
Citation: Zhou, B.; Liu, C.; Guo, C.;

Hu, X.; Jian, X.; Wang, H.; Yang, X.

Effect of High-Temperature Storage

on Electrical Characteristics of

Hydrogen-Treated AlGaN/GaN

High-Electron-Mobility Transistors.

Micromachines 2024, 15, 611. https://

doi.org/10.3390/mi15050611

Academic Editor: Sadia Ameen

Received: 15 March 2024

Revised: 17 April 2024

Accepted: 27 April 2024

Published: 30 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

Effect of High-Temperature Storage on Electrical Characteristics of
Hydrogen-Treated AlGaN/GaN High-Electron-Mobility Transistors
Bin Zhou 1, Chang Liu 1,* , Chenrun Guo 1, Xianghong Hu 1,2,*, Xiaodong Jian 1 , Hongyue Wang 1

and Xiaofeng Yang 1

1 The Fifth Electronics Research Institute of the Ministry of Industry and Information Technology,
Guangzhou 511370, China

2 National and Local Joint Engineering Research Center of Reliability Analysis and Testing Technology of
Electronic Information Products, Guangzhou 511370, China

* Correspondence: xd_liuchang@163.com (C.L.); huxh@ceprei.com (X.H.)

Abstract: In this paper, high-temperature storage of hydrogen-treated AlGaN/GaN HEMTs is con-
ducted for the first time to study the effect of high temperature on the electrical characteristics
of the devices after hydrogen treatment, and it is found that high-temperature storage can effec-
tively reduce the impact of hydrogen on the devices. After hydrogen treatment, the output current
and the maximum transconductance of the device increase, and the threshold voltage drifts nega-
tively. However, after high-temperature treatment at 200 ◦C for 24 h, the output current, threshold
voltage, and the maximum transconductance of the device all approach their initial values before
hydrogen treatment. By using low-frequency noise analysis technology, the trap density of the
hydrogen-treated AlGaN/GaN HEMT is determined to be 8.9 × 1023 cm−3·eV−1, while it changes to
4.46 × 1022 cm−3·eV−1 after high-temperature storage. We believe that the change in the electrical
characteristics of the device in hydrogen is due to the passivation of hydrogen on the inherent trap
of the device, and the variation in the electrical properties of the device in the process of high-
temperature storage involves the influence of two effects, namely the dehydrogenation effect and the
improvement of the metal–semiconductor interface caused by high temperatures.

Keywords: AlGaN/GaN HEMT; hydrogen; high-temperature storage

1. Introduction

Due to the advantages of the wide bandgap, high breakdown voltage, high con-
centration of two-dimensional electron gas (2DEG), excellent thermal conductivity, and
high electron mobility, GaN-based high-electron-mobility transistors (HEMTs) have great
application prospects in high-temperature, high-frequency, and aerospace fields [1–3].
For hermetic-sealing devices in aerospace and other applications, hydrogen is an envi-
ronmental factor that can affect reliability. Since the 1980s, hydrogen has been found to
have an impact on the electrical characteristics of compound semiconductor devices. In
1989, the degradation of GaAs FETs and MMIC due to the presence of hydrogen was
reported [4]. Studies have shown that hydrogen as low as 0.5% can also cause significant
degradation of the device at higher temperatures (125 ◦C) and in a relatively short time
(168 h). P. C. Chao et al. [5] reported that the GaAs PHEMTs with Ti/Pt/Au gate decreased
in transconductance and output current at 270 ◦C and a 4% hydrogen concentration, while
the pinch-off voltage increased and the source resistance remained unchanged. In 1994, a
lifetime model of the hydrogen effect was obtained, which showed that the degradation was
related to the hydrogen partial pressure and temperature [6]. In the meantime, researchers
began to pay attention to the interaction between hydrogen and GaN materials, focusing on
the form of hydrogen in GaN and its effects on impurities [7,8]. Then, GaN-based hydrogen
sensors were manufactured and demonstrated favorable hydrogen sensitivity [9–11]. In
recent years, the impact of hydrogen on the reliability of GaN devices has become a new
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concern [12–15]. The hydrogen in GaN devices mainly comes from the process of mate-
rial preparation and package assembly. During the preparation process of AlGaN/GaN
HEMTs, hydrogen is introduced into the material through metal organic chemical vapor
deposition (MOCVD) or hydride vapor phase epitaxy (HVPE) methods [16]. The MOCVD
method needs hydrogen as the carrier gas to promote the growth of AlGaN and GaN, and
the HVPE method requires hydrogen as a reducing agent to reduce the metal ions in the
preparation reaction to metal atoms. Both the MOCVD and HVPE methods introduce
hydrogen into AlGaN/GaN materials. Moreover, hydrogen is also introduced in packaging
processes such as electroplating and is absorbed by the shell material. For AlGaN/GaN
HEMTs using hermetic-sealing technology, hydrogen can be released from the AlGaN/GaN
HEMTs materials and packaging material, accumulating in the sealed cavity and leading to
reliability issues and changes in the electrical characteristics [17]. Previous studies have
shown that exposing AlGaN/GaN HEMTs to a hydrogen environment can increase the
gate leakage current by several orders of magnitude and significantly reduce electron
mobility in the channel [18]. It has also been found that hydrogen can passivate traps inside
devices, resulting in threshold voltage shifts and increased saturation output currents [12].
Hydrogen-treated devices may also be more susceptible to other stresses; for example, it
has been found that the degradation effect of protons on hydrogen-treated devices is more
severe [19]. In order to understand whether the hydrogen-treated device can be recovered
in a high-temperature environment, the high-temperature storage of hydrogen-treated
AlGaN/GaN HEMTs is conducted, and the DC, C–V and pulse I–V characteristics before
and after storage are compared. Based on the measurement results of the low-frequency
noise, the mechanism of the high-temperature storage of hydrogen-treated AlGaN/GaN
HEMTs is obtained.

