upon conjugation of a magnetic microparticle or particles to a
target entity, applications of magnetic fields and field gradients are used to isolate a target
from a mixture for the purpose of detecting disease, for example by isolating circulating
tumor cells [6], RNA from H1N1 viruses [7], and RNA from SARS-CoV-2 [8], including in
wastewater samples [9,10]. Furthermore, applying magnetic fields to particles in a fluid
environment can be used to treat wastewater [11], to modify physical characteristics of
particle populations such as inter-particle spacing [12], as well as to guide fluids in a lab-
on-chip environment [13]. Also of interest is targeted drug delivery at specified locations in
the body while minimizing unwanted exposure, done by employing magnetic implants to
concentrate magnetic nanoparticles and deliver drugs at desired locations [14–16]. Addi-
tionally, fluid-borne magnetic disks have shown promise as a means of targeting cancer
cells in the body via localized heating (i.e., magnetic hyperthermia), delivering antitumor
drugs, or mechanical disruption of cancer cells (i.e., by applying forces and torques) [17].
The above uses of magnetic particles involve manipulation via magnetic interactions, ne-
cessitating a thorough understanding of magnetic fields and the field gradients that are the
cause of these forces.

Traditionally, the manipulation necessary for isolating or applying forces to magnetic
microparticles is performed using handheld and otherwise macroscopic magnets, but it has
been shown that interactions between microscopic thin-film features in magnetic materials
are sufficient to capture fluid-borne particles, using both discrete [18,19] and continuous
(i.e., wire) [20–22] patterned elements. These trapping and transport mechanisms are
advantageous because of their precision, as trap sizes are governed by the geometry of the
patterned materials, as well as their scalability, as modern lithography techniques allow for
many traps to be engineered on a surface.
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By applying and varying magnetic fields, the strength of magnetic forces can be tuned
carefully, allowing for the manipulation of magnetic particles along pre-programmed
routes on a surface [23–28], the tuning of trap strengths by external fields [18], the tuning of
particle velocities by applying external fields [29], and the varying of Brownian fluctuations
by small changes in external field strengths [30]. As small changes in fields can lead to large
ramifications in particle behavior, to understand and successfully predict particle motion,
having robust mathematical models of magnetic fields from magnetic thin-film devices
is essential.

Analytical models exist and are well-understood for disks uniformly magnetized in a
direction perpendicular to the top/bottom face [31,32]; however, for the patterned disks
discussed in this paper, the width-to-thickness aspect ratio is sufficiently large to restrict
magnetization to the plane of the film. Additionally, for in-plane magnetized disks, semi-
analytical techniques are employed to calculate magnetic fields when the magnetization is
uniform [33,34]. However, at low externally applied fields, disk magnetization is far from
uniform, so other methods are required for calculating disk fields.

In this study, we investigate the local magnetic fields produced by permalloy (Ni0.8Fe0.2)
magnetic disks. In particular, as it has been shown that these disks are capable of micropar-
ticle transport at low external fields—less than 100 Oe—we investigate magnetic field
profiles from disks in the presence of low applied fields and as such, we require the use of
a realistic magnetization landscape in our models. We employ simulations based on the
Object Orientated Micromagnetic Framework (OOMMF) [35] to calculate local stray fields
from the magnetic disks. While micromagnetic simulations such as OOMMF are commonly
used to describe particles trapped and transported by thin-film structures [27–29,36–39],
we focus on the variations that arise from repeated OOMMF simulation runs and notice dif-
ferences that arise in resulting disk fields. Additionally, as methods based on the OOMMF
rely on 2D summation over a discretely defined magnetization landscape for an individual
field calculation and are, hence, computationally slow, we discuss a fitting method for
faster computation of fields.

