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Abstract: Herein, we investigate the temperature compensation for a dual-mass MEMS gyroscope.
After introducing and simulating the dual-mass MEMS gyroscope’s working modes, we propose a
hybrid algorithm for temperature compensation relying on improved complete ensemble empirical
mode decomposition with adaptive noise (ICEEMDAN), sample entropy, time–frequency peak
filtering, non-dominated sorting genetic algorithm-II (NSGA II) and extreme learning machine.
Firstly, we use ICEEMDAN to decompose the gyroscope’s output signal, and then we use sample
entropy to classify the decomposed signals. For noise segments and mixed segments with different
levels of noise, we use time–frequency peak filtering with different window lengths to achieve a
trade-off between noise removal and signal retention. For the feature segment with temperature
drift, we build a compensation model using extreme learning machine. To improve the compensation
accuracy, NSGA II is used to optimize extreme learning machine, with the prediction error and the
2-norm of the output-layer connection weight as the optimization objectives. Enormous simulation
experiments prove the excellent performance of our proposed scheme, which can achieve trade-
offs in signal decomposition, classification, denoising and compensation. The improvement in the
compensated gyroscope’s output signal is analyzed based on Allen variance; its angle random walk
is decreased from 0.531076◦/h/

√
Hz to 6.65894 × 10−3◦/h/

√
Hz and its bias stability is decreased

from 32.7364◦/h to 0.259247◦/h.

Keywords: dual-mass MEMS gyroscope; temperature compensation; improved complete ensemble
empirical mode decomposition with adaptive noise; sample entropy; time–frequency peak filtering;
non-dominated sorting genetic algorithm-II; extreme learning machine

1. Introduction

As a very important micro inertial device, the MEMS gyroscope is widely used in
aerospace, intelligent electronics, virtual reality and other fields [1–4]. It can measure
the angular velocity of objects and provide data support for navigation, attitude control
and other applications. However, a temperature change in the internal thermal-sensitive
material leads to the temperature drift phenomenon, which affects the stability and accuracy
of its output signal [5]. Temperature compensation can offset the effect of temperature
on the MEMS gyroscope and can improve its accuracy and long-term stability [6]. The
research and development of temperature compensation methods is one of the current
research hotspots for MEMS gyroscopes.

The compensation methods for MEMS gyroscopes are broadly categorized into two
approaches: hardware compensation and software compensation. These methods aim to
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mitigate the detrimental impacts of temperature fluctuations on gyroscope performance,
ultimately enhancing the gyroscope’s accuracy and stability across diverse operational
scenarios. Hardware compensation methods primarily entail the design and integration
of physical structures or components within the gyroscope system to counterbalance
temperature-induced errors. This approach often includes embedding temperature sensors
directly into the gyroscope package to monitor ambient temperature changes. Through
measuring these fluctuations, the sensors offer feedback that can be used for adjusting
the gyroscope’s operational parameters, such as deviation and scale factors, in real time
to counteract temperature effects [7]. Furthermore, innovative structural designs, such
as the design of an I-shaped bulk acoustic resonator, are leveraged to enhance temper-
ature stability and enable dynamic frequency adjustments across a broad spectrum [8].
Tao et al. explored a dual closed-loop control strategy featuring differential modulation
for resonant integrated optic gyroscopes, enhancing detection precision and minimizing
noise interference, which significantly improves gyroscope reliability and reduces control
inaccuracies across varying conditions [9]. Reference [10] introduced a MEMS gyroscope
with a unique design enhancing resilience to manufacturing and environmental changes. It
employs a single-DOF drive and a two-DOF sensing mechanism, enabling independent
frequency and bandwidth adjustments, thus mitigating previous limitations in gyroscopic
robustness. In [11], a real-time temperature self-sensing hardware compensation algorithm
was designed for high-Q MEMS gyroscopes, which greatly improves the measurement
accuracy of gyroscopes. Although hardware compensation methods are more accurate and
reliable, such methods have a long development cycle, have limited adaptability, and are
not easy to promote. On the other hand, the software compensation method based on the
use of various kinds of artificial intelligence algorithms to learn the complex temperature–
error relationship and provide adaptive compensation solutions has high flexibility and
adaptability and can be easily realized and optimized through algorithm adjustment [12].
The gyroscope’s output is often mixed with noise and temperature drift, which need to
be dealt with separately. The software compensation algorithms can be divided into two
architecture types: serial and parallel. In a serial architecture, the signal is first denoised,
and then temperature compensation is performed, which leads to the loss of useful signals.
On the contrary, a parallel architecture decomposes the signal first and then selects the
corresponding processing means for different signals [13]. Software compensation algo-
rithms usually rely on adaptive signal decomposition methods, denoising methods, neural
networks, etc.