2. Materials and Methods

The schematic diagram and the surface morphology of the device are shown in
Figure 1. The SiNx protective layer thickness is approximately 0.15 µm. The thickness
of the metal gate deposited on the GaN material layer is approximately 0.15 µm. The
thickness of the AlGaN barrier layer is 25 nm, and the thickness of the GaN buffer layer is
2 µm. The thickness of the Si substrate at the bottom is 350 µm, the gate width (Wg) of the
AlGaN/GaN HEMTs is 1.25 mm, and the length (Lg) is 0.5 µm.
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Figure 1. Device structure: (a) the schematic diagram of the cross-section and (b) surface morphol-
ogy of the AlGaN/GaN HEMTs. 

The specific experimental process is shown in Figure 2. Firstly, the AlGaN/GaN 
HEMTs were placed in a sealed chamber filled with hydrogen–nitrogen mixture gas at 
standard atmospheric pressure and room temperature. Due to the safety requirements of 
the laboratory, the hydrogen–nitrogen mixture gas was composed of 96% N2 and 4% H2. 

Figure 1. Device structure: (a) the schematic diagram of the cross-section and (b) surface morphology
of the AlGaN/GaN HEMTs.

The specific experimental process is shown in Figure 2. Firstly, the AlGaN/GaN
HEMTs were placed in a sealed chamber filled with hydrogen–nitrogen mixture gas at
standard atmospheric pressure and room temperature. Due to the safety requirements
of the laboratory, the hydrogen–nitrogen mixture gas was composed of 96% N2 and 4%
H2. The devices were maintained in this environment for 336 h to allow hydrogen to fully
contact the devices. The hydrogen-treated AlGaN/GaN HEMTs were then transferred to
an environmental test chamber and kept at 200 ◦C for 24 h. Before and after the hydrogen
treatment and high-temperature storage, the DC, C–V and pulsed I–V characteristics of
the devices were measured using a semiconductor parameter analyzer (Agilent B1500A,
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Keysight, Santa Rosa, CA, USA). In addition, the noise power spectral density of the devices
was extracted using a low-frequency noise-testing system consisting of Keysight E4727A
and Agilent B1500A (Keysight, Santa Rosa, CA, USA).
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AlGaN/GaN HEMTs.

3. Results
3.1. DC Characteristics

To determine the effect of high-temperature storage on the DC characteristics of the
hydrogen-treated AlGaN/GaN HEMTs, we compared the transfer and output characteris-
tics of the fresh device, the hydrogen-treated device and the device after high-temperature
storage, as shown in Figure 3a,b. Figure 3a shows the variation trend of the output charac-
teristics of the AlGaN/GaN HEMT with Vgs ranging from −3.2 V to −2.4 V (0.2 V step).
After the hydrogen treatment, the output saturation current of the device significantly
increased, while after high-temperature storage, the output saturation current decreased
and returned to the initial value. When measuring the transfer characteristics, the Vds is
specified as 0.5 V. As shown in Figure 3b, after the hydrogen treatment, both the transfer
curve and transconductance curve of the device drifted negatively. When the device was in
the on-state, the Ids of the hydrogen-treated device was greater than the original value at the
same Vds and Vgs. However, after high-temperature storage at 200 ◦C for 24 h, the transfer
curve of the device drifted positively and approached its initial value, which was consistent
with the output curve. We also extracted the maximum transconductance (Gmmax) from
the transconductance curve. It was found that the Gmmax of the device increased from
the initial 0.9S to 0.93S after the hydrogen treatment. After high-temperature storage, the
Gmmax of the device returned to 0.89S, which was closer to the initial value.