2. Materials and Methods
2.1. Particle Trapping and Transport and Effects of Externally Applied Magnetic Fields

Upon magnetizing disks by the application of a magnetic field in an in-plane di-
rection (i.e., to the right in Figure 1a), traps are formed at opposite ends of magnetic
disks—magnetizable particles such as superparamagnetic microparticles, or “beads”, are
capable of being trapped at one of two sides of the disk (i.e., the north or south pole), as
seen in Figure 1c. Upon the application of an out-of-plane magnetic field Hext,z, preference
is given to one pole, as seen in Figure 1d, while the other is repulsive. To illustrate this, we
consider a superparamagnetic bead that is linearly magnetizable by an external field such

that its magnetic moment
→
mbead = χV

→
H, where χ is the particle’s magnetic susceptibility,

V is the particle’s volume, and
→
H is the net magnetic field the particle is in. The resulting

force on the bead from a spatially varying magnetic field is [19]

→
F =

1
2

µ0χV
→
∇H2 (1)

and since generally force
→
F = −

→
∇U, the resulting potential energy U, then, is given by the

equation below.

U = −1
2

µ0χVH2 (2)
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Figure 1. (a) Cartoon showing location, indicated by number line, where magnetic fields are calcu-
lated in the vicinity of a magnetic disk. (b) To show how the potential energy varies in the vicinity 
of a magnetized disk, we plot −H2 (proportional to potential energy for a linearly magnetizable mag-
netic bead) vs. position at a height of 1.4 µm above the disk. We plot −H2 magnetized by and in the 
presence of an in-plane external magnetic field of magnitude 35 oersted (blue) and a magnetic field 
with a horizontal and vertical component of 35 oersted and 50 oersted, respectively (orange). In the 
absence of the vertical component of the magnetic field, the potential energy curve (−𝐻ଶ) appears 
symmetrical, with traps (potential energy minima) on either side. Upon application of a 50 Oe out-
of-plane field in addition to the in-plane field, the potential energy curve is no longer symmetrical, 
as the trap strengthens on one side of the disk while becoming repulsive on the other. Note that the 
potential energy is much lower (more negative) in the case of the multiple-component field because 
the total field magnitude is larger. (c) Magnetic beads on either side of disks while in the presence 
of an in-plane, 35 Oe field, corresponding with the blue potential energy curve. (d) Magnetic beads 
exclusively on the right side of disks because of the addition of a 50 Oe out-of-plane field, corre-
sponding with the orange potential energy curve. We note that beads in (c) overlap the disks less 
than in (d), consistent with the locations of the energy minima in (b) (see dotted lines). 

Figure 1. (a) Cartoon showing location, indicated by number line, where magnetic fields are calculated
in the vicinity of a magnetic disk. (b) To show how the potential energy varies in the vicinity of a
magnetized disk, we plot −H2 (proportional to potential energy for a linearly magnetizable magnetic
bead) vs. position at a height of 1.4 µm above the disk. We plot −H2 magnetized by and in the
presence of an in-plane external magnetic field of magnitude 35 oersted (blue) and a magnetic field
with a horizontal and vertical component of 35 oersted and 50 oersted, respectively (orange). In the
absence of the vertical component of the magnetic field, the potential energy curve (−H2) appears
symmetrical, with traps (potential energy minima) on either side. Upon application of a 50 Oe out-
of-plane field in addition to the in-plane field, the potential energy curve is no longer symmetrical,
as the trap strengthens on one side of the disk while becoming repulsive on the other. Note that
the potential energy is much lower (more negative) in the case of the multiple-component field
because the total field magnitude is larger. (c) Magnetic beads on either side of disks while in the
presence of an in-plane, 35 Oe field, corresponding with the blue potential energy curve. (d) Magnetic
beads exclusively on the right side of disks because of the addition of a 50 Oe out-of-plane field,
corresponding with the orange potential energy curve. We note that beads in (c) overlap the disks
less than in (d), consistent with the locations of the energy minima in (b) (see dotted lines).