The parallel processing architecture carries out noise reduction and temperature com-
pensation at the same time. The most commonly used signal decomposition algorithms
include empirical mode decomposition [14], local mean decomposition [15] and varia-
tional mode decomposition [16]. Among them, empirical mode decomposition and local
mean decomposition suffer from the interference of mode aliases, while variational mode
decomposition relies on the researcher’s experience in setting reasonable decomposition pa-
rameters, which have a great impact on the decomposition results. Based on empirical mode
decomposition, researchers have introduced advanced techniques such as ensemble empir-
ical mode decomposition [17] and complete ensemble empirical mode decomposition with
adaptive noise [18], which integrate noise to facilitate decomposition and alleviate modal
mixing. Furthermore, Colominas et al. proposed a refined approach known as improved
complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN).
Through the incorporation of specialized white noise during decomposition, experiments
have demonstrated that ICEEMDAN exhibits superior decomposition performance and
versatility, effectively mitigating mode aliases [19]. Consequently, ICEEMDAN is employed
in this study to decompose the gyroscope output signal for subsequent analysis. The
mainstream denoising algorithms include wavelet transform, Kalman filtering, Fourier
transform, etc., all of which have different degrees of drawbacks. Fourier transform lacks
time-domain localization ability and is not suitable for non-stationary signals. Kalman
filtering involves matrix operations, leading to high computational complexity and sig-
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nificant signal distortion. Although the wavelet threshold denoising algorithm proposed
by Johnstone et al. has excellent denoising performance, the selection of parameters is
challenging [20,21]. Based on instantaneous frequency estimation of the Wigner–Ville
distribution, time–frequency peak filtering was proposed by Boashash et al. It features
high time–frequency positioning accuracy, high computational efficiency, and strong noise
suppression. In addition, its denoising capability can be adjusted by modifying the window
length [22]. In addition, high-precision compensation models are key in parallel tempera-
ture compensation algorithms, and various artificial intelligence technologies can establish
prediction models between the temperature and the gyroscope’s output. Shen et al. fit a
compensation model for temperature drift based on a genetic-algorithm-optimized Elman
neural network [23]. Song et al. introduced a novel approach that merges the artificial
fish swarm algorithm with a back-propagation neural network, aiming to enhance the
accuracy of fiber optic gyroscopes’ output [24]. Li et al. proposed a novel temperature error
model based on a radial basis function neural network, improved with particle swarm
optimization and regularization methods, to enhance the accuracy and environmental
adaptability of the ring laser gyroscope [25]. In addition, support vector regression, wavelet
neural networks, fuzzy control theory and so on are often used to build predictive models.
Among them, extreme learning machine is widely used because of its simple structure and
superior generalization ability [26–28]. Since the input weights of extreme learning machine
are generated randomly, the instability of the output matrix of the hidden layer results in
large connection weights of the output layer, thus increasing the structural risk [29,30].

Based on the above analysis, this study examines the temperature compensation
problem for a dual-mass MEMS gyroscope. We introduce the working principle and
working mode of the gyroscope, and we formulate a temperature compensation experiment.
To solve the mixing problem of noise and temperature drift in the gyroscope’s output signal,
we propose an innovative parallel temperature compensation and noise reduction scheme.
Firstly, the output signal of the gyroscope is decomposed by improved complete ensemble
empirical mode decomposition with adaptive noise, which has a high identification rate.
Then, the sample entropy (SE) is used to classify a series of intrinsic mode functions,
which can be divided into the noise segment, mixed segment and feature segment. For the
noise segment and the mixed segment with different noise levels, the time–frequency peak
filtering (TFPF) method with different window lengths is used to achieve a compromise
between noise removal and signal retention. For the feature segment with temperature drift,
we use non-dominated sorting genetic algorithm-II (NSGA II) to optimize extreme learning
machine (ELM) with the prediction error and the 2-norm of the output-layer connection
weight as optimization objectives to establish a high-precision temperature compensation
model. Finally, the processed components are reconstructed to obtain the final output signal.
Through comparative analysis of the experimental results, we prove that the proposed
algorithm has excellent performance and effect in gyroscope temperature compensation.

The rest of this paper is organized as follows: Section 2 introduces the working
principle of our developed dual-mass MEMS gyroscope. Our proposed algorithm is
presented in Section 3. In Section 4, the temperature experiment and algorithm verification
are described. Section 5 presents the conclusions.

2. Introduction of the Dual-Mass MEMS Gyroscope

In this article, a dual-mass MEMS gyroscope [5] is introduced and utilized for ex-
periments, as illustrated in Figure 1. The gyroscope operates in drive mode and sense
mode. The drive mode consists of components such as a driving comb and a driving
spring, facilitating movement along the X-axis. Conversely, the sense mode, comprising the
sense comb and sense spring, enables movement along the Y-axis. The masses shown in
Figure 1 oscillate along the negative direction of the X-axis in both modes. Additionally, to
prevent displacement coupling, the two modes of the gyroscope are intentionally isolated.
When angular velocity Ωz is applied around the Z-axis, the resulting Coriolis force from
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the vibrating mass is transmitted along the Y-axis to the frame and monitored through an
electrical circuit.

Micromachines 2024, 15, x FOR PEER REVIEW 4 of 19 
 

 

2. Introduction of the Dual-Mass MEMS Gyroscope 
In this article, a dual-mass MEMS gyroscope [5] is introduced and utilized for 

experiments, as illustrated in Figure 1. The gyroscope operates in drive mode and sense 
mode. The drive mode consists of components such as a driving comb and a driving 
spring, facilitating movement along the X-axis. Conversely, the sense mode, comprising 
the sense comb and sense spring, enables movement along the Y-axis. The masses shown 
in Figure 1 oscillate along the negative direction of the X-axis in both modes. Additionally, 
to prevent displacement coupling, the two modes of the gyroscope are intentionally 
isolated. When angular velocity Ωz is applied around the Z-axis, the resulting Coriolis 
force from the vibrating mass is transmitted along the Y-axis to the frame and monitored 
through an electrical circuit. 

 
Figure 1. Structure of the dual-mass MEMS gyroscope. 

The gyroscope functions on the tuning fork principle, featuring a U-type connecting 
spring linking the dual-drive mass block and a drive spring connecting the dual-sense 
mass block. To examine its operational modes, Ansys software (Ansys 2022 R1) was 
employed for the simulation, as depicted in Figure 2. Notably, there is a significant 
frequency gap of over 1000 Hz between the first and fourth operational modes, with the 
fourth mode exhibiting a quality factor exceeding 2000, identifying it as the gyroscope’s 
drive mode. Figure 2a–d sequentially present the simulation results for the gyroscope’s 
operational modes. The first mode, the drive in-phase mode, involves the gyroscope’s 
double mass vibrating consistently with the X-axis. Following this, the second mode, the 
sensing in-phase mode, sees both masses vibrating simultaneously along the Y-axis 
direction. In contrast, the third mode, the sensing anti-phase mode, exhibits oscillations 
in the Y-axis contrary to the direction of the two mass blocks. Lastly, the fourth mode, the 
drive anti-phase mode, demonstrates oscillations of the gyroscope’s two mass blocks 
counter to the Y-axis. Additionally, the resonant frequencies for these four modes are 
observed at 2623 Hz, 3342 Hz, 3468 Hz and 3484 Hz. Remarkably, the fourth mode acts 
not only as the drive anti-phase mode but also as the primary driving mode. From this 
analysis, it is evident that the gyroscope’s two mass blocks have two degrees of freedom, 
while the drive mode and frame each exhibit only a single degree of freedom. 

