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Simple Summary: We review recent advances in imaging techniques and applications of artificial
intelligence to improve the diagnosis and prognosis of high-grade gliomas, the deadliest brain
tumors. Although these technological advances promise to improve the precision of radiotherapy
and optimize treatment, they have yet to translate into widespread clinical benefits for patients with
high-grade glioma. We discuss possible measures to accelerate technology transfer from bench to
bedside. High-grade gliomas, to date, remain essentially fatal tumors, and the often unmet need to
adapt legislative instruments to the end of life of patients is also discussed.

Abstract: The first half of 2022 saw the publication of several major research advances in image-based
models and artificial intelligence applications to optimize treatment strategies for high-grade gliomas,
the deadliest brain tumors. We review them and discuss the barriers that delay their entry into
clinical practice; particularly, the small sample size and the heterogeneity of the study designs and
methodologies used. We will also write about the poor and late palliation that patients suffering from
high-grade glioma can count on at the end of life, as well as the current legislative instruments, with
particular reference to Italy. We suggest measures to accelerate the gradual progress in image-based
models and end of life care for patients with high-grade glioma.

Keywords: image-based models; radiobiological prediction; artificial intelligence; precision radiation
oncology; radiomics; radio genomics; machine learning; end of life

1. Introduction

High-grade gliomas (HGG; WHO grades III and IV) are brain tumors with the highest
incidence and mortality. Fears of an increase in their incidence periodically emerge about
the widespread and intense use of mobile phones, but the current epidemiological evidence
shows no increased risks in this sense, even if the existence of several confounding factors
makes the conclusions non-definitive [1,2]. Exposure to ionizing radiation, therefore,
remains the only demonstrated risk factor for brain tumors [3,4].

With regard to mortality, HGGs remain extremely difficult to treat, with the last signifi-
cant therapeutic advance dating back 18 years with the introduction of the alkylating agent
temozolomide (TMZ) [5]. HGGs are intensively studied for their genetic and epigenetic
characteristics [e.g., the methylation of the O6 methylguanine DNA methyltransferase
(MGMT) promoter, mutations in the isocitrate dehydrogenase (IDH) gene or histone genes]
as well as alterations of some signaling pathways that regulate cell proliferation (e.g.,
PI3K/AKT/mTOR, ATM, miRNA, WNT/β-catenin, JAK/STAT and others) in order to
find more specific and personalized treatments [6–8]. However, the great heterogeneity,
infiltrative capacity, and a plethora of alternative resistance pathways make the task ex-
tremely difficult in clinical settings [9]. Recently, alterations in the MAPK pathway such
as BRAF V600E mutations have attracted attention in this context for the efficacy of the
specific inhibitors of this altered signaling pathway in the therapy of some pediatric, and
potentially adult, gliomas [10–12].
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Unlike the problematic research into new therapeutic approaches, the development of
image-based models for the diagnosis and prognosis of HGG is progressing more steadily,
as evidenced by the regular publication of successive and increasingly complex versions of
the classification of brain tumors, the most recent of which dates back to 2021 [13]. However,
some measures could be taken to accelerate the development and validation of increasingly
less invasive procedures. We discuss the topic after examining the most relevant advances
published in the first half of 2022. In particular, magnetic resonance imaging (MRI), positron
emission tomography (PET) and other diagnostic models developed in both the preclinical
and clinical setting will be reviewed. Their employment for differentiating between HGG
and specific pathologies or dealing with specific aspects (e.g., the diagnosis of pediatric
HGG) will be analyzed. Advances in prognostic models developed preclinically and
clinically will follow. Eventually, we will discuss some aspects related to the end of life of
HGG patients.

2. Materials and Methods

A literature search was performed in PubMed using general terms (“radio* and
gliom*”) and time limits from 1 January 2022 to 30 June 2022. Despite the fact that the
exclusion of relevant articles retrievable in other databases or using different terminology
cannot be excluded, the use of the general terms indicated above has shown, in the past, to
recover the vast majority of articles relating to the topic analyzed [14,15]. Of the 934 records
automatically identified, 633 were manually discarded because, based on the article titles,
they did not meet the criteria for relevance to the topics “Radiology of HGG” or “Radiother-
apy of HGG”. In case of doubt, reference was made to the content of the abstract. Among
the remaining 301 bibliographic references, another 79 were deemed ineligible based on
the content of the article abstracts. In case of doubt, reference was made to the content of
the entire article. The .pdf files of the 222 remaining articles were all retrieved and deemed
suitable based on their content. Ninety were further analyzed and manually assigned to the
“HGG Radiotherapy” group (discussed elsewhere) while the other 132 were assigned to
the “HGG Radiology” group and discussed here. In addition to the 132 articles published
in the first half of 2022, this review includes 38 articles published before 1 January 2022
or after 30 June 2022, due to their important relevance to the topic addressed or the topic
eventually discussed on the end of life of patients, for a total of 170 references. A relevant
flowchart is shown in Figure 1.
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Figure 1. Flow diagram for reported studies (modified from [16] with permission). 
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[e.g., ferric ammonium citrate (FAC)] [18]. This sequential administration allowed an 
increase in iron deposition in C6 tumors transplanted into Wistar rats, allowing their 
better visualization by 3T MRI. 

  

Figure 1. Flow diagram for reported studies (modified from [16] with permission).

3. Models for the Diagnosis of HGG
3.1. MRI
3.1.1. Preclinical Studies

HGG and brain abscesses may exhibit similar features on MRI imaging, such as
expandable masses delimited by a ring with high contrast. Using animal models of dogs and
cats, Carloni and collaborators investigated whether there are MRI imaging characteristics
that might differentiate the two types of lesions [17]. Homogeneous signal intensity was
frequent in intraaxial abscesses while a progression of signal intensity in the center of the
lesion was indicative of glioma.

Ebrahimpour et al. elaborated an early detection method of HGG in animal models
using a sequential administration of 5-aminolevulinic acid (ALA) and iron supplements
[e.g., ferric ammonium citrate (FAC)] [18]. This sequential administration allowed an
increase in iron deposition in C6 tumors transplanted into Wistar rats, allowing their better
visualization by 3T MRI.
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3.1.2. Clinical Studies

Once the diagnosis is performed, surgical, chemotherapy and RT treatments are usu-
ally monitored using MRI sequences. Sometimes, MRI is unable to distinguish between
tumor tissue, pseudoprogression phenomena and treatment damage, for the distinction of
which we use perfusion techniques to evaluate the intensity of blood flow in the lesion pos-
sibly dependent on tumor neoangiogenesis or visualization via tomography with positron
emission (PET), aimed at determining the metabolic activity of the lesion. These advances
in imaging have partially extended to the operating room, making surgical resections more
precise and safer. However, despite the accumulated experience, it can very often still be
difficult for the neuro-radiologist to distinguish between tumor types using MRI [e.g., HGG
or primary central nervous system lymphoma (PCNSL)], pseudoprogression and treatment
necrosis [19].

Radiomic techniques for the extraction and digital quantification of data that may
support the experience of the neuro-radiologist with the power of artificial intelligence (AI)
are under development [20]; but they are still far from widespread use in clinical practice
due to the heterogeneity of protocols and methodologies adopted in the different clinical
trials in which machine learning techniques were used for the classification, diagnosis,
prognosis and response to the treatment of HGG [21,22].

The relative cerebral blood volume (rCBV) is an important parameter of the vascular-
ization and neoangiogenesis of the tumor lesion under investigation. It is usually quantified
by T2-Perfusion Weighted Imaging (T2-PWI; Table 1). Seo and coworkers reported that, al-
ternatively, T1-Perfusion Weighted Imaging with high temporal resolution can also provide
reliable rCBV values [23].

Scola et al. compared dynamic magnetic resonance susceptibility contrast (DSC-PWI)
perfusion techniques and computed tomography perfusion (CTP) in determining the
vascularity of primary and secondary brain tumors. Perfusion associated with computed
tomography (CT) has proved to be a valid alternative, should perfusion with magnetic
resonance imaging (MRI) not be available or tolerated by the patient [24].

Stadlbauer and collaborators investigated whether machine learning applied to physi-
ological MRI analysis (so-called “radiophysiomics”) could help to correctly diagnose brain
tumors with contrast enhancement (CE) and different histology (glioblastoma, anaplastic
astrocytoma, meningioma, PCNSL, brain metastasis) in comparison to conventional MRI
(cMRI) or advanced (advMRI) techniques [25] (Figure 2A) (Table 1). PhyMRI has allowed
the quantification of a series of diagnostic parameters not obtainable with cMRI or adv MRI
such as microvascular architecture, neovascularization, oxygen metabolism and tissue hy-
poxia, thus contributing to the differential diagnosis of lesions. However, the large amount
of time and effort dedicated to preprocessing data often requires deep neural networks.

The new NeuroXAI software (v.1) was applied in the classification and segmenta-
tion of the MRI images of brain tumors [26] (Figure 2B–H) (Table 1). Due to its public
accessibility, ease of use and upgradability, NeuroXAI could be explored to assist in the
neuroradiological diagnosis of brain tumors. This software is currently freely accessible at
https://github.com/razeineldin/NeuroXAI (accessed on 17 April 2024).