We note that the potential energy is proportional to the negative square of the field
→
H where

→
H is defined as the net magnetic field from all sources—in this study, the sum

of fields from disks (
→
Hdisk) and externally applied fields (

→
Hext). In Figure 1b we plot −H2

vs. position along a line parallel to the disk diameter at a height of 1.4 µm, the radius
of a commonly used magnetic bead, above the disk center. For a magnetic disk in the
presence of an externally applied 35 Oe, rightward facing field, the plot shows two energy
minima—one on each edge of the disk, shown in blue in Figure 1b. For a disk in the
presence of a 35 Oe in-plane and 50 Oe out-of-plane field, one energy minimum is reduced,
suggesting a stronger trap at the rightmost disk edge, and the other energy minimum is
inverted, suggesting a repulsive disk edge. This effect is reversed if Hext,z is down instead
of up.

For this study, we exclusively focus on permalloy disks of a particular size: 5 µm
diameter, 40 nm thickness. As permalloy is a soft magnetic material, the application of a
magnetic field is required to produce magnetic traps—when fields are turned off, trapped
particles are released from traps on disk peripheries and are observed to be carried away
from disks by Brownian fluctuations or even gentle fluid flow.

While the externally applied magnetic fields are easy to measure, it is difficult to
measure small variations in fields near the surface due to the patterned entities. This
study focuses on methods for calculating these local “stray” magnetic fields from these



Micromachines 2024, 15, 567 4 of 11

disks (
→
Hdisk). We also explore variations that arise due to differences in micromagnetic

simulations that guide the field calculations.

2.2. Methods for Field Calculations

Magnetic fields from disks were calculated first by simulating micromagnetic details
using the OOMMF, then by calculating fields a defined point away from the disk either by
summing dipole fields or summing Coulomb fields from a bound magnetic charge density
distribution. As an example of an OOMMF simulation used, Figure 2a shows a 5 µm
diameter, 40 nm thick permalloy disk in an external field configuration (Hext,x = 35 Oe,
Hext,z = 50 Oe) used for particle manipulation [40]. The figure shows a representation
of the varying magnetization directions of portions, or “cells”, of the disk generated
by the OOMMF simulation. We refer to this spatially varying disk magnetization as a
“magnetization landscape”, and it is indicated by the arrows in Figure 2a. In this case, the
magnetization landscape appears as a vortex pattern. In the figure, the x- and y-axes are
defined. (The z-axis is normal to the disk plane). We place the disk such that the center of
the bottom of the disk is at the origin of our coordinate system, and we define a vector

→
r

that describes the location of the field being calculated. Furthermore, we define a vector,
→
r
′
, from a cell of the micromagnetic simulation to the point in space defined by

→
r . This

vector
→
r
′

is varied as we sum over these cells when calculating fields.
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𝑉
൫∇ሬሬ⃗ ⋅ 𝑚ሬሬ⃗ ൯ (4)

Figure 2. (a) OOMMF simulation of the magnetization landscape of a 5 µm diameter, 40 nm thick
permalloy disk in a magnetic field of components Hext,x = 35 Oe and Hext,z = 50 Oe. (b) Coordinate

system and definitions of position vectors
→
r and

→
r
′

used for calculating magnetic fields resulting
from this disk configuration.

We used the default parameters from the OOMMF for permalloy for our simula-
tion: saturation magnetization MS = 8 × 105 amps/meter, the exchange constant of
A = 13 × 10−12 joules/meter, a damping coefficient of 0.5, and no effect from crystalline
anisotropy (i.e., K1 = 0 joules/meter3). The simulation uses a cell size of 40 nm × 40 nm ×
40 nm (arrows in the figure are averaged over several cells for display purposes) and each
dipole has a vector magnetic moment of

→
m, where the moment’s magnitude is constant

(and equals MSV, where MS is permalloy’s saturation magnetization and V is the volume
of the cell, in this case, (40 nm) × (40 nm) × (40 nm)).