Left mass

Sense Frame

Anchor

Drive Frame

Connect Spring

Drive Spring

Sense Spring

Coriolis Mass

Sense Comb

Drive Comb

Drive Sense Comb

Force Rebalances 
Combx

y

z Right mass

Figure 1. Structure of the dual-mass MEMS gyroscope.

The gyroscope functions on the tuning fork principle, featuring a U-type connecting
spring linking the dual-drive mass block and a drive spring connecting the dual-sense mass
block. To examine its operational modes, Ansys software (Ansys 2022 R1) was employed
for the simulation, as depicted in Figure 2. Notably, there is a significant frequency gap
of over 1000 Hz between the first and fourth operational modes, with the fourth mode
exhibiting a quality factor exceeding 2000, identifying it as the gyroscope’s drive mode.
Figure 2a–d sequentially present the simulation results for the gyroscope’s operational
modes. The first mode, the drive in-phase mode, involves the gyroscope’s double mass
vibrating consistently with the X-axis. Following this, the second mode, the sensing in-
phase mode, sees both masses vibrating simultaneously along the Y-axis direction. In
contrast, the third mode, the sensing anti-phase mode, exhibits oscillations in the Y-axis
contrary to the direction of the two mass blocks. Lastly, the fourth mode, the drive anti-
phase mode, demonstrates oscillations of the gyroscope’s two mass blocks counter to the
Y-axis. Additionally, the resonant frequencies for these four modes are observed at 2623 Hz,
3342 Hz, 3468 Hz and 3484 Hz. Remarkably, the fourth mode acts not only as the drive
anti-phase mode but also as the primary driving mode. From this analysis, it is evident
that the gyroscope’s two mass blocks have two degrees of freedom, while the drive mode
and frame each exhibit only a single degree of freedom.

In Figure 3, the drive comb measures the displacement of the drive frame x(t) using
a split amplifier. To achieve the required phase alignment with the signal VdacSin(ωdt), a
90◦ phase delay is applied to the signal. Subsequently, Vdac is extracted via a full-wave
rectifier and low-pass filter and concurrently compared to the reference voltage Vref. A
control signal is generated when the comparator’s output passes through the integrator
controller. This control signal drives the DC signal VDC to accumulate into VdacSin(ωdt),
thereby exciting the drive mode. The left and right sensitive mass blocks’ motion signals
are captured by a differential detection amplifier. Afterward, a second differential amplifier
processes the output signal to produce the total sense motion signal, Vstotal. This signal is
then demodulated with VdacSin(ωdt) and subsequently filtered using a low-pass filter to
obtain the ultimate sensitive motion signal.
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Figure 3. A description of the gyroscope’s monitoring system.

3. Algorithms and Models
3.1. Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise

EMD is a classical algorithm for complex signal analysis and processing. EMD works
by decomposing the signal into some amplitude–frequency modulation functions and one
monotonic trend signal. Although EMD has good effects in the analysis of complex signals,
it leads to the phenomenon of mode mixing due to its local characteristics. To solve this
challenge, EEMD was proposed to mitigate the mode mixing phenomenon by incorporating
noise into the decomposition process. Subsequently, CEEMDAN based on adaptive noise
was proposed, which is an important improvement on EEMD and solves the influence of
auxiliary noise on the mode number. However, CEEMDAN still has deficiencies compared
to EEMD, such as residual noise in the modes and signal characteristics appearing after
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the false mode. The above problems were solved through ICEEMDAN. Different from
the previous methods, which add Gaussian white noise in the auxiliary decomposition,
ICEEMDAN uses special white noise Ek[w(i)] in the auxiliary decomposition; the noise orig-
inates from the kth component of white Gaussian noise, which undergoes decomposition
via EMD. A brief introduction of ICEEMDAN follows [31,32].

Before describing the algorithm steps, several operation symbols are first defined.
M(.) is the operator that generates the local mean value, and the kth IMF value after EMD
decomposition can be obtained through the Ek(.) operator. Obviously, E1(x) = x − M(x).

The decomposition process proceeds as follows:
Step 1. Adding certain noise. In Equation (1), w(i) represents the ith added noise, and

β0 is the standard deviation of adding noise.

x(1) = x + β0E1

[
w(1)

]
x(2) = x + β0E1

[
w(2)

]
...

x(i) = x + β0E1

[
w(i)

] . (1)

Step 2. EMD calculates the local mean for each x(i), and the mean of their local means
is taken as the first residual r1; then, we can obtain the first IMF value, c1: r1 = 1

I

I
∑

i=1
M
[

x(i)
]

c1 = x − r1

. (2)

Step 3. The second IMF value, c2, is calculated immediately:
c2 = r1 − r2

r2 = 1
I

I
∑

i=1
M
{

r1 + β1E2

[
x(i)

]} . (3)

Step 4. Similarly, k IMF values are calculated according to the above steps, where
ck = rk−1 − rk, k = 2, 3, . . . , N

rk =
1
I

I
∑

i=1
M
{

rk−1 + βk−1Ek

[
x(i)

]} . (4)

After obtaining k modes and adding the residuals, the original signal can be rewritten as

x =
k

∑
i=1

ck + rk. (5)

ICEEMDAN is used to decompose the gyroscope’s output into a series of intrinsic
mode functions (IMFs). Our proposed hybrid algorithm needs to classify the obtained
IMFs to identify different components; thus, it uses SE as a decision rule to distinguish
these IMFs.