Lerner and collaborators conducted both a prospective and retrospective study where
they suggested that the dosimetry and patient positioning for the RT treatment of HGGs
can be performed exclusively with MRI, without resorting to CT [27] (Figure 2I,J) (Table 1).

Ammari and colleagues proposed a machine learning method useful to reduce the
amount of contrast medium in MRI (Table 1). The study demonstrated that, for lesions
larger than 10 mm, it was possible to reduce, by 4 times, the contrast medium used, without
significant loss of resolution. This could reduce exposure to gadolinium and its possible
side effects in some patients. However, the conclusions were not extendable to smaller
lesions, for which the standard amount of the contrast medium could only be reduced by
compromising the imaging analysis quality [28].

https://github.com/razeineldin/NeuroXAI
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volume (µCBV), microvessel density (MVD) microvessel radius (VSI), microvessel type indicator 
(MTI), oxygen extraction fraction (OEF), cerebral metabolic rate of oxygen (CMRO2), and tissue 
oxygen tension (PO2), respectively. (B–H). Visualization of the information flow in the segmentation 
CNN internal layers. The input MRI sequences are shown in (B). (C–E) show implicit concepts for 
which no ground truth labels are available, in addition to explicit concepts (F–H) with trained labels. 
L stands for convolutional layer. (I). RT-setup of patient in three-point fixation mask scanned on a 
flat tabletop with 6-channel receiver flex coils (left and right) combined with an 8-channel posterior 
array (under the flat tabletop). (J). Fixation mask with liquid markers front, left and right, indicated 
by the white arrows. (K). Flow chart of MRI processing by combining radiomics and deep CNN 
features for predicting clinically relevant genetic biomarkers in GB. MR images (INPUT) were 
passed through several sequential automated image processing steps (rounded boxes) with minimal 
human input (diamond boxes). Each limb of the prediction model (CNN and radiomics) yields a 
single output logit, which is transformed into a probability using the sigmoid function. Final 
predictions (OUTPUT) were generated by averaging probabilities from the 2 limbs. Diffusion-
tensor-derived contrasts include the following: mean diffusivity (MD), axial diffusivity (AD), radial 
diffusivity (RD), and fractional anisotropy (FA) (after [25–27,29] with permission). 

A new non-invasive imaging methodology, in which radiomics features, 
convolutional neural network (CNN) features and a combination of both are used, was 
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patients with GB (WHO grade 4 diffuse astrocytic gliomas) [29] (Figure 2K) (Table 1). 
Comparison with laboratory genetic tests suggested that combining radiomic features and 
CNN obtained by MRI could improve the prediction of preoperative genetic markers. 

Duran-Peña et al. have proposed a methodology for diagnosing HGG of the 
brainstem where the execution of a biopsy involves multiple and serious risks since it is 
the anatomical structure most involved in vital functions. They provided an algorithm 

Figure 2. Models for the diagnosis of HGG I. (A). Representative case of a patient suffering from an
anaplastic glioma (AG, WHO grade 3) who was misclassified as primary CNS lymphoma (PCNSL)
by the radiologists but correctly classified by all three best-performing machine learning classifiers.
CE T1w and FLAIR MRI data were conventional MRI (cMRI) data; cMRI data combined with the
quantitative maps of ADC and cerebral blood volume (CBV) were advanced MRI (advMRI) data;
physiological MRI (phyMRI) data included the quantitative maps of microvascular cerebral blood
volume (µCBV), microvessel density (MVD) microvessel radius (VSI), microvessel type indicator
(MTI), oxygen extraction fraction (OEF), cerebral metabolic rate of oxygen (CMRO2), and tissue
oxygen tension (PO2), respectively. (B–H). Visualization of the information flow in the segmentation
CNN internal layers. The input MRI sequences are shown in (B). (C–E) show implicit concepts for
which no ground truth labels are available, in addition to explicit concepts (F–H) with trained labels.
L stands for convolutional layer. (I). RT-setup of patient in three-point fixation mask scanned on a
flat tabletop with 6-channel receiver flex coils (left and right) combined with an 8-channel posterior
array (under the flat tabletop). (J). Fixation mask with liquid markers front, left and right, indicated
by the white arrows. (K). Flow chart of MRI processing by combining radiomics and deep CNN
features for predicting clinically relevant genetic biomarkers in GB. MR images (INPUT) were passed
through several sequential automated image processing steps (rounded boxes) with minimal human
input (diamond boxes). Each limb of the prediction model (CNN and radiomics) yields a single
output logit, which is transformed into a probability using the sigmoid function. Final predictions
(OUTPUT) were generated by averaging probabilities from the 2 limbs. Diffusion-tensor-derived
contrasts include the following: mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD),
and fractional anisotropy (FA) (after [25–27,29] with permission).

A new non-invasive imaging methodology, in which radiomics features, convolutional
neural network (CNN) features and a combination of both are used, was developed by
Calabrese and collaborators to investigate some genetic biomarkers in patients with GB
(WHO grade 4 diffuse astrocytic gliomas) [29] (Figure 2K) (Table 1). Comparison with
laboratory genetic tests suggested that combining radiomic features and CNN obtained by
MRI could improve the prediction of preoperative genetic markers.
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Duran-Peña et al. have proposed a methodology for diagnosing HGG of the brainstem
where the execution of a biopsy involves multiple and serious risks since it is the anatomical
structure most involved in vital functions. They provided an algorithm illustrating the
diagnostic process to limit the use of biopsy in this area to only essential and reasonably
practicable cases [30].

Table 1. Models for the diagnosis of HGG.

Major Finding Experimental System Ref.

MRI

T1-relative CBV effectively diagnosed progressive lesions
in patients with HGG, suggesting the potential role of

T1-PWI as a valid alternative to the traditional T2*-PWI.
45 MRIs of 34 patients with proved HGG. [23]

Machine learning-based radiophysiomics might
contribute to the clinical diagnosis of CE brain tumors.

A training cohort of 167 patients suffering from one of
the five most common brain tumor entities

(glioblastoma, anaplastic glioma, meningioma, primary
CNS lymphoma, or brain metastasis).

[25]

The NeuroXAI software might be helpful in the detection
and diagnosis of BTs.

NeuroXAI framework offering state-of-the-art XAI
methods for classification and segmentation for both 2D

and 3D medical image data.
[26]

Validation of MRI-only brain RT by a prospective
clinical trial. 21 glioma patients. [27]

Proposal of a deep learning method for virtual CE T1
brain MRI prediction. 200 multiparametric brain MRIs of a total of 145 patients. [28]

A combination of radiomics and CNN features might
improve the prediction performance of noninvasive

genetic biomarkers.

Preoperative MRI data from 400 patients with GB who
underwent resection and genetic testing. [29]

Proposal of an an automated method to quantify the
subtle deformations that occur in the peritumoral regions.

229 MRI exams from 27 patients with histologically
confirmed HGG. [31]

APTw MRI imaging shows good scan–rescan
reproducibility in healthy tissue and tumors.

21 healthy volunteers and 6 glioma patients (4 GBs,
1 oligodendroglioma, 1 radiologically suspected LGG). [32]

APTw MRI max values correlate positively with
rCBVmax.

40 adult patients, treated for histopathologically
confirmed glioma (WHO grades II–IV). [33]

APTw MRI mean values might be helpful in the
differential diagnosis of HGGs and meningiomas or

HGGs and LGGs.
Imaging data of 50 BTs confirmed by pathology. [34]

The metabolite ratios and the results of glioma grading
obtained by MRS are affected by the image quality. 98 glioma patients confirmed by pathology. [35]

ASL and DSC have similar diagnostic accuracy. 115 BT patients who underwent both ASL and DSC
perfusion in the same 3T MRI scanning session. [36]

Semi-quantitative analysis using SWI may contribute to
the differential diagnosis between HGG recurrence and

radionecrosis, but cannot identify BM.
56 patients with BM and 42 patients with HGG. [37]

Study of an analytical qualitative algorithm to
differentiate HGG from BM.

36 patients with histologically proven HGG or solitary
BM matched by size and location. [38]

Study of 1H-MRS to differentiate primary and secondary
brain neoplasms.

61 MRI and 1H-MRS images of patients with
histologically confirmed BTs.

[39]

CCA might help to distinguish PsP or RN from PD
after RT. 16 patients with a primary and 17 with a secondary BT. [40]
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Table 1. Cont.

Major Finding Experimental System Ref.

SWI permits to identify haemorrhagic changes due to
anti-VEGF drugs.

A case of pseudoprogression after ioRT and regorafenib
therapy in a patient with anaplastic

astrocytoma recurrence.
[41]

A radiomics approach useful to predict
pseudoprogression. 131 patients with HGG. [42]

Use of the tissue permeability and microcirculation
parameters Ktrans, Kep, IAUC to differentiate PT

from TM.
34 patients with HGG. [43]

Features of conventional MRI and RT treatment such as
radiation dose, marginal enhancement and isointense

ADC-signal may be useful to distinguish between
progressive disease and TIE.