By summing the field contribution of each dipole, the stray field
→
Hdisk at position

→
r

can be calculated by the equation for a field from a dipole:

→
Hdisk

(→
r
)
=

1
4π ∑

all
cells

3
(→

mi ·
→
r
′)→

r
′

∣∣∣→r ′∣∣∣5 −
→
mi∣∣∣→r ′∣∣∣3

 (3)

where r̂′ is the vector from a cell to the point at which the field is calculated, as seen in
Figure 2b, and

→
mi is the moment of the ith cell.
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Similarly, the field can be calculated by considering a bound charge density, ρm, that

arises when the magnetization (
→
M) has a nonzero divergence:

ρm = −
→
∇ ·

→
M = − 1

V

(→
∇ ·→m

)
(4)

noting that magnetization is related to the magnetic dipoles by
→
M =

→
m/V. This divergence

in the magnetic moment is approximated using nearest neighbor cells.
Figure 3a shows the whereabouts of the bound magnetic charge density used for

field calculations. What results is a charge distribution that resides primarily near the
disk periphery—white (positive bound charge density) on the right side of the disk, black
(negative bound charge density) on the left, and gray (comparably little bound charge
density) throughout most of the disk. While most bound charge density resides on the
periphery, some bound charge density resides in the vicinity of the vortex center and
stretches toward the periphery. These deviations caused by the vortex structure—that not
all charge is on the periphery as it would be for a fully magnetized disk—are blurred when
examining the resulting magnetic field 1.4 microns above the disk, as seen in Figure 3b.
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tions meant to simulate particle motion [40]. To address this, we use a fit that can calculate 
fields more quickly. To do this, we calculate the magnetic scalar potential 𝜓௠ [41], valid 
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Figure 3. (a) Map of bound magnetic charge density for the magnetization landscape shown in
Figure 2, defined as the negative of the divergence of the disk’s magnetization. The bound charge is
mostly found near the disk periphery. (b) The z-component of the magnetic field 1.4 um above the
disk, calculated from the charge density in (a), showing that the vortex structure is not apparent in
the resulting magnetic field landscape. The dashed circle indicates the disk periphery (as the image
length scale is different in (a) vs. (b)).

Noting that the charge in each cell (indexed as i) is calculated as qi = ρmV, fields from
these charges can be calculated using Coulomb’s law:

→
Hdisk

(→
r
)
=

1
4π ∑

all
cells

qi
→
ri
′∣∣∣→ri

′∣∣∣3 (5)

where qi is the calculated bound magnetic charge at the ith cell.
Because these two methods for calculating fields involve summing over all cells each

time the field at a particular point is to be calculated, each field calculation requires a
large computational time, which is unwanted for the purpose of, for example, dynamic
simulations meant to simulate particle motion [40]. To address this, we use a fit that
can calculate fields more quickly. To do this, we calculate the magnetic scalar potential
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ψm [41], valid as we have no free currents, from which magnetic fields can be obtained

using
→
H = −

→
∇ψm. We calculate ψm using the following formula.

ψm =
1

4π ∑
all

cells

qi∣∣∣→r ′∣∣∣ (6)

We calculate the potential at 276 points (at a height z above the disk) from a point
directly above the disk center to a distance of 27.5 µm (or 11 disk radii away). The spacing
between points is 100 nm. To these points, we fit the following function:

ψ1D f it(x, z) =
ax

dx3 + cx2 + bx + 1
(7)

such that the sum of least squares of the difference was minimized and parameters a, b, c,
and d are calculated. This fit function was chosen to ensure that the potential was zero in
the middle (at x = 0) and to have the potential function tend like 1/(distance squared) at
distances far from the disk, consistent with the behavior of potential from a dipole. As this
function could not perfectly fit the calculated potential, a piecewise function was employed,
where in all intervals the same function ψ1D f it(x, z) above was used but with different
parameters a, b, c, and d. In our case, for a 5 µm diameter disk, the intervals were 0 to
1.875 µm, 1.875 to 5 µm, 5 to 12.5 µm, 12.5 to 20 µm, and 20 to 27.5 µm.