3.2. Sample Entropy

SE is an effective measurement method that can measure the regularity and complexity
of complex signals by calculating the possibility of generating different patterns in the
sequence [33]. The SE is not dependent on the data length and has high detection accuracy.
A stable estimate can be obtained with a relatively short data sequence. The principle of
sample entropy is as follows:

Step. 1 Suppose that time series h is composed of n data, that is, h = {h(1), h(2), . . . ,
h(n)}, and then construct a m-dimensional vector based on the original signal, which is
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Hm(1), · · · , Hm(n − m + 1), where Hm(i) = {h(i), h(i + 1), · · · , h(i + m − 1)}, 1 ≤ i ≤ n −
m + 1.

Step. 2 The distance dij between Hm(i) and Hm(j) is

dij = d[h(i), h(j)] = max
l=0,...,m−1

|h(i + l)− h(j + l)|, (6)

where j = 1, 2, . . ., n − m, and j ̸= i.
Step. 3 For a given Hm(i), compute the distances between Hm(i) and Hm(j) and

calculate the number Ci of them that are less than or equal to p:

Cm
i (p) =

1
n − m − 1

Ci. (7)

Step. 4 Cm(p) is defined as

Cm(p) =
∑n−m

i=1 Cm
i (p)

n − m + 1
. (8)

Step. 5 When the dimension of the sequence is increased from m to m + 1, compute
the distances between Hm+1(i) and Hm+1(j) and count the number Di of them that are less
than or equal to p:

Dm
i (p) =

1
n − m + 1

Di. (9)

Step. 6 Then, D(m)(p) can be obtained:

Dm(p) =
∑n−m

i=1 Dm
i (p)

n − m + 1
. (10)

In the above definition, under the condition of similar tolerance p, Cm(p) and D(m)(p)
denote the probability of two sequences matching either m or m + 1 points individually.
Subsequently, SE is defined as

SE(m, p) = − lim
N→∞

{ln Dm(p)/Cm(p)}. (11)

Equation (11) can be rewritten into Equation (12) if n is a finite number.

SE(m, p) = − ln
[

Dm(p)
Cm(p)

]
. (12)

The smaller the value of SE, the higher the similarity of the signal sequence, which
means that the sequence is regular and can be considered a useful signal, and vice versa.

3.3. Time–Frequency Peak Filtering

TFPF stands as a pivotal noise elimination technology. Renowned for its prowess in
extracting meaningful signals amidst noisy environments, it finds extensive applications
across various engineering domains. Operating primarily on the principles of WVD
and instantaneous frequency estimation theory, the TFPF algorithm serves to filter and
denoise signals. Despite the widespread utilization of WVD in engineering, owing to its
commendable time–frequency focusing capabilities, its efficacy diminishes when processing
multi-component signals due to the emergence of cross terms, which compromise its time–
frequency resolution. To address the challenges posed by cross terms in TFPF, we integrate
the pseudo-Wiener–Ville distribution (PWVD). Essentially, TFPF involves encoding the
noisy signal to convert it into an analytic signal of the instantaneous frequency, which
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enables an estimation of the effective signal through instantaneous frequency estimation.
Let us consider a signal y(t) contaminated with noise:

y(t) = x(t) + n(t), (13)

where x(t) represents the useful signal in y(t) and n(t) represents the noise in y(t). The steps
for denoising y(t) by TFPF are as follows [34]:

Step 1. By subjecting the signal y(t), which incorporates noise, to frequency modulation,
the analytic signal z(t) is derived:

z(t) = ej2πµ
∫ t

0 y(λ)dλ, (14)

where µ is the frequency modulation index.
Step 2. The spectrum of the PWVD for z(t) is

PW2(t, f ) =
∫ ∞

−∞
h(τ)z

(
t +

τ

2

)
z∗
(

t − τ

2

)
e−j2π f tdτ. (15)

where t represents time, τ is the integral variable, f denotes frequency, z* represents the
conjugate operator of Z and h(τ) is the window function.

Step 3. We compute the peak value of the PWVD spectrum of the analytic signal to
estimate its instantaneous frequency based on the maximum likelihood estimation principle.
Consequently, the amplitude of the original effective signal is estimated:

fz(t) =
argmax[PWz(t, f )]

µ
. (16)

The window length of TFPF determines its denoising ability. The denoising effect
of long-window TFPF is obvious but will cause signal distortion. On the contrary, the
denoising ability of short-window TFPF is poor.

3.4. Extreme Learning Machine

ELM is a feedforward neural network characterized by a single hidden layer. Its key
innovation lies in the random generation of connection weights and biases specifically for
the hidden layer, and no adjustment is needed after setting [28]. Compared to most neural
networks, which need constant adjustment of their weights and thresholds, this method
reduces the amount of computation by half. In addition, the output-layer connection
weight β is determined once by solving the equations without iterative adjustment. Studies
show that ELM has a high speed while ensuring learning accuracy [29]. The ELM network
structure is given in Figure 4, and its theory is introduced as follows [30]:
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For any given N training samples {(x1, y1), (x2, y2), . . . , (xN , yN)}, where xi = [xi1,
xi2,. . ., xin]T ∈ Rn, yi = [ yi1, yi2,. . ., yim]T ∈ Rn, for ELM with k hidden nodes, we have

k

∑
i=1

βig
(
wi · xj + bi

)
= yj j = 1, . . . , N, (17)

where βi = [βi1, βi2, . . ., βin]T represents the output connection weights between the ith
hidden node and the output nodes, g(.) represents the activation function and wi = [wi1,
wi2,. . ., win]T represents the input connection weights.

H =

 g(w1•x1 + b1) · · · g(wk•x1 + bk)
... · · ·

...
g(w1•xN + b1) g(wk•xN + bk)

. (18)

With the introduction of matrix H, Equation (17) is expressed as Hβ = Y, in which Y =
[y1

T, y2
T, . . ., yN

T]T, β = [β1
T, β2

T, . . ., βk
T]T; thus, the learning objective function for ELM

can be expressed as
min∥Hβ − Y∥. (19)

If g(.) is infinitely differentiable, no adjustments are necessary for the output parame-
ters of ELM. The smallest and unique solution β satisfying Equation (19) can be directly
calculated:

β = H†Y, (20)

where H† is the Moore–Penrose generalized inverse of the hidden-layer output matrix H.
However, before using ELM, the number of neurons in the hidden layer, type of

activation function, and range of input-layer connection weights need to be determined.
Improper parameter settings will affect the performance of ELM, which will further affect
the effect of temperature compensation.