HGG adult patients who were treated with chemo/RT
and subsequently developed a new or increasing CE

lesion on conventional follow-up MRI.
[44]

Unlike the quantitative measurements of DSC and DCE
perfusion maps, their qualitative assessment has low

inter-examinator agreement.

HGG patients who underwent re-resection of a new
enhancing lesion on post-treatment 3T MR examination

including DWI, DCE and DSC sequences.
[45]

Smaller than reported longitudinal changes in MD, FA,
and RD after VMAT or tomotherapy RT treatment.

27 patients newly diagnosed with GB and planned for
VMAT or tomotherapy. [46]

No significant improvement in therapy of DIPG in last
decades. Post-RT necrosis is a frequent serious problem.

Medical records of 162 DIPG patients who underwent
RT as an initial treatment. [47]

LTS DIPG patients older at presentation compared to STS.
ATRX mutation rates higher in this population than in the

general DIPG population.

152 patients ≥10 years of age at diagnosis with imaging
confirmed DIPG. [48]

Importance of central neuro-imaging review in the
diagnosis of DIPG.

Cases submitted to the International DIPG registry
(IDIPGR) with histopathologic and/or radiologic data. [49]

Radiomics as prognostic tool to stratify DIPG patients. 89 DIPG patients. [50]

Variability of thalamic involvement of DMGs and its poor
prognosis irrespective of H3 K27 subtype alterations.

42 patients with radiologically evaluable
thalamic-based DMG. [51]

Quantitative 23Na MRI values in pediatric gliomas are
higher than in normal tissues.

26 pediatric patients with gliomas scanned with
23Na MRI. [52]

PsP is frequent after RT of pediatric LGG and independent
of the RT modality (IS vs. XRT vs. PBT). Baseline and follow-up MRI of 136 LGG patients. [53]

A non-GBCM-enhanced protocol was non-inferior to a
GBCM-enhanced protocol for follow up of OPGs. 42 children with isolated OPG. [54]

After DKI of the peritumoral edema area, significant
differences between grade III and IV gliomas. DKI

parameters correlate with Ki-67.

51 patients with gliomas undergoing DKI scans
before surgery. [55]

A machine learning model predicting the IDH mutation
status of gliomas.

69 patients with treatment-naïve diffuse glioma scanned
with CEST MRI, DWI, FLAIR, and CE T1-weighted

imaging at 3 T.
[56]

A radiomics model based on DCE-MRI and DWI
predicting the IDH1 mutation and angiogenesis

in gliomas.
100 glioma patients examined with DCE-MRI and DWI. [57]

The rCBV and PSR from DSC-MRI may predict the IDH
mutation status in HGGs. 58 patients with histopathologically proved HGGs. [58]

Asynchrony in vascular dynamics determined by
resting-state BOLD fMRI, correlates with tumor burden

and permits to delineate tumor boundaries in
IDH-mutated gliomas

10 treatment-naïve patients with IDH-mutated gliomas
who received standard-of-care preoperative imaging as

well as echo-planar resting-state BOLD fMRI.
[59]
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Table 1. Cont.

Major Finding Experimental System Ref.

The pH- and oxygen-sensitive MRI is a feasible imaging
technique for distinguishing glioma subtypes and

determining their prognosis

159 adult glioma patients scanned with pH- and
oxygen-sensitive MRI at 3T. [60]

Quantitative relaxometry using syMRI may differentiate
astrocytomas from oligodendrogliomas with increased

sensitivity and objectivity compared to T2-FLAIR

13 patients with IDH-mutant diffuse gliomas, including
7 with astrocytomas and 6 with oligodendrogliomas. [61]

The number of tumor blood vessels permits
differentiating IDH1 mutations

44 glioma patients [16 with IDH1 mutant-type
(IDH1-MT), 28 with IDH1 wild-type (IDH1-WT)]. [62]

DWI and PWI MRI features may help to predict the H3
K27M mutation status in DMGs 94 DMG cases (mDMG = 48 and WT-DMG = 46). [63]

The multiparametric MRI-based radiomic models may
help to predict the H3 K27M mutation status in DMG

102 patients with pathologically confirmed DMG
(27 with H3 K27M-mutant and 75 with H3 WT status). [64]

PET

18F-DPA-714 and 18F-FDOPA correlate with the IDH1
mutation in HGG.

U87 human GB isogenic cell lines with or without the
IDH1 mutation grafted into rat brains, and examined,

in vitro, in vivo and ex vivo. PET imaging sessions, with
radiotracers specific for glycolytic (18F-FDG), amino acid

(18F-FDopa) and inflammation metabolism
(18F-DPA-714).

[65]

68Ga-DOTA-(Ser)3-LTVSPWY specifically recognizes
HER2 receptors.

U87 GB cell line and xenografted U87 GB
tumor-bearing mice. [66]

Multiparametric 18F-FDG PET/MRI diagnostic model
based on conventional MRI features and quantitative

analysis of the enhancing tumors and peritumoral regions
is superior to single parameter in the differentiation of

HGG and PCNSL.

45 patients with HGG and 20 patients with PCNSL
undergoing simultaneous 18F-FDG PET, ASL PWI and

DWI with hybrid PET/MRI before treatment.
[67]

18F-FET PET can avoid the negative consequences of
premature chemotherapy discontinuation.

Effectiveness and cost effectiveness of serial 18F-FET
PET imaging determination by analysis of published

clinical data.
[68]

18F-FDOPA PET may contribute to prediction of glioma
molecular parameters.

72 retrospectively selected, newly diagnosed glioma
patients with 18F-FDOPA PET dynamic acquisitions. [69]

Evaluation of 18F-DOPA PET-guided re-irradiation for
progressive HGG.

20 adults with recurrent or progressive HGG previously
treated with RT. [70]

Elevated FBY activity found in primary GB, recurrent
glioma and metastatic brain tumor which may suggest

boron neutron capture therapy.

35 patients with 36 lesions prospectively examined with
FBY PET and MRI. [71]

PSMA expression evaluated prospectively in recurrent
HGG using Glu-NH-CO-NH-Lys-(Ahx)-[68Ga-68

(HBED-CC)]-(68Ga-68 PSMA) PET.

49 lesions from 30 patients detected on MRI and further
analyzed by fused PET/MRI with 68Ga-PSMA. [72]

7T MRS compared to PET. Gln and Gly suggested as
possible PET tracers.

In 24 HGG patients, 7T MRS and routine PET were
co-registered and hotspot volumes of interest (VOI)

were compared.
[73]

Other diagnostic models

Elevated NADH is a metabolic consequence of TERT
expression in cancer. [U-2H]-pyruvate is related to early

response to therapy, prior to anatomic modifications.

RNAi, doxycycline-inducible expression systems, and
pharmacologic inhibitors used in preclinical

patient-derived tumor models.
[74]

Routine use of genomic and/or epigenomic profiling
proposed to accurately classify gliomas.

38 adult patients with IDH-wild-type diffuse astrocytic
gliomas lacking necrosis or microvascular proliferation

on histologic examination.
[75]
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Table 1. Cont.

Major Finding Experimental System Ref.

Hypothesis that molGBs are histological GBs
diagnosed early. 65 patients diagnosed with molGB. [76]

Patients with DAG g experience clinical courses similar
to GB. 25 patients matching the DAG g diagnosis. [77]

Proposed use of molecular profiling to guide enrolment in
early phase trials.

Patients enrolled in early phase trials of cytotoxic
therapies, small molecule inhibitors or monoclonal

antibodies from 2008 to 2018.
[78]

The CT-based TA may help in differentiating between
primary and secondary malignancies. 36 patients with solitary BTs examined by CT. [79]

Intramitochondrial heme biosynthesis factors
as pharmacological targets to enhance intraoperative

5-ALA fluorescence visualization.

19 strongly fluorescing and 21 non-fluorescing tissue
samples from neurosurgical adult-type diffuse gliomas

(WHO grades II–IV).
[80]

Grade-specific cerebrovascular dysregulation in the entire
brain of glioma patients.

96 patients with histologically confirmed
cerebral glioma. [81]

Systemic inflammatory biomarkers may contribute to the
differential diagnosis of PCNSL from HGG. 42 PCNSL versus 16 HGG patients. [82]

Gyriform infiltration is a specific imaging marker of
molecular GBs.

426 patients: 31 molecular GB, 294 IDH-wild-type GB,
50 IDH-mutant astrocytoma, and 51 IDH-mutant

1p19q-codeleted oligodendroglioma.
[83]

Molecular investigations play an important role in the
diagnosis and therapy of iHGG.

11 children under five years of age with newly
diagnosed HGG. [84]

A specific diagnostic pathway proposed for patients with
suspected TDL. 41 TDLs and 91 HGG patients. [85]

The results of the first MRI performed during the first six months after the end of
chemo/radiotherapy (RT) have an important prognostic role, especially if it shows the com-
pression of tissues adjacent to the surgical site [86]. The compression of healthy peritumoral
tissue in brain tumor patients is considered a major cause of life-threatening neurological
symptoms. After examining longitudinal MRI studies of patients with HGG, Fuster-Garcia
et al. published a methodology for quantifying subtle peritumoral deformations and relat-
ing them to patient overall survival (OS) (Figure 3A,B) (Table 1) [31]. As expected, lower
tumor compression on surrounding tissues was associated with greater patient survival.