From this fit potential function ψ1D f it(x), representing a fit to the potential along the

x-axis, we calculate the potential at any location in space ψ f it

(→
r
)

by assuming that the
magnetic scalar potential varies with the cosine of the azimuthal angle (defined as y/x)—in
other words,

ψ f it

(→
r
)
= ψ f it(x, y, z) =

[
ψ1D f it(x, z)

]
cos θ =

[
ψ1D f it(x, z)

]( y
x

)
(8)

It is worth noting that, unlike a 100% magnetized disk, the disk properties do not
vary perfectly with the cosine of the azimuthal angle. However, in Figure 4 below, we
show that both (a) the magnetic scalar potential and (b) the z-component of the magnetic
field, both calculated using the charge density method without using a fit, vary with angle
much like a cosine curve, suggesting that fitting calculated potentials to a cosine curve is a
reasonable approach.
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Figure 4. (a) Magnetic scalar potential (blue) and (b) z-component of disk magnetic field (blue)
calculated around the periphery of a disk, 1.4 µm above the disk. (Both curves are calculated using
the charge density method). (c) Relevant locations where potential and field are calculated in (a,b)
are indicated by the dashed circle, and angle θ is defined. Both the magnetic scalar potential and field
vary closely with a cos θ function, illustrated by orange curves in (a,b).

3. Results
3.1. Field Calculation Results

In Figure 5, we show the calculated field from the disk with magnetization shown in
Figure 2a, where the fields shown represent the x- and z-components of the field a height of
1.4 um above the disk, along a line parallel to the diameter. The dipole and charge density
methods yield fields that differ by <12% (compared to the maximum field in the graph).
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We suspect the field differences that occur are a result of pixelation effects—the OOMMF
models a disk as broken into 40 nm cube cells. Note that the fields shown are the field
contributions from the disks themselves and do not include the externally applied fields
that magnetize the disk.
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Figure 5. (a)
→
Hdisk,x vs. x across center of disk for dipole, charge density, and charge density fit

calculation methods showing the results are similar. (b)
→
Hdisk,z vs. x across center of disk and

comparison of the three calculation methods. (c,d) Percent differences (compared to max value)
comparing dipole vs. charge distribution and charge distribution and fit methods. Fields are
calculated at locations defined by the number line in Figure 1a.

Interestingly, the maximum field magnitudes illustrated are only about 12 Oe, yet
these fields (and the resulting field gradients) are strong enough to modify a magnetic field
landscape such that magnetic microparticles in fluids can be trapped and transported [40].

It is worth noting that the charge distribution method is a bit computationally faster
than the dipole method, and the fit method is much faster than the other two. To illustrate
this, using a desktop computer with 16.0 GB of RAM and a 3.20 GHz processor, it took
4.53 s to produce the dipole field graph in Figure 5b—121 field calculations in all—for
an average field calculation of 37.4 ms. For comparison, the charge distribution curve
took 2.28 s (18.8 ms/field calculation) and the fit graph took 4.5 ms (37 µs/field calcula-
tion). Calculations necessary for Figure 5a required comparable computation times. All
computations were performed using Python 3.8.10.

3.2. Variation in Stray Fields across Simulations

Field strengths vary dramatically for different disk magnetization landscapes, and
OOMMF simulations can yield different results for different simulation runs. For compari-
son, we discuss three different magnetization configurations: (a) a disk initially randomly
magnetized and allowed to relax to an applied 35 Oe in-plane field/50 Oe out-of-plane field,
followed by a 360-degree counter-clockwise rotation of the field (in 90-degree increments),
resulting in a “vortex” configuration, (b) a disk initially randomly magnetized and then
allowed to relax when experiencing an applied 35 Oe in-plane field/50 Oe out-of-plane
field, but without the subsequent rotation, denoted “wavy” because of the wavy resulting
magnetization landscape, and (c) a fully magnetized disk—denoted “full mag”—with all
cell magnetizations pointing horizontally, reminiscent of a disk magnetized by an arbi-
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trarily large in-plane field. (Note that case (a), the vortex, was already used to produce
Figures 1–5).