3.5. Non-Dominated Sorting Genetic Algorithm II

NSGA is an improved genetic algorithm based on Pareto optimality. In this algo-
rithm, the population is stratified according to the non-dominant relationships between
individuals, and then selection, crossover, mutation and other operations are carried out.
NSGA II [35] introduces the fast non-dominated sorting (FNS) method, congestion-level
comparison operators, and an elite strategy to improve NSGA. This not only reduces the
complexity of NSGA but also makes the Pareto frontier optimal solution evenly distributed
in the whole Pareto domain, so as to alleviate the phenomenon of local optimal solutions
and enhance its search ability. The following introduces FNS, the congestion comparison
operator, and the elite strategy.

A. Fast non-dominated sorting.

The essence of a multi-objective optimization problem lies in obtaining the Pareto
frontier optimal solution. Thus, NSGA II employs an FNS technique to explore the entire
population. The population is stratified according to the non-inferiority level of individual
solutions, in which the individual solutions in the next layer are all dominated by any
solution in the previous layer and there is no dominant relationship between individuals in
the same layer. According to this principle, the search is directed to the Pareto-optimal front.

B. Congestion comparison operator.

The crowding degree id is defined as the density of individuals in the area where
the given point is located. Firstly, the crowding degree id of each individual is set to 0.
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Following FNS of the population, the crowding degree of individuals on the boundary is
assigned infinity, while for others, the crowding degree is

id =
m

∑
j=1

∣∣∣ f i+1
j − f i−1

j

∣∣∣, (21)

where fji+1 is the jth objective function value of the ith point.

C. Elite strategy.

After FNS of the population, the crowding degrees of individuals within the generated
non-dominant layers are computed. “Elite” individuals are selected based on a low non-
dominant level and high crowding degree, representing the optimal solutions of the Pareto
front among these elites.

Figure 5 presents the algorithmic process of NSGA II: Firstly, the initial population Pt,
comprising N individuals, is randomly generated. Subsequently, the offspring population
Qt is derived using the fundamental operations of the genetic algorithm. Then, the new
population Rt with a population size of 2N is obtained by reconstructing Pt and Qt. Ac-
cording to the elite strategy, Pt+1 is obtained by selecting the optimal N individuals in Rt,
and their offspring population Qt+1 is obtained again through the genetic algorithm. The
new population Rt+1 is then constructed, and the described steps are iteratively executed
until the stop condition is satisfied.
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3.6. ELM Optimization

To enhance the generalization ability and search ability of ELM, we use NSGA II to
optimize the number of neurons in the hidden layer, the type of activation function, and
the range of input-layer connection weights. The key technology of NSGA II-ELM lies in
the following.

(1) The definition of population individuals.

The mapping relationship between the parameters to be optimized in ELM and the
population individuals of the NSGA II algorithm is established. Here, the optimization
interval of the hidden neurons was set to [0, 50], and the five most commonly used activation
functions—‘sigmoid’, ‘sin’, ‘hardlim’, ‘tribas’ and ‘radbas’—were selected for testing. In
order to optimize the input-layer connection weights, the scaling factor λ is introduced to
limit the range of the input-layer connection weights. Therefore, the value range of the
input-layer connection weights can be expressed as

wij ∈ λ · [−1, 1] λ ∈ [0, 1], (22)

where wij represents the input connection weights, and the randomly set range of the
input-layer weights will change with the value of the scaling factor λ, so as to achieve the
purpose of limiting their range.

(2) The determination of the objective function.

For ELM, the smaller the output weights and prediction error, the better the network
generalization ability. Therefore, the RMSE between the predicted and true values and the
2-norm of the output weight were taken as the two objective functions in this paper. f1 = min

√
N
∑

i=1
(yp,i−yt,i)

2

N ,
f2 = min∥β∥2

2

(23)

Here, N is the number of input samples, and yp,i and yt,i are the predicted value and true
value, respectively, of the ith training sample.

3.7. ICEEMDAN-SE-TFPF and NSGA II-ELM

Relying on the aforementioned algorithms, we propose a hybrid algorithm named
ICEEMDAN-SE-TFPF and NSGA II-ELM for gyroscope temperature compensation. The
algorithm logic diagram is shown in Figure 6, and the specific steps are as follows:
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Step 1. Firstly, the gyroscope’s output containing noise and temperature drift is
decomposed into IMFs by ICEEMDAN.

Step 2. Secondly, the decomposed IMFs are classified into a noise segment, mixed
segment and feature segment by SE.

Step 3. Long-window TFPF is used to denoise the noise segment with high noise
content, short-window TFPF is used to strip the useful signals in the mixed segment, and
the feature segment containing temperature drift is compensated by NSGA II-ELM.

Step 4. Finally, the denoised noise segment, denoised mixed segment and compensated
feature segment are combined to reconstruct the final gyroscope’s output.