Amide proton transfer (APT) imaging is a novel MRI technique that detects proteins
and peptides in tissue via the saturation of the amide protons in the peptide bonds [87]. It
may offer several potential clinical applications, but its reproducibility has to be adequately
studied. Warmelink and colleagues reported that APTw MRI indeed exhibits good scan–
rescan reproducibility in healthy tissue and HGG tumors with clinically usable scan times
at 3 T [32] (Figure 3C–F) (Table 1).

The relationship between APTw MRI and DSC perfusion was investigated by Friismose
and colleagues [33] who evaluated whether APTw MRI could be used as an alternative to
magnetic resonance DSC in the imaging of HGG in adult patients (Figure 3G–M) (Table 1).
APTw MRI (max) values correlated positively with rCBV (max) in patients treated for
cerebral glioma. APTw MRI was confirmed as a reproducible technique but with some
observer dependence. Although the results need to be confirmed by a larger population
analysis, APTw MRI might usefully contribute to the follow-up imaging of HGG and
represent a potential alternative to perfusion, especially in patients in whom the contrast
medium is contraindicated.
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PWI. (N). T1-weighted imaging showed an iso-slightly low signal. (O). T2-weighted imaging 
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Figure 3. Models for the diagnosis of HGG II. (A,B). Longitudinal evolution of GB from day 18
after the start of radio–chemotherapy treatment to day 372. (A). According to RANO criteria,
tumor progression started on day 208. However, the displacement maps show significant de-
formations already at day 28. Circles in orange highlight preliminary visual evidence of tumor
growth. (B). Quantification of the displacement magnitude and absolute divergence in control and
tumor ROIs, respectively. (C–F). Single transversal APTw MRI slices of four different GB patients.
APTw MRI value in a color scale projected on the post-contrast T1-weighted image, within the tumor
ROI only. Red and green boxes are positioned around the tumor and contralateral ROIs, respec-
tively. Note the heterogeneous hyperintensity in the tumorous regions that show hyperintensity
on the CE T1-weighted image when compared to the contralateral region (C–E). (F). The APTw
MRI value of a non-enhancing GB. (G–I) Patient with histopathologically confirmed GB, treated
with surgery and chemoradiation. (G). APTw MRI with hyperintense signal. (H). rCBV map with
increased rCBV (3.34) relative to contralateral normal-appearing white matter. (I). Enhancement on
post-contrast T1 weighted image. (J–M). Patient with recurrent GB, treated with surgery, chemoradi-
ation and anti-angiogenic therapy upon recurrence. (J). APTw MRI with iso-to hypointense signal
around the operation cavity. (K). The relative cerebral blood volume (rCBV) map does not show
significantly increased rCBV (1.41) relative to contralateral normal-appearing white matter. (L). Post-
contrast T1 weighted image demonstrates no enhancement. (M). FLAIR exhibits no sign of tumor
progression. (N–R). A 62-year-old male patient with an HGG in the right basal ganglia. The APTw
MRI signal range of the patient was larger than that on both T2WI and enhanced scans and larger
than that on PWI. (N). T1-weighted imaging showed an iso-slightly low signal. (O). T2-weighted
imaging showed an iso-slightly high signal. (P). Enhanced MR imaging showed obvious enhance-
ment. (Q). PWI showed marked hyper-perfusion. (R). APTw MRI shows that the APT rate increased
(after [31–34] with permission).

Zhang and co-workers used APTw MRI for the differential imaging between HGG, low-
grade gliomas (LGG) and meningiomas and the determination of their invasiveness [34]
(Figure 3N–R) (Table 1). Mean APT values could be used for the differential diagnosis of
HGG and meningiomas or HGG and LGG. Using APTw MRI, gliomas showed more marked
imaging features than meningiomas, possibly due to their higher infiltrative capacity.

7T MRS may be more sensitive to aberrant metabolic activity than lower-field strength
MRS [88]. However, the 7T is not widely used in the clinics, and technical improvements
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are needed. Image resolution was confirmed as essential for the correct diagnosis of HGG
by MRS in a study conducted by Shakir and collaborators [35] (Table 1). Metabolite ratios
may be altered depending on the resolution and compromise diagnostic accuracy. The
metabolic ratio that most effectively allowed HGG to be distinguished from LGG was that
between choline and creatine (Cho/Cre).

Lavrova et al. compared the arterial spin labelling (ASL) MRI technique with DSC
perfusion for the follow-up of primary and metastatic brain tumors at 3T, both in terms of
lesion perfusion parameters and diagnostic accuracy [36] (Figure 4A–D) (Table 1). ASL and
DSC were found to have roughly the same diagnostic accuracy, suggesting that ASL could
be used as an alternative to DSC to measure perfusion in HGG and brain metastases.
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Figure 4. Models for the diagnosis of HGG III. (A–D). Example of ASL and DSC measurements
with tumor region of interest (ROI) placement. Lesion ROI and contralateral normal-appearing
white matter (NAWM) ROI. (A) T1W+Gd. (B) ASL-CBF. (C) DSC-rCBV. (D) DSC-rCBV leakage
corrected. (E–H). Analytic qualitative criteria used to differentiate single metastases (MET) from
high-grade gliomas (GB). (E). Morphology and margins characteristics on post-contrast T1-weighted
(T1w) axial images of a 66-year-old man with a single brain metastasis from colon cancer (left),
and in a 65-year-old man with GB (right). The metastasis has an almost spherical shape and well-
defined margins. In contrast, GB exhibits an irregular shape, and areas with poorly defined margins
(arrows). (F). Edema/lesion ratio and macroscopic vascularization on T2w axial images in a 56-year-
old woman with single brain metastasis from breast cancer (left) and in a 71-year-old man with
GB (right). The metastasis has a high ratio between edema (continuous caliper) and lesion (dashed
caliper). No prominent vessels coursing within the lesion are seen. In contrast, GB has a relatively
lower edema/lesion ratio and prominent intralesional vessels (arrows). (G). Lesion relationship with
the cortex on T2w axial images, in a 66-year-old man with single brain metastasis (left) and in a
62-year-old man with GB (right). The metastasis shows no thickening or definite signal change of the
cortex in the proximity of the lesion (arrow). However, GB causes the thickening and blurring of the
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cortex interface, suggesting infiltration (arrowheads). (H). T2-signal texture characteristics in the peri-
enhancing region: coronal images of a 67-year-old woman with single brain metastasis from breast
cancer (left) and a 75-year-old woman with GB (right). Light gray outlines mark the corresponding
enhancing nodules as seen on post-contrast T1w images. Whereas the metastasis exhibits a uniformly
bright signal in the peri-enhancing region, suggesting simple vasogenic edema, GB shows adjacent
white matter signal inhomogeneity, with subtle hypo intensities (arrowheads) suggesting tumor
infiltration. (I–L). Examples of contrast clearance analysis (CCA). The images show four different
patients (I–L), each with a regular CE T1-MRI sequence, a late phase T1-sequence 1h after contrast
media application, and their CCA (from left to right). Tumor tissue is depicted as blue in the CCA,
while reactive tissue is depicted as red. (I). GB IDH WT: a frontoparietal lesion showing tumor
tissue in a circular formation with reactive components centrally and at the lesional border. (J). Lung
adenocarcinoma with brain metastases: a right cerebellar lesion showing tumor tissue with reactive
components in the surrounding area. (K). GB IDH WT: a periventricular lesion showing spotted areas
with reactive tissue. (L). Maxillary squamous cell cancer with brain infiltration: a lesion in the right
temporal lobe consisting nearly entirely of reactive tissue (after [36,38,40] with permission].

3.1.3. Differentiating between HGG and Specific Pathologies
Lymphoma and other Primary Tumors

Distinguishing HGGs from PCNSL represents a diagnostic challenge with important
therapeutic implications. Biopsy is still the preferred diagnostic method, but MRI, possibly
reinforced by machine learning techniques, also contributes significantly to the differential
diagnosis. AI methodologies have shown potential in the differential diagnosis between
HGG and PCNSL, but such methodologies still lack large and balanced datasets and
external validation. Cassinelli and coworkers highlighted the multiple deficiencies in the
quality of the reporting and the risk of bias, which can reduce the generalizability and
reproducibility of the results [89].

Astroblastoma is a rare type of glial tumor, histologically classified into two types
with different prognoses: high-grade and low-grade. Using both CT and MRI, Kurokawa
and coworkers described detailed neuroimaging characteristics, including tumor location,
margin status, morphology, CT attenuation, MRI signal intensity and tumor enhancement
pattern [90].

Metastases

As mentioned above, adopting a standardized workflow is essential to improve the
quality and generalizability of the radiomic models. Validations are, therefore, necessary to
further increase both the sensitivity and specificity of the procedures.

Li and colleagues evaluated the possible contribution of radiomics in differentiating
HGG from brain metastases as well as the methodological quality of radiomics studies [91].
They reported that the overall sensitivity and specificity of radiomics for differentiating
HGG from brain metastases were high (84%).