In order to analyze the effect of the hydrogen treatment and high-temperature storage
on the Schottky junction and gate electrode of the AlGaN/GaN HEMTs, the gate-to-drain
leakage current (Igd) and gate-to-source leakage current (Igs) curves of the AlGaN/GaN
HEMTs were obtained, as shown in Figure 3c,d. It can be seen that the influence of
hydrogen on the Igs mainly occurred near the threshold voltage. After the hydrogen
treatment, both the Igs and Igd of the devices decreased by an order of magnitude, but after
high-temperature storage, the recovery phenomenon of the Igs and Igd appeared to varying
degrees in the device.

Figure 4 shows the changes in the threshold voltage (Vth) and the Ids (under test
conditions of Vgs = −2.4 V and Vds = 2 V) in the different experimental phases visually.
From Figure 4, the Vth of the AlGaN/GaN HEMT changed from the initial −2.88 V to
−3.00 V after the hydrogen treatment. Then, it returned to its initial value after high-
temperature storage. The Ids of the AlGaN/GaN HEMT showed same trend. It increased
by 41 mA from the initial 709 mA to 750 mA after the hydrogen treatment. Then, the Ids
decreased to 712 mA after high-temperature storage, which was close to the initial value.
The change of parameters after the hydrogen treatment may be attributed to the passivation
of the inherent defects within the device by hydrogen [20,21]. After high-temperature
storage, hydrogen gradually resolved from the device, causing the Vth and Ids to return to
the vicinity of the initial value.
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3.2. C–V and Pulsed I–V Characteristics

Figure 5a compares the C–V characteristics of the AlGaN/GaN HEMTs before and
after the hydrogen treatment, as well as after 200 ◦C storage, at a frequency of 1 MHz. It can
be seen that the barrier capacitance of the AlGaN/GaN HEMT reduced after the hydrogen
treatment but increased to its initial value after high-temperature storage.

To characterize the current collapse effect of the hydrogen-treated AlGaN/GaN
HEMTs before and after high-temperature storage, pulsed I–V measurements were per-
formed on the devices. The current collapse effect is related to electron transport and
capture during each static bias period, and it can reflect the trap density and interface
state density in the barrier layer [22]. We selected three different static bias points, (Vgsq,
Vdsq) = (0 V, 0 V), (−6 V, 0 V), and (−6 V, 10 V). The pulse width was set to 5 µs and the
pulse interval was set to 10 ms. When (Vgsq, Vdsq) = (0 V, 0 V), no stress was applied to
the gate and drain of the device, so there was no obvious current collapse phenomenon.
However, when the device was in the off-state at (Vgsq, Vdsq) = (−6 V, 0 V) and (−6 V, 10 V),
applying a voltage would cause the charge and discharge phenomena of the traps in the
material. Figure 5b,c show the pulsed I–V output characteristics of the hydrogen-treated
AlGaN/GaN HEMTs before and after high-temperature storage. In order to observe the
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current collapse of the device more accurately, a formula was used to quantify the current
collapse rate Rcc of the device [23].

Rcc =
Ids(Vgsq = 0 V, Vdsq = 0 V)− Ids(Vgsqi, Vdsqi)

Ids(Vgsq = 0 V, Vdsq = 0 V)
, (1)

where Vgsqi and Vdsqi are the static voltage biases that make the device in the off-state.
According to (1), the Rcc of the hydrogen-treated AlGaN/GaN HEMT before and after
high-temperature storage was extracted. Using the Ids at Vgs = −2.4 V as the basis for
comparison, the current collapse rates under the two off-state bias were obtained and are
shown in Figure 6a,b.
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Under the static bias conditions of (Vgsq, Vdsq) = (−6 V, 0 V) and (−6 V, 10 V), the
Rcc of the hydrogen-treated AlGaN/GaN HEMTs at Vds = 2 V, Vgs = −2.4 V decreased
from 10.4% and 50.21% to 8.7% and 47.09% after high-temperature storage, respectively,
indicating that the effect of the traps capturing channel electrons was weakened. This
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phenomenon may be due to the reduction in the interface state density in the barrier layer
after high-temperature storage.

3.3. Low-Frequency Noise Characteristics

To verify that high-temperature storage can reduce the density of the traps in hydrogen-
treated AlGaN/GaN HEMTs, the trap density of the hydrogen-treaded devices before and
after storage was analyzed by using low-frequency noise technology. Under a drain bias of
100 mV, a low-frequency noise analysis system was used to measure the noise power spec-
tral density (SId) of the hydrogen-treated devices before and after high-temperature storage
in the frequency range of 10 Hz to 1000 Hz, as shown in Figure 7. From Figure 7a, it can be
seen that the SId has a good correlation with the 1/f rule in the tested frequency range.
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In order to further analyze the low-frequency noise characteristics, we constructed
the curve of the SId/Ids

2 and (Gm/Ids)2 with the Ids, as shown in Figure 7b. It was found
that they had a good consistency, indicating that the low-frequency noise of the device
conformed to the carrier number fluctuation model [24,25]. Therefore, the flat-band voltage
noise power spectral density Svfb can be calculated according to (2) [26,27].