4. Experiment
4.1. The Experimental Process

The setup for the temperature experiment on the gyroscope is shown in Figure 7.
A detection circuit was distributed across three separate PCBs. Metal pins served not
only to interconnect the electronic signals within the detection circuit but also to facilitate
the connections between the three PCBs, each of which was encased in a rubber pad.
Subsequently, the rubber-wrapped PCBs were placed within a metal shell, a measure that
effectively safeguarded the chip’s structure while minimizing the risk of severe impact.
To mitigate electromagnetic interference, the ground signal was connected to the metal
shell. Additionally, one of the three PCBs served as a weak signal interface with the
structural chip, while the other two functioned as induction and drive circuits, respectively.
The experimental setup included a temperature-controlled oven, a multimeter, a signal
generator, and a DC power supply of ±10 V. The experimental procedure unfolded as
follows: Initially, activate the gyroscope and allow it to stabilize at room temperature for
one hour. Next, rapidly raise the temperature-controlled oven to 60 ◦C to ensure that the
gyroscope housing reaches a consistent temperature of 60 ◦C, maintaining this temperature
for an additional hour. Subsequently, as the temperature in the oven decreases to 10 ◦C,
the gyroscope continues to operate under these conditions for an hour. Finally, as the
temperature drops to −40 ◦C, the gyroscope operates for one final hour before concluding
the experiment.
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4.2. The Experimental Results

Figure 8 shows the temperature experiment results from the gyroscope. It can be seen
that the gyroscope’s output presents a nonlinear relationship with the temperature change.
As the temperature changed from 60 ◦C to −40 ◦C, the output shifted from 0.115◦ to 0.15◦,
and the gyroscope’s output signal contains not only temperature drift but also noise.
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According to the flow of our proposed hybrid algorithm, the gyroscope’s output signal
was firstly decomposed by ICEEMDAN. Figure 9 shows that the gyroscope’s output signal
was decomposed into 12 IMFs. The SE value of each IMF was calculated and classified,
and the results are shown in Figure 10. The SE values of the first, second and third IMFs
were greater than 0.6, so these IMFs were divided into the noise segment, which contains a
lot of noise. Therefore, the long-window TFPF with better denoising ability was selected
for denoising this segment. The SE values of the fourth, fifth, sixth and seventh IMFs were
between 0.1 and 0.6, so these IMFs were divided into the mixed segment containing noise
and useful signals. Because short-window TFPF can well preserve useful components
during denoising, it was selected for denoising this segment. The SE values of the 8th,
9th, 10th, 11th and 12th IMFs were below 0.1, so these IMFs were divided into the feature
segment, which comprises a drift term caused by the temperature change. This segment
was compensated by NSGA II-ELM.

Before establishing the temperature compensation model to compensate the feature
segment, NSGA II was used to optimize ELM to obtain the best network parameters. As
mentioned before, the optimal searching range for hidden neurons was [0, 50]; the activation
functions were ‘sigmoid’, ‘sin’, ‘hardlim’, ‘tribas’ and ‘radbas’; and the range of connection
weights of the input layer was set to [−1, 1]. In addition, the population number was set to
40, the crossover probability was 0.8, the mutation probability was 0.15, and the number
of iterations was 15. After the iterations, the optimization result of the NSGA II particle
swarm was obtained. Figure 11 shows the distribution of particles in three-dimensional
space, where each blue circle represents a particle. The position of the particle marked by
the red circle represents the optimal network parameters for ELM, that is, the number of
hidden neural networks was 11, the activation function type was the ‘sin’ function, and the
range of input-layer connection weights was [−0.65, 0.65]. Figure 12 presents a comparison
of each segment before and after processing. In order to investigate the denoising capability
of ICEEMDAN-SE-TFPF, we reconstructed the noise segment after denoising, the mixed
segment after denoising, and the feature segment. From Figure 13, we can see that the noise
was basically eliminated. On this basis, the final signal was obtained by compensating
the feature segment. In Figure 14, we can see that the noise component and temperature
drift in the gyroscope’s output signal were eliminated. To further evaluate the proposed
algorithm, a quantitative analysis was performed, as described in the next subsection.
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4.3. Comparative Analysis

Inertial devices commonly employ Allan variance analysis, as outlined in the IEEE
standard [36], for error analysis. In this study, we utilized Allan variance analysis to
quantitatively assess the angle random walk and bias stability of both the original and
compensated gyroscope outputs. Figure 15 illustrates the comparison results. Following
denoising and compensation, the angle random walk of the original output decreased from
0.531076 to 6.65894 × 10−3◦/h/

√
Hz, while the bias stability was reduced from 32.7364◦/h

to 0.259247◦/h. These findings underscore the superior performance of our proposed
hybrid algorithm. A high-precision model is key to improving the compensation effect, so
we adopted NSGA II to optimize ELM. To verify the superiority of the improved ELM, a
comparative analysis was performed here with a BP neural network and unoptimized ELM,
taking the experimental temperature change as the input and the drift part in the gyroscope
output as the output for training. In Figure 16, the error of ELM at the inflection point is
large when compared with the real output, and the predicted output of the improved ELM
is closest to the real value when compared with BP. After the input parameters of ELM were
optimized by NSGA II, ELM had stronger generalization ability and learning accuracy.
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5. Conclusions

In this paper, we proposed a hybrid algorithm based on ICEEMDAN-SE-TFFPF and
NSGA II-ELM for gyroscope temperature compensation. After ICEEMDAN decomposition
and SE classification, the gyroscope’s output signal was divided into a noise segment, mixed
segment and feature segment; then, long-window and short-window TFPF were selected
to denoise the noise segment and the mixed segment, respectively. Before processing the
feature segment, NSGA II was utilized to optimize ELM, including the number of hidden-
layer neurons, the type of activation function, and the range of input-layer connection
weights. The optimization objectives were determined by the RMSE of the predicted output
and the 2-norm of the output-layer connection weight. This gave ELM good generalization
ability and higher prediction accuracy; when compared with the BP neural network and
ELM, the predicted value of improved ELM was closest to the real value, displaying
improved compensation accuracy. The experimental results show that the angle random
walk and bias stability of the compensated output signal were reduced from 0.531076 to
6.65894 × 10−3◦/h/

√
Hz and from 32.7364 to 0.259247◦/h, respectively.