Qin and collaborators studied the efficiency of sensitivity-weighted imaging (SWI) in
the differential diagnosis of HGG recurrence from radionecrosis and brain metastases [37]
(Table 1). They reported that semiquantitative analysis by SWI was feasible for the differ-
ential diagnosis between recurrence and radionecrosis, but not for identifying metastases.
Any diagnostic suggestions of brain metastasis carried out via SWI MRI after RT treatment
should, therefore, be taken with caution.

Voicu and colleagues studied the diagnostic efficacy of MRI diagnostic algorithms in
distinguishing between HGG and brain metastases [38] (Figure 4E–H) (Table 1). In this
investigation, a qualitative analytical algorithm achieved similar results compared to the
semi-quantitative approach. However, the use of quantitative, data-driven algorithms
showed the best diagnostic ability.

Hydrogen proton MRS (1H-MRS) imaging can noninvasively visualize tissue bio-
chemical information in vivo and has been applied to identify and diagnose intracranial
tumors. Wang and colleagues evaluated the ability of 1H-MRS in the identification and
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diagnosis of intracranial tumors via meta-analysis. They concluded that 1H-MRS could
provide metabolic information on different intracranial tumors and effectively diagnose
and differentiate glioma and metastasis [92].

Farche and colleagues reported a sensitivity of 73.3% and a specificity of 74.2% in
distinguishing brain metastases from HGGs using 1H MRS [39] (Table 1).

Pseudoprogression and other Post-Treatment Effects

Pseudoprogression (PsP) or radiation necrosis (RN) can occur frequently after cranial
RT and is sometimes difficult to distinguish from progressive disease (PD). Bodensohn
et al. studied the diagnostic accuracy of MRI-based contrast clearance analysis (CCA) in
this clinical context [40] (Figure 4I–L) (Table 1). CCA has proven to be a useful method
to distinguish PsP or RN from PD after cranial RT, especially in patients with secondary
tumors after radiosurgical treatment.

Mansour and coworkers described one case of pseudoprogression after intraopera-
tive radiotherapy (ioRT) and regorafenib therapy in a patient with recurrent anaplastic
astrocytoma [41] (Table 1). Relatively recently introduced therapies such as regorafenib
may impact HGG MRI, as the MRI pattern in HGG imaging is changing and a multi-
modal approach becomes important. In particular, when using anti-vascular endothelial
growth factor (VEGF) drugs, SWI may have a crucial role in identifying therapy-related
hemorrhagic phenomena.

In a cohort of patients diagnosed with HGG, radiomics and machine learning method-
ologies were reported as able to help predict the development of pseudoprogression from
pre-treatment MR images, thus potentially allowing to reduce the use of biopsy and inva-
sive histopathology [42] (Table 1).

The utility of DCE-Enhanced MR perfusion to distinguish between treatment damage
and tumor recurrence in HGG was studied by Dündar and colleagues [43] (Table 1). To
differentiate PT from TM, the authors suggested that the tissue permeability and micro-
circulation parameters Ktrans (volume transfer constant from the plasma compartment to
the extravascular extracellular space), Kep (rate constant for transfer from extravascular
extracellular space to the blood compartment), IAUC (initial area under the enhancement
curve) and subtracted values of Ktrans and IAUC from nearby non-enhancing area (NNA)
and contralateral normal appearing, non-enhancing area (CLNA) may be used.

Flies et al. also studied the diagnostic value of conventional MRI features to differentiate
disease progression from treatment-induced damage in HGG [44] (Figure 5A–D) (Table 1).
This study proved that, in HGG patients undergoing RT, radiation dose, longer progression
time, marginal enhancement, and isointense apparent diffusion coefficient (ADC) signal can
distinguish disease progression from the damage induced by the treatment.

The concordance between different diagnosticians using visual qualitative assess-
ments of MRI images, compared to the concordance of different quantitative perfusion
measurements, was studied by Zakhari and colleagues (Figure 5E–G) (Table 1). While
quantitative measurements of DSC and dynamic CE (DCE) perfusion maps showed satis-
factory inter-rater agreements, qualitative assessment using only conventional MRI images
had an inferior inter-observer agreement and was insufficient for a correct diagnostic
interpretation [45].

The use of diffusion tensor imaging (DTI) to study longitudinal changes in the nor-
mal brain tissue of GB patients undergoing modern RT with volumetric modulated arc
therapy (VMAT) or helical tomotherapy was investigated by Rydelius and colleagues [46]
(Figure 5H–K) (Table 1). These authors observed longitudinal changes in fractional
anisotropy (FA), mean diffusivity (MD) and radial diffusivity (RD), but only in a lim-
ited number of brain structures, and the changes were smaller than expected from the
literature. Current modern RT techniques may cause less damage to normal tissue than in
the past.
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with multiple new CEs. (B). A 58-year-old man with an IDH-WT GB treated with TMZ-based 
chemoradiation. Left: Baseline MRI of the surgical cavity after resection. Right: Follow-up MRI (91 
days after baseline) with increased marginal enhancement of the surgical cavity. (C). A 65-year-old 
woman with a GB, IDH status unknown, treated with RT. Left: T1-MRI with contrast agent. Right: 
Isointense ADC signal compared with healthy white matter. (D). A 66-year-old man with an IDH-
mutated astrocytoma grade 4 treated with TMZ-based chemoradiation: soap bubble enhancement 
(small regions of necrosis). (E–G). Low corrected CBV: axial dynamic susceptibility contrast MR 
derived corrected CBV map (E) and axial post-contrast T1WI with co-registered corrected CBV map 
(F) showing low CBV in a solid enhancing nodule. CE MR perfusion derived k-trans map (G) 
showing intermediate K-trans in the same lesion. (H–K). DTI parameters in different normal-
appearing structures were analyzed after defining ROIs in homogenous tissue. Three different 
structures of the corpus callosum were examined: splenium, corpus, and genu. (H). The corpus 
callosum on a FA-color map. The ROI placed within the structures from the left: splenium, corpus 
and genu, viewed at a sagittal view. (I). The centrum semiovale in the right hemisphere on a post-
contrast T1-weighted image, viewed on the transversal plane. (J). The amygdala in the left 
hemisphere on a post-contrast T1-weighted image, viewed on the transversal plane. (K). The left 
hippocampus on a post-contrast T1-weighted image, viewed on the sagittal plane. (L,M). 
Bevacizumab was administered to 23 DIPG patients. Among patients who had increased post-RT 
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bevacizumab, respectively (L). Among patients without or with decreased post-radiotherapy 
necrosis, the median OS was 17.6 months and 18.1 months for patients that did and did not use 
bevacizumab, respectively (M). Relevant Kaplan–Meier plots are shown (after [44–47] with 
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Figure 5. Models for the diagnosis of HGG IV. (A–D). MRI Characteristics with Significant Predictive
Value. (A). A 64-year-old man with an isocitrate dehydrogenase (IDH)–wild-type (WT) GB treated
with RT. Left: Preoperative baseline MRI. Right: Follow-up MRI (93 days after baseline) with multiple
new CEs. (B). A 58-year-old man with an IDH-WT GB treated with TMZ-based chemoradiation. Left:
Baseline MRI of the surgical cavity after resection. Right: Follow-up MRI (91 days after baseline)
with increased marginal enhancement of the surgical cavity. (C). A 65-year-old woman with a GB,
IDH status unknown, treated with RT. Left: T1-MRI with contrast agent. Right: Isointense ADC
signal compared with healthy white matter. (D). A 66-year-old man with an IDH-mutated astrocy-
toma grade 4 treated with TMZ-based chemoradiation: soap bubble enhancement (small regions of
necrosis). (E–G). Low corrected CBV: axial dynamic susceptibility contrast MR derived corrected CBV
map (E) and axial post-contrast T1WI with co-registered corrected CBV map (F) showing low CBV in
a solid enhancing nodule. CE MR perfusion derived k-trans map (G) showing intermediate K-trans
in the same lesion. (H–K). DTI parameters in different normal-appearing structures were analyzed
after defining ROIs in homogenous tissue. Three different structures of the corpus callosum were
examined: splenium, corpus, and genu. (H). The corpus callosum on a FA-color map. The ROI placed
within the structures from the left: splenium, corpus and genu, viewed at a sagittal view. (I). The
centrum semiovale in the right hemisphere on a post-contrast T1-weighted image, viewed on the
transversal plane. (J). The amygdala in the left hemisphere on a post-contrast T1-weighted image,
viewed on the transversal plane. (K). The left hippocampus on a post-contrast T1-weighted image,
viewed on the sagittal plane. (L,M). Bevacizumab was administered to 23 DIPG patients. Among
patients who had increased post-RT necrosis, the median OS was 13.3 months and 11.4 months
for those who did and did not use bevacizumab, respectively (L). Among patients without or with
decreased post-radiotherapy necrosis, the median OS was 17.6 months and 18.1 months for patients
that did and did not use bevacizumab, respectively (M). Relevant Kaplan–Meier plots are shown
(after [44–47] with permission).