SId

I2
ds

=

(
Gm

Ids

)2
Svfb, (2)

The Svfb of the hydrogen-treated AlGaN/GaN HEMTs before and after storage were
1.88 × 10−11 Hz−1 and 9.79 × 10−13 Hz−1, respectively. The trap density (Not) in the
AlGaN/GaN HEMTs can be determined by the following formula [28,29].

Not =
WL f C2

b
q2kBTλ

Svfb, (3)

where q is the electronic charge, kB is the Boltzmann constant, T is the absolute temperature,
λ = 0.5 is the tunneling parameter, corrected as AlGaN/GaN conduction band alignment
here, W and L are the gate width and length, f is the frequency, and Cb is the AlGaN
barrier capacitance. According to (3), the extracted Not were 8.9 × 1023 eV−1·cm−3 and
4.46 × 1022 eV−1·cm−3 before and after the storage. It can be seen that high-temperature
storage treatment can effectively reduce the trap density of hydrogen-treated AlGaN/GaN
HEMTs.

4. Discussion

The mechanism is illustrated in Figure 8. During hydrogen treatment, it is observed
that the drain current of the device increases, the threshold voltage negatively drifts and the
gate leakage current decreases, which is mainly due to the passivation effect of hydrogen on
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the inherent trap of GaN devices. As shown in Figure 8a, there are lots of defects in the GaN
buffer layer, AlGaN barrier layer, heterostructure interface, the gap layer and AlGaN surface
of the AlGaN/GaN HEMTs because of the heteroepitaxy process for the current state of
the art device, including the Ga vacancies (VGa), nitrogen antisites (NGa), and N vacancies
(VN) [30,31]. These defects assist electron tunneling and trap charge carriers, resulting in
current collapse and large noise power spectral density. Previous studies have shown that
hydrogen will be catalyzed by the gate metal Pt, from hydrogen molecules to hydrogen
atoms, so as to move through the SiNx passivation layer and enter the device [4,5,12,32,33].
These hydrogen atoms interact with these inherent defects, forming hydrogenation defects
such as [VGaH3], [NGaH2], and [VNH2] [16,20]. This effect reduces the total number of
defects inside the device so that these defects no longer capture electrons, thus increasing
the channel carrier concentration and further increasing the drain current.
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After high-temperature storage, the situation is different. The degradation mode of the
device shows that the drain current decreases and the threshold voltage positively drifts
compared with the hydrogen-treated device. We believe that this is the comprehensive
result of dehydrogenation effect [34] and the improvement of the metal–semiconductor in-
terface caused by storage [35]. First, previous studies have shown that hydrogen-containing
compounds are unstable and prone to dehydrogenation at high temperatures [5]. After
dehydrogenation of the hydrogenation defects such as [VGaH3], [NGaH2], and [VNH2]
described above, the trap density in the device will increase, but this is clearly the opposite
of the measurement results for the current collapse and low-frequency noise. Therefore, we
believe that high-temperature storage also improves the quality of the metal–semiconductor
contact in the device. After the device is manufactured, the contact between the metal and
the semiconductor is not tight, as there is a gap of several nanometers [36,37], but after
high-temperature storage, this gap is consumed, forming a tighter metal–semiconductor
contact interface [35,38]. This results in a decrease in the trap density at the Schottky
contact interface, counteracting the increase in the trap density due to dehydrogenation.
As we know, the current collapse effect is related to the trap on the device surface, and the
low-frequency noise characterizes the average trap density near the Fermi level. Therefore,
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with the improvement of the metal–semiconductor interface, the current collapse effect is
weakened and the trap density measured by low-frequency noise is also reduced.

5. Conclusions

In summary, hydrogen can affect the electrical characteristics of AlGaN/GaN HEMTs,
resulting in negative threshold voltage drift and increased drain current. By storing the
hydrogen-treated device at a high temperature of 200 ◦C for 24 h, the threshold voltage and
drain output current of the device regress to the typical initial values. The change in the
electrical characteristics of the device in hydrogen is due to the passivation of hydrogen on
the inherent trap of the device, and the variation in the electrical properties of the device in
the process of high-temperature storage involves the influence of two effects, namely the
dehydrogenation effect and the improvement of the metal–semiconductor interface caused
by storage at high temperatures.
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