While the fully magnetized case is not physically realistic for the small (Hext,x = 35 Oe
and Hext,z = 50 Oe) fields employed for the simulation, it was incorporated for the purpose
of comparison: a fully magnetized disk would yield the highest possible stray fields.

Our in silico results show that the disk stray fields varied to a large extent even for
configurations (a) and (b). This was the case even though the final external field employed
by the OOMMF simulation was the same—different initial conditions but identical final
conditions yielded maximum fields that differed by almost a factor of 2. (The maximum
Hdisk,z in Figure 6e was 24.8 Oe for the wavy case and 13.2 Oe for the vortex case.) The
result of the field rotation producing Figure 6a was the removal of energetically unfavorable
domain walls and other locations where the magnetization had large divergences, resulting
in a vortex void of all frustration points except the single vortex center. It is important
to note that for magnetic particle transport on disks [40], fields are rotated as part of the
transport process, so a configuration like 6a is a more likely configuration than what is
shown in Figure 6b. Verifying this field calculation model would be possible by measuring
fluid-borne magnetic particle responses—particle speed measurements, for example—upon
application of trapping forces and manipulation forces from disks.
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Figure 6. (a–c) Magnetization landscapes, simulated using OOMMF, used to calculate stray magnetic
fields from a disk. (a) Vortex, (b) wavy, and (c) fully magnetized patterns were employed. (d) Stray
field x-components versus distance along a horizontal axis, 1.4 um above the disk, for each of these
landscapes, calculated using the dipole method. (e) Stray field z-components calculated along the
same horizontal axis, again using the dipole method. (Note that y-components are not included as
they were small—less than 3 Oe in all cases).

It is important to note that upon randomly initializing OOMMF simulations, different
magnetization landscapes emerged even for identical final experimental magnetic field
conditions. To characterize disk magnetization, we recorded “Mx/MS”, a metric for
how magnetized the resulting disk described by the OOMMF is. (In reality, “Mx/MS”
is the average of all Mx values in a magnetization landscape divided by the saturation
magnetization MS). As an example, Mx/MS = 0.308 for Figure 6a, 0.533 for Figure 6b,
and 1 for Figure 6c (by definition). Stray field maxima increase with Mx/MS, as seen in
Figure 7. It is worth noting the variation in simulation results even when the setup of the
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simulation was identical. All blue data points represent identical OOMMF simulations
(except for the random magnetization initialization), and likewise for orange data points.
Despite this, the standard deviation of Mx/MS values for “identical” simulations was rather
large. For 10–15 simulations, Mx/MS = 0.286 ± 0.092 for the simulations with rotation and
0.536 ± 0.056 for simulations without rotation. The magnetization landscapes in plots 6(a)
and (b) were chosen as representative cases near these averages.
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Figure 7. Maximum calculated stray field z-component versus Magnetization Fraction Mx/MS

for multiple OOMMF simulations produced using methods described in the text. All blue (“With
Rotation”) and orange (“No Rotation”) data correspond to a final (simulated) externally applied
magnetic field with x and z components of Hext,x = 35 Oe and Hext,z = 50 Oe. A data point for the
maximum field from a fully magnetized disk is included for comparison (in green). For several data
points, the corresponding magnetization landscape images are included as insets.

4. Discussion

To summarize, we explore methods for calculating magnetic fields in the vicinity
of permalloy disks by using micromagnetic simulations. Regardless of whether fields
were calculated directly from dipoles within the material, from calculated bound charge
distributions, or from the magnetic scalar potential fit method described, reasonably similar
field calculations emerge. However, for the weak applied magnetic fields investigated
here and used experimentally to trap and transport magnetic microparticles [40], small or
seemingly insignificant differences in OOMMF simulations can yield drastic changes in
resulting calculated disk magnetization landscapes and stray fields. The micromagnetic
simulations studied suggest that more than just a final external field configuration is
necessary for obtaining a reliable understanding of the micromagnetic properties of a
disk—the steps taken to get to that result influence the result as well.
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