3.1.4. Specific Aspects
Pediatric Studies

Diffuse intrinsic pontine glioma (DIPG) remains a clinical–radiological diagnosis with
little possibility of histological diagnosis. It is, therefore, important, especially for treatment
purposes, to make a reliable distinction between DIPG and other pontine tumors with po-
tentially more favorable prognoses. Kim and colleagues discussed the clinical, radiological,
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and treatment-related factors that may influence survival in new DIPG patients treated
with RT (Figure 5L,M) (Table 1). Unfortunately, there are no significant improvements in
the OS of patients with this pediatric brain tumor [47]. However, although DIPG patients
have a median survival of thirteen months, there are also long-surviving patients who
often have a higher age at diagnosis and ATRX mutation rates (Table 1) [48]. The need for
a centralized review of DIPG cases has been emphasized for a correct and homogeneous
diagnosis [49] (Table 1).

Diffuse midline gliomas (DMG) are often characterized by H3 K27 mutations and
often have increased malignancy in these cases. A biopsy is not always possible to assess
the H3 K27M mutation status, and attempts to identify the H3 status via MRI radiomics
techniques are ongoing [50] (Table 1; section H3 K27M mutation identification).

Rodriguez and collaborators summarized the results of the HERBY study which pro-
vided these pediatric tumors with a large amount of radiological, histological–genotypic
and survival data [51] (Table 1). The thalamic involvement of DMG ranged from localized
partial thalamic to holo- or bi-thalamic with diffuse contiguous spread, and the degree
of malignancy was little affected by the presence of H3 K27 mutations. In contrast, lep-
tomeningeal dissemination and the surgical resection of less than 50% of the tumor were
adverse factors in survival.

Bathia and colleagues compared total sodium concentrations (TSC) between pediatric
glioma and non-neoplastic brain tissue using quantitative 23Na MRI. They were also able
to improve the visualization of tissue-bound sodium concentrations (BSC) via double echo
23Na MRI [52] (Figure 6A–C) (Table 1). Higher sodium concentration values were found in
pediatric gliomas than in non-neoplastic tissues.
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Figure 6. Models for the diagnosis of HGG V. (A–C). (A). Two-TE sodium MRI scans showing tumor
progression in HGG. (B). Response to therapy in supratentorial astrocytoma. (C). Response to therapy
in HGG. In the tumor regions of the bound sodium images are pixels of bound sodium concentration
(vBSC) with a value greater than 1 standard deviation (S.D.) from the average vBSC value (~22 mM)
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over the tumor. (D,E). MR images and corresponding hematoxylin and eosin (H&E) and immunohis-
tochemistry staining for MRI-guided biopsy targets (circles). (D). IDH mutant glioma for which an
area with labels categorized as M, indicating the IDH mutant feature, was biopsied. Expressions of
HIF1a, GLUT3, and HK2 are low in the slides from a 5 mm radius sample taken from the MRI-guided
biopsy target. (E). IDH wild-type glioma for which an area with labels categorized as W, indicating
IDH wild-type feature, was biopsied. Expressions of HIF1a, GLUT3, and HK2 are high (after [52,56]
with permission).

As aforementioned, distinguishing pseudoprogression following RT from actual tumor
progression via imaging is often difficult, and this problem can be the cause of potentially
useless or even harmful treatments. In a study of pediatric LGG, radiological differentia-
tion criteria were developed (Table 1). Pseudoprogression was found to be frequent and
independent of the RT technique used [interstitial iodine-125 RT (IS), photon beam RT
(XRT), or proton beam RT (PBT)] [53].

Pediatric patients with optic pathway gliomas (OPG) often undergo multiple and fre-
quent follow-up MRI examinations with gadolinium contrast. In several patients, the tissue
accumulation of gadolinium has been found and the possible benefit/toxicity relationship
must be carefully evaluated. To this end, Maloney and collaborators investigated, with a
double-blind non-inferiority study and multiple examiners, if the contrast with gadolinium
is necessary in OPG radiology (Table 1). A non-gadolinium-based contrast agent-enhanced
protocol was found to be non-inferior to a gadolinium-based contrast agent-enhanced
protocol for the follow-up of pediatric OPGs [54].

Surgical Planning

Accurate modelling of the relationship between the areas of tumor infiltration and
the involvement of the eloquent areas of the connecting fibres is crucial to guarantee the
maximum effectiveness and minimal collateral damage of surgical resection. Neurosur-
geons usually detect an eloquent area using functional MRI and identify a connecting fibre
using DTI. Although, during surgery, the accuracy of neuronavigation may be decreased
due to the displacement of parts of the brain, information about their exact location can be
updated by intraoperative MRI, thus facilitating subsequent surgical steps. Various intraop-
erative modalities can also be used to guide the surgeon’s hand such as neurophysiological
monitoring (e.g., awake surgery, motor and sensory evoked potentials) and photody-
namic diagnosis, which can identify areas with HGG cells. Matsumae and colleagues
have discussed such intraoperative diagnostic techniques, along with their reliability and
safety [93].

Conventional MRI may not adequately visualize areas of HGG tumor infiltration that
do not take contrast. Diffusive kurtosis imaging (DKI)-derived parameters were used in a
group of patients with preoperative HGG to assess proliferative activity in the boundary
zone between solid tumor and peritumoral edema for treatment-planning purposes and
follow-up [55] (Table 1).

IDH Mutation Identification

Hagiwara and collaborators used the multiparametric MRI voxel-wise clustering
method to determine the status of the IDH1 gene in HGG [56] (Figure 6D,E) (Table 1).
This machine learning methodology made it possible to distinguish the mutational state
of the IDH gene and the related metabolic state of tumors with good efficiency. For the
same purpose, Wang and collaborators used a radiomics model based on DCE-MRI and
diffusion-weighted imaging (DWI) in estimating IDH1 mutation and angiogenesis [57]
(Table 1). Similarly, Cindil et al. evaluated the diagnostic performance of DWI and DSC-
MRI parameters in the noninvasive prediction of the IDH gene status in HGGs [58] (Table 1).
The rCBV and per cent signal recovery (PSR) parameters obtained by DSC-MRI were useful
for predicting the IDH mutation status in HGGs. Thorough standardization of the method,
through extensive clinical use, was indispensable.
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Petridis and colleagues studied the use of resting-state blood oxygen level-dependent
(BOLD) functional MRI (fMRI) to detect vascular asynchrony between HGG IDH-mutated
tumors and the surrounding normal brain tissue (Table 1). Asynchrony in vascular dynam-
ics, measured by resting-state BOLD fMRI, correlated with tumor volume and provided
the radiographic delineation of HGG IDH mutated tumor boundaries [59]. Hou et al.
also demonstrated that resting-state fMRI can be used to differentiate between HGG and
LGG [94]. Hypoxia and tissue acidosis are often found in HGG. Yao and collaborators used
an MRI technique sensitive to pH and oxygen tension to characterize some genotypic states
including IDH mutation, 1p/19q co-deletion and epidermal growth factor receptor (EGFR)
amplification, also studying their prognostic value [60] (Figure 7A–D) (Table 1).
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Figure 7. Models for the diagnosis of HGG VI. (A–D). pH- and oxygen-sensitive MR images in
representative glioma patients. Four patient examples with IDH mutant 1p/19q co-deleted glioma
(A), IDH mutant 1p/19q non-co-deleted glioma (B), IDH wild-type EGFR non-amplified glioma
(C), and IDH wild-type EGFR amplified glioma (D) are illustrated. Tumors are outlined in each
image, with segmented tumor ROIs demonstrated for patients (C,D). Regions with elevated acidity,
high hypoxia, and increased perfusion in the pH-weighted images, hypoxia-sensitive images, and
perfusion images are represented by red colors, corresponding to high values of MTRasym, R2′,
and rCBV, respectively. Similarly, a high level of combined acidity and hypoxia is highlighted in
yellow on the MTRasym × R2′ map. (E,F). Images from a 49-year-old woman with IDH-mutant
diffuse astrocytoma (WHO grade II). (E). T2WI shows a heterogeneous T2-prolonged mass in the
left parietal lobe (arrow). (F). FLAIR shows partial signal suppression, indicating a T2-FLAIR
mismatch sign (arrowheads). (G–I), T1 and T2 relaxation time and proton density (PD) maps derived
from syMRI show T1 (2436 ms *) and T2 (287 ms *) relaxation time prolongations and increased
PD (94.9% *) (arrows) in the tumor. * Each value is expressed as the mean. (J). The percentage
of machine learning techniques in 90 top-five-performing models of different model categories.
“Conventional MRI only” represents models developed only with conventional MRI sequences;
“Advanced MRI only” for models only with advanced MRI sequences; “Mixed MRI” for models with
both conventional and advanced MRI sequences; “Single sequences” for models with one sequence;
“combined sequences” for models with at least two sequences; and “All sequences” for models of all
sequence sets (after [60,61,64] with permission).