Author Contributions: Conceptualization, Z.Z.; Methodology, X.Z. and H.C.; Software, X.Z., Z.Z. and
J.Z.; Resources, J.Z. and X.Z.; Data curation, J.Z.; Formal analysis, H.C. and Y.R.; Writing—original
draft preparation, Z.Z. and J.Z.; Writing—review and editing, Y.R. and J.Y.; Funding acquisition, H.C.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under Grant U2230206, in part by the National Key Research and Development Program of China
under Grant 2022YFB3205000, and in part by the Fundamental Research Program of Shanxi Province
under Grant 20210302123020.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Shen, Q.; Yang, D.; Li, J.; Chang, H. Bias Accuracy Maintenance under Unknown Disturbances by Multiple Homogeneous MEMS

Gyroscopes Fusion. IEEE Trans. Ind. Electron. 2023, 70, 3178–3187. [CrossRef]
2. Ding, X.; Ruan, Z.; Jia, J.; Huang, L.; Li, H.; Zhao, L. In-Run Mode-Matching of MEMS Gyroscopes Based on Power Symmetry of

Readout Signal in Sense Mode. IEEE Sens. J. 2021, 21, 23806–23817. [CrossRef]
3. Pentek, Z.; Hiller, T.; Czmerk, A. Algorithmic Enhancement of Automotive MEMS Gyroscopes with Consumer-Type Redundancy.

IEEE Sens. J. 2021, 21, 2092–2103. [CrossRef]

https://doi.org/10.1109/TIE.2022.3167137
https://doi.org/10.1109/JSEN.2021.3112915
https://doi.org/10.1109/JSEN.2020.3017094


Micromachines 2024, 15, 609 18 of 19

4. Antonio, J.A.D.; Longo, M.; Zaninelli, D.; Ferrise, F.; Labombarda, A. MEMS-based Measurements in Virtual Reality: Setup an
Electric Vehicle. In Proceedings of the 2021 56th International Universities Power Engineering Conference (UPEC), Middlesbrough,
UK, 31 August–3 September 2021; pp. 1–5.

5. Chen, L.; Miao, T.; Li, Q.; Wang, P.; Wu, X.; Xi, X.; Xiao, D. A Temperature Drift Suppression Method of Mode-Matched MEMS
Gyroscope Based on a Combination of Mode Reversal and Multiple Regression. Micromachines 2022, 13, 1557. [CrossRef]

6. Cao, H.; Wei, W.; Liu, L.; Ma, T.; Zhang, Z.; Zhang, W.; Shen, C.; Duan, X. A Temperature Compensation Approach for Dual-Mass
MEMS Gyroscope Based on PE-LCD and ANFIS. IEEE Access 2021, 9, 95180–95193. [CrossRef]

7. Cui, J.; Yan, G.; Zhao, Q. Enhanced temperature stability of scale factor in MEMS gyroscope based on multi parameters fusion
compensation method. Measurement 2019, 148, 106947. [CrossRef]

8. Ho, G.K.; Pourkamali, S. Micromechanical IBARs: Tunable high-Q resonators for temperature-compensated reference oscillators.
J. Microelectromech. Syst. 2010, 19, 503–515. [CrossRef]

9. Tao, Y.; Liu, W.; Nan, C.; Wang, S.; Ding, X.; Liu, L.; Bai, Y.; Zhou, Y.; Xing, E.; Chen, J.; et al. Dual closed-loop control method for
resonant integrated optic gyroscopes with combination differential modulation. Opt. Commun. 2024, 556, 130264. [CrossRef]

10. Trusov, A.A.; Schofield, A.R.; Shkel, A.M. Performance characterization of a new temperature-robust gain-bandwidth improved
MEMS gyroscope operated in air. Sens. Actuators A Phys. 2008, 155, 16–22. [CrossRef]

11. Prikhodko, I.P.; Trusov, A.A.; Shkel, A.M. Compensation of drifts in high-Q MEMS gyroscopes using temperature self-sensing.
Sens. Actuators A Phys. 2013, 201, 517–524. [CrossRef]

12. Cao, H.; Cui, R.; Liu, W.; Ma, T.; Zhang, Z.; Shen, C.; Shi, Y. Dual mass MEMS gyroscope temperature drift compensation based
on TFPF-MEA-BP algorithm. Sens. Rev. 2021, 41, 162–175. [CrossRef]

13. Cao, H.; Zhang, Z.; Zheng, Y.; Guo, H.; Zhao, R.; Shi, Y.; Chou, X. A New Joint Denoising Algorithm for High-G Calibration of
MEMS Accelerometer Based on VMD-PE-Wavelet Threshold. Shock Vib. 2021, 2021, 8855878. [CrossRef]

14. Liu, Y.; Chen, G.; Wei, Z.; Yang, J.; Xing, D. Denoising Method of MEMS Gyroscope Based on Interval Empirical Mode
Decomposition. Math. Probl. Eng. 2020, 2020, 3019152. [CrossRef]

15. Xu, L.; Li, W.; Zhang, B.; Zhu, Y.; Lang, C. Fault Diagnosis of Mine Truck Hub Drive System Based on LMD Multi-Component
Sample Entropy Fusion and LS-SVM. Actuators 2023, 12, 468. [CrossRef]

16. Wei, J.; Zhang, Z.; Cao, H.; Duan, X. Hybrid Temperature Compensation Model of MEMS Gyroscope Based on Genetic Particle
Swarm Optimization Variational Modal Decomposition and Improved Backpropagation. Sens. Mater. 2021, 33, 2835–2856.
[CrossRef]

17. Motin, M.A.; Karmakar, C.K.; Palaniswami, M. Ensemble Empirical Mode Decomposition with Principal Component Analysis: A
Novel Approach for Extracting Respiratory Rate and Heart Rate From Photoplethysmographic Signal. IEEE J. Biomed. Health
Inform. 2018, 22, 766–774. [CrossRef]

18. Tian, S.; Bian, X.; Tang, Z.; Yang, K.; Li, L. Fault Diagnosis of Gas Pressure Regulators Based on CEEMDAN and Feature Clustering.
IEEE Access 2019, 7, 132492–132502. [CrossRef]

19. Colominas, M.A.; Schlotthauer, G.; Torres, M.E. Improved complete ensemble EMD: A suitable tool for biomedical signal
processing. Biomed. Signal Process. Control 2014, 14, 19–29. [CrossRef]

20. Donoho, D.L.; Johnstone, I.M. Adapting to Unknown Smoothness via Wavelet Shrinkage. J. Am. Stat. Assoc. 1995, 90, 1200–1224.
[CrossRef]

21. Donoho, D.L.; Johnstone, I.M. Ideal spatial adaptation by wavelet shrinkage. Biometrika 1994, 81, 425–455. [CrossRef]
22. Boashash, B.; Mesbah, M. Signal enhancement by time-frequency peak filtering. IEEE Trans. Signal Process. 2004, 52, 929–937.