Kikuchi et al. investigated whether quantitative relaxometry under synthetic MRI
(syMRI) could differentiate IDH mutant HGG. Greater sensitivity was observed in compari-
son to qualitative T2 fluid-attenuated inversion recovery (FLAIR) [61] (Figure 7E–I) (Table 1).
Quantitative relaxometry using syMRI was also proposed to differentiate astrocytomas
from oligodendrogliomas.
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Li and collaborators proposed that the number of blood vessels calculable via the 3D
brain volume CE (3D-BRAVO) sequence could be useful in differentiating the IDH1 status
of HGGs [62].

H3 K27M Mutation Identification

As aforementioned, H3 K27M mutant DMG show an aggressive course. Kathrani
and collaborators reported that DWI and PWI MRI characteristics of DMG may help to
determine H3 K27M mutational status in DMGs preoperatively [63] (Table 1).

Guo and collaborators analyzed different radiomic models across MRI sequences
and machine learning techniques to predict H3 K27M mutant status in DMG (Figure 7J)
(Table 1). Multiparametric radiomic models could help predict H3 K27M mutant status
but the predictive value was highly variable based on the sequences and machine learning
models used [64].

3.2. PET
3.2.1. Preclinical Studies

PET imaging is increasingly used to obtain information on the metabolic status of HGG,
which can valuably contribute to the diagnostic work-up. The most used radio-metabolic
tracers are 18F-FDG and radiolabeled amino acids [11C-methionine (MET), 18F- dihydrox-
yphenylalanine (DOPA), 18F-fluoro ethyl tyrosine (FET)] and 68Ga-GaDOTA-somatostatin
receptor (SSTR)] targeting glucose, L-amino acid metabolism and the expression of somato-
statin receptors, respectively.

The preclinical use of PET imaging using the radiotracers 18F-DPA-714 and 18F-FDopa
was investigated by Clément et al. for the non-invasive detection of the IDH1 mutation in
HGG models [65] (Figure 8A) (Table 1).
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and 18F-DPA-714. MRI is expressed as signal intensity and PET on a standardized uptake value
(SUV) scale. (B). Example images of a patient with a high intratumoral correspondence between
PET and MRS ratios to total N-acetylaspartate (tNAA). The actual evaluation, as performed only
within the defined tumor segmentations, is shown in green. PET maps were resampled to MRS
resolution. Red lines indicate slice positions. (C,D). Illustration of two representative patients
highlighting the two divergent clinical scenarios where the diagnosis of “diffuse astrocytic glioma,
IDH-wild-type, with molecular features of GB, WHO grade IV” based on the cIMPACT-NOW update
3, can be applied. (C). The first is “early/evolving” disease where the patient presents with imaging
features suggestive of a lower-grade diffuse glioma (i.e., minimal to absent CE) and histology reveals
a diffuse lower-grade astrocytic glioma despite extensive surgical resection. (D). The second is
“undersampled” disease where the patient presents with imaging features of GB (i.e., ring-enhancing
mass with central necrosis), but with limited surgical sampling from the infiltrative edge of the tumor,
whereby histology reveals a diffuse astrocytic glioma without necrosis or microvascular proliferation
(MVP) that likely would have been found upon more extensive surgical resection (after [65,73,75]
with permission).

Ranjbar et al. have studied, in animal HGG models, the expression of the HER2
receptor, which plays an important role in the tumorigenesis and tumor progression of a
wide range of tumors, using the radiotracer 68Ga-GaDOTA-SSTR)] [66] (Table 1).

3.2.2. Clinical Studies

Since multiparametric MRI and 18F-FET PET are complementary imaging techniques,
the information obtainable with both techniques is additive in diagnosing HGGs. For
example, in distinguishing between HGG and PCNSL, the quantitative analysis of the tumor
uptake of 18F-FDG and of the peritumoral non-uptake region combined with conventional
MRI analysis has proven to be superior to the single imaging technique [67] (Table 1).
Hybrid PET/MRI may, therefore, enable the simultaneous and non-invasive assessment
of morphological, functional and metabolic parameters within the brain [95]. Further, the
use of radiolabeled amino acids such as 11C-MET and 18F-FET can give indications not
only on areas of increased proliferative metabolism but also on areas of pseudoprogression,
which often represent a diagnostic problem in the follow-up of treated patients [96–99].
One further radiotracer for HGG tumors is 3,4-dihydroxy-6-18F-fluoro-L-phenylalanine
(18F-DOPA), which crosses the blood–brain barrier and shows high uptake in neoplastic
tissues but low uptake in normal tissues. PET analysis with 18F-FDOPA and MRI can non-
invasively indicate the presence of IDH mutations and 1p/19q codeletions [69] (Table 1).
Breen and colleagues confirmed that the PET- and MRI-guided re-irradiation of recurrent
HGG with 18F-DOPA was safe and did not harm patients significantly [70] (Table 1).

18F-fluoroboronotyrosine (FBY) is a neutral amino acid transporter 1 (LAT-1)-dependent
boron-derived tyrosine with diagnostic and therapeutic potential. The imaging charac-
teristics of FBY PET in HGGs were studied by Kong and colleagues [71] (Table 1). High
radiometabolic activity of this tracer was observed in several primary and recurrent HGGs.
The tumor/fund ratio facilitated the evaluation of malignancy and possibly planned boron
neutron capture therapy.

Kumar et al. described the expression of the prostate membrane antigen PSMA in
recurrent HGG using Glu-NH-CO-NH-Lys-(Ahx)- [68Ga (HBED-CC)]-PET (68Ga PSMA).
The tumor/fund ratio facilitated the evaluation of malignancy and possibly planned boron
neutron capture therapy [72] (Table 1).

7T MRS (see above) was compared with PET using the radiolabeled amino acids
glutamine and glycine in a cohort of glioma patients [73] (Figure 8B) (Table 1). Good
diagnostic concordance between the two techniques was observed, higher than what had
been possible in the past with lower magnetic fields.

Effectively determining disease extent is particularly important in diffuse and multiple
gliomas. PET using the radiotracer 18F-fluorocholine has been suggested to be a valid
imaging technique in HGG. 18F-fluorocholine PET has been rated superior to MRI in
assessing the most likely site of recurrence [100]. Good diagnostic concordance between
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the two techniques was observed, higher than what had been possible in the past with
lower magnetic fields.

3.3. Other Modelling Advances
3.3.1. Preclinical Studies

The maintenance of telomeres by the reactivation of telomerase reverse transcriptase
(TERT) expression is a characteristic of many tumors. Non-invasive imaging determination
of TERT reactivation can indicate the tumour’s malignancy and resistance to therapy.
Batsios and colleagues studied the association between TERT and metabolism in patient-
derived preclinical tumor models (Table 1) [74].

The expression of TERT in HGGs correlated with an elevated level of NADH and the
level of [U-2H]-pyruvate correlated with the early response to therapy, before the onset of
chromosomal alterations, thus providing a biomarker of early response to therapy.

3.3.2. Clinical Studies

As aforementioned, the genomic profiling of HGGs may contribute significantly to
determining the degree of malignancy. The histopathological features characterizing the
previous classification of WHO grade IV consisted of microvascular proliferation and
necrosis development. The HGG classification published in 2021 no longer considers
these histopathological features as essential to classify a grade IV glioblastoma (GB) [75]
(Figure 8C,D) (Table 1). The IV level of malignancy can now be assessed even in the absence
of necrosis and neoangiogenesis, except for the presence of some molecular markers such as
wild-type IDH gene associated with the mutation of the TERT promoter or the amplification
of the EGFR or both chromosome 7 amplification and chromosome 10 deletion (molecular
GB). Despite multiple histological features similar to lower-grade gliomas, patients with
molecular GB present clinical courses similar to classic GB. It has been hypothesized that
these tumors are early histological GBs that will develop classic histological features over
time [76] (Table 1). Indeed, our knowledge regarding the details of the exact clinical, radio-
graphic, and histopathological findings associated with these tumors remains limited [77]
(Table 1). This situation would suggest the need for biopsy and the subsequent analysis
of the molecular features associated with any astrocytoma, regardless of presenting char-
acteristics. Molecular profiling would also be important to guide the enrollment of HGG
patients in early-phase clinical trials (Table 1).

Distinguishing between HGG and brain metastasis from an extra-axial primary tumor
is often difficult radiologically due to imaging similarities. A possible difference is in the
peritumoral area which, in the case of HGG, is often infiltrated by neoplastic cells. In
contrast, in the case of metastasis, it is only affected by pure oedema, without cellular
infiltration. Marginean and collaborators proposed that these differences in the peritumoral
zones could be exploited through computed tomography texture analysis to radiologically
distinguish the two types of lesions (Table 1) [79] (Figure 9A) (Table 1). The texture
characteristics may show a more heterogeneous content in the patient with HGG, probably
due to the local infiltration of neoplastic cells, compared to the patient with brain metastasis.