[CrossRef]
23. Shen, C.; Song, R.; Li, J.; Zhang, X.; Tang, J.; Shi, Y.; Liu, J.; Cao, H. Temperature drift modeling of MEMS gyroscope based on

genetic-Elman neural network. Mech. Syst. Signal Process. 2016, 72–73, 897–905.
24. Song, R.; Chen, X.; Shen, C.; Zhang, H. Modeling FOG Drift Using Back-Propagation Neural Network Optimized by Artificial

Fish Swarm Algorithm. J. Sens. 2014, 2014, 276043. [CrossRef]
25. Li, J.; Jiao, F.; Fang, J.; Cheng, J. Temperature Error Modeling of RLG Based on Neural Network Optimized by PSO and

Regularization. IEEE Sens. J. 2014, 14, 912–919.
26. Gu, H.; Liu, X.; Zhao, B.; Zhou, H. The In-Operation Drift Compensation of MEMS Gyroscope Based on Bagging-ELM and

Improved CEEMDAN. IEEE Sens. J. 2019, 19, 5070–5077. [CrossRef]
27. Wang, Z.; Yan, J.; Chen, F.; Peng, X.; Zhang, Y.; Wang, Z.; Duan, S. Sensor Drift Compensation of E-Nose Systems with

Discriminative Domain ReCconstruction Based on an Extreme Learning Machine. IEEE Sens. J. 2021, 21, 17144–17153. [CrossRef]
28. Bacanin, N.; Stoean, C.; Zivkovic, M.; Jovanovic, D.; Antonijevic, M.; Mladenovic, D. Multi-Swarm Algorithm for Extreme

Learning Machine Optimization. Sensors 2022, 22, 4204. [CrossRef]
29. Han, F.; Yao, H.-F.; Ling, Q.-H. An improved evolutionary extreme learning machine based on particle swarm optimization.

Neurocomputing 2013, 116, 87–93. [CrossRef]
30. Wu, Y.; Zhang, Y.; Liu, X.; Cai, Z.; Cai, Y. A multiobjective optimization-based sparse extreme learning machine algorithm.

Neurocomputing 2018, 317, 88–100. [CrossRef]
31. Xu, L.; Su, H.; Cai, D.; Zhou, R. RDTS Noise Reduction Method Based on ICEEMDAN-FE-WSTD. IEEE Sens. J. 2022, 22, 17854–

17863. [CrossRef]

https://doi.org/10.3390/mi13101557
https://doi.org/10.1109/ACCESS.2021.3094120
https://doi.org/10.1016/j.measurement.2019.106947
https://doi.org/10.1109/JMEMS.2010.2044866
https://doi.org/10.1016/j.optcom.2024.130264
https://doi.org/10.1016/j.sna.2008.11.003
https://doi.org/10.1016/j.sna.2012.12.024
https://doi.org/10.1108/SR-09-2020-0205
https://doi.org/10.1155/2021/8855878
https://doi.org/10.1155/2020/3019152
https://doi.org/10.3390/act12120468
https://doi.org/10.18494/SAM.2021.3412
https://doi.org/10.1109/JBHI.2017.2679108
https://doi.org/10.1109/ACCESS.2019.2941497
https://doi.org/10.1016/j.bspc.2014.06.009
https://doi.org/10.1080/01621459.1995.10476626
https://doi.org/10.1093/biomet/81.3.425
https://doi.org/10.1109/TSP.2004.823510
https://doi.org/10.1155/2014/273043
https://doi.org/10.1109/JSEN.2019.2902912
https://doi.org/10.1109/JSEN.2021.3081923
https://doi.org/10.3390/s22114204
https://doi.org/10.1016/j.neucom.2011.12.062
https://doi.org/10.1016/j.neucom.2018.07.060
https://doi.org/10.1109/JSEN.2022.3196944


Micromachines 2024, 15, 609 19 of 19

32. Sun, Q.; Liu, C.; Chen, T.; Zhang, A.; Liu, C.; Tao, Y. Adaptive Decomposition and Multitimescale Analysis of Long Time Series
of Climatic Factors and Vegetation Index Based on ICEEMDAN-SVM. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022,
15, 6203–6219. [CrossRef]

33. Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol.-
Heart Circ. Physiol. 2000, 278, H2039–H2049. [CrossRef]

34. Bai, L.; Han, Z.; Li, Y.; Ning, S. A Hybrid De-Noising Algorithm for the Gear Transmission System Based on CEEMDAN-PE-TFPF.
Entropy 2018, 20, 361. [CrossRef]

35. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.
Comput. 2002, 6, 182–197. [CrossRef]

36. Wang, L.; Zhang, C.; Lin, T.; Li, X.; Wang, T. Characterization of a fiber optic gyroscope in a measurement while drilling system
with the dynamic Allan variance. Measurement 2015, 75, 263–272. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/JSTARS.2022.3194987
https://doi.org/10.1152/ajpheart.2000.278.6.H2039
https://doi.org/10.3390/e20050361
https://doi.org/10.1109/4235.996017
https://doi.org/10.1016/j.measurement.2015.05.001

	Introduction 
	Introduction of the Dual-Mass MEMS Gyroscope 
	Algorithms and Models 
	Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise 
	Sample Entropy 
	Time–Frequency Peak Filtering 
	Extreme Learning Machine 
	Non-Dominated Sorting Genetic Algorithm II 
	ELM Optimization 
	ICEEMDAN-SE-TFPF and NSGA II-ELM 

	Experiment 
	The Experimental Process 
	The Experimental Results 
	Comparative Analysis 

	Conclusions 
	References