Numerous studies have confirmed the usefulness of 5-ALA in identifying tumor
tissues during surgical resection. However, there is no extensive information on this use-
fulness in the case of the resection of an HGG recurrence, which is often contaminated by
necrotic tissues or pseudoprogression following the radio and chemotherapy treatments
to which the primary tumor has been subjected. Ricciardi and collaborators discussed
these aspects after performing a meta-analysis of the relevant published studies [101].
5-ALA allows better fluorescence visualization in HGG but not in LGG. The fluorescence
induced by 5-ALA appears to depend on the heme biosynthesis pathway, which allows
the transformation of 5-ALA into fluorescent protoporphyrin IX, but the details of this
mechanism are unknown. Mischkulnig et al. compared the mRNA and protein expression
of intramitochondrial heme biosynthesis enzymes/transporters in glioma tissue samples
showing different fluorescence levels in the presence of 5-ALA [80] (Figure 9B,C) (Table 1).
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The heme biosynthetic pathway activity was greater in fluorescent gliomas with the upreg-
ulation of PpIX-generating enzymes and decreased PpIX efflux mediated by the ABCG2
membrane pump. Those factors of intramitochondrial heme biosynthesis can be targeted
for intervention to enable improved 5-ALA visualization even in non-fluorescent tumors
such as LGG.
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Figure 9. Models for the diagnosis of HGG VIII. (A). CT images of patients with histologically
proven GB (left) and brain metastases (right). (B,C). Observed effects on intramitochondrial heme
biosynthesis factors in gliomas with visible 5-ALA fluorescence and possible pharmacological targets
to optimize fluorescence visualization. (B). Heme biosynthesis pathway activity was enhanced in
gliomas with visible 5-ALA fluorescence with the upregulation of PpIX-generating factors (CPOX
and PPOX; green arrow) and decreased ABCG2-mediated PpIX efflux (red arrow), outweighing the
also increased further metabolization of PpIX to heme by FECH (green arrow). (C). Intramitochon-
drial heme biosynthesis factors, thus, constitute promising pharmacological targets to optimize the
intraoperative 5-ALA fluorescence visualization of usually non-fluorescing tumor tissues such as
LGG. In this sense, the enhancement of CPOX and PPOX (green arrows) as well as the inhibition
of ABCG2 (red symbols) represent candidates for future investigations. For example, the tyrosine
kinase inhibitor lapatinib constitutes a potent suppressor of ABCG2 with an overall favorable safety
profile in clinical use. (D–L). Molecular profile (D) and MRI at four consecutive time points of an
HGG infant patient. DNA methylation profile showed a complex copy number variation (CNV) with
CDK6 and MET amplification, and a platelet-derived growth factor A (PDGFRA) gain (D). Axial TSE
T2-weighted (E–H) and post-gadolinium SE T1-weighted (I–L) sequences at four consecutive time
points: at presentation (E,I), at first local recurrence after surgery (F,J), at second local recurrence
after reoperation (G,K) and spreading to the contralateral hemisphere (H,L). The right frontal HGG
and recurrences present with a non-homogeneous hyperintense signal on T2-weighted, and intense
and non-homogenous CE on T1-weighted, images (M). Post-contrast axial T1 MRI demonstrates
close rim enhancement in a left occipital TDL with no mass effect or edema. (N). Post-contrast
axial T1 MRI demonstrates a close regular rim enhancement pattern in a right frontal TDL with
minimal mass effect and no edema. (O). Post-contrast axial T1 MRI demonstrates irregular closed-rim
enhancement pattern in a left temporal HGG with no mass effect. (P). T2 axial MRI demonstrates a
T2 hypointense rim in a left frontal TDL with mild edema and no mass effect. (Q). T2 coronal MRI
demonstrates the absence of a T2 hypointense rim in the left frontal HGG. (R). T2 axial MRI demon-
strates a T2 hypointense rim in a right partial TDL with edema and mass effect (after [79,80,84,85]
with permission).
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Microscopic vascular events, such as neovascularization and neurovascular uncou-
pling, are common in patients with HGG, and mapping the remodeling of this cerebrovas-
cular network may aid in assessing cerebrovascular damage in HGG. Cai et al. studied
the aspects relevant to tumor aggressiveness using an analysis of the blood oxygenation
level at rest [81] (Table 1). HGG induced grade-specific cerebrovascular dysregulation in
the entire brain.

Gupta et al. proposed the utility of systemic inflammatory biomarkers in distinguish-
ing HGG from PCNSL (Table 1).

Molecular GB (i.e., without histological examination but with the molecular charac-
teristics of IDH-wild-type GB) often takes little contrast and its correct diagnosis can be
mistaken. Mesny and colleagues evaluated the diagnostic value of gyriform infiltration as
an imaging marker for molecular GB [83] (Table 1). Mesny and colleagues proposed that
gyri infiltration may represent an imaging marker capable of contributing to the correct
diagnosis of molecular GB.

Kraus et al. described a patient presenting with two histopathologically distinct
gliomas (one oligodendroglioma and one GB) [102]. Genomic diversity was highlighted
by DNA–methylation profiling, indicating that this type of analysis can contribute to the
correct diagnostic classification of HGG, in addition to the response to treatment with TMZ.

HGGs account for approximately 15% of all pediatric brain tumors, and approximately
10–12% of them occur in children under the age of five at the time of diagnosis. The latter,
which can show prolonged survival, are characterized by great heterogeneity of lesions
with different molecular profiles, which can explain, at least in part, the different survival
outcomes observed. Di Ruscio and collaborators reported their institution’s experience
between 2011 and 2021, during which 11 children under five years of age with newly
diagnosed HGG were followed [84] (Figure 9D–L) (Table 1). Molecular investigations
played a fundamental role in the diagnostic process and the therapeutic decision for
those patients.

Tumefactive demyelinating lesions (TDLs) share clinical and imaging characteristics
with HGGs. French et al. proposed a diagnostic path that may allow us to distinguish
the two types of lesions and choose the appropriate type of treatment [85] (Figure 9M–R)
(Table 1). Suppose MRI shows other lesions typical of MS and specific oligoclonal bands
(OCBs) are found in the cerebrospinal fluid (CSF) via lumbar puncture (LP). In that case,
patients should undergo a short course of steroids to seek improvement clinically. Patients
who continue to worsen, who show no other lesions on MRI, or in whom the LP is negative
for CSF-specific OCB, should be considered for biopsy with histology. This pathway can
provide patients with the best diagnostic and neurological preservation possibilities.

4. Models for the Prognosis of HGG
4.1. Preclinical Studies

Planeta and colleagues applied X-ray fluorescence microscopy based on synchrotron
radiation to study the micro changes of the rat brain in which HGG develops [103]
(Figure 10A) (Table 2). The changes in the animal brain implanted with two different
stabilized lines of human HGG and with an HGG (GB) taken directly from a patient
were compared. In each case, the extent and intensity of the micro changes in the brain
parenchyma were strongly linked to tumor development. Tumors developed in rat brains
were characterized by the accumulation of Fe and Se, while peritumoral tissue by the
accumulation of Cu.
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Table 2. Models for the prognosis of HGG.

Major Finding Experimental System Ref.

Increased accumulation of Fe and Se in tumor and Cu in
peritumoral tissue in rodent models. Orthotopic rat models of GB. [103]

LAT1 as a new marker for GICs. LAT1+ and LAT1- glioma cells sorted by flow cytometry. [104]

Circulating miR-181a/b, miR-410 and miR-155 as
diagnostic and prognostic biomarkers in HGG.

Determination of pre- and postoperative plasma levels of
miR-181a/b, miR-410 and miR-155 in 114 HGG patients,

77 LGG patients and 85 healthy volunteers as
control group.

[105]

Multi-parameter MRI as a non-invasive method for the
prognosis of DMG.

84 patients with DMG including 40 patients with
OS > 12 months and 44 patients with OS < 12 months. [106]

The S100 protein signature in the HGG
patients’ prognosis.

Determination of the expression profiles of 17 S100 family
genes in glioma. [107]

The relationship between glioma angiogenesis and the
malignant phenotype, immune characteristics,

and prognosis.

An angiogenesis pathway score assessing the status of
intra-glioma angiogenesis using public datasets. [108]

Dismal prognosis in H3.3 G34-mutant glioma patients. 30 adults with H3.3 G34-mutant diffuse gliomas. [109]

rs-fMRI may identify neural correlates for cognitive and
daily functioning in glioma patients.

22 patients with diffuse gliomas who completed treatment
within the past 10 years. [110]

Assessment of side effects of RT should
include depression.

15 patients with HGG receiving standard
radio(chemo)therapy. [111]

The association between peripheral blood tests, cMRI
and prognosis. 131 GB patients. [112]

Basal ganglia iron levels as a biomarker in glioma
prognosis and treatment. 59 patients with brain lesions. [113]

A “DeepRisk” learning model predicting glioma
survival from whole-brain MRI. 1556 patients with diffuse gliomas. [114]

A nomogram based on MRI radiomics and clinical
features for predicting H3 K27M mutation in

pediatric HGGs.

107 patients with pHGGs with a midline location of the
brain including 79 patients with H3 K27M mutation. [115]

A nomogram based on clinical pathology, genetic
factors, and MRI predicting early recurrence of HGG.

154 patients with HGG classified into recurrence and
nonrecurrence groups based on the pathological diagnosis

and RANO criteria.
[116]

A novel ARG-related risk signature as a
prognostic marker.

1738 glioma patients collected from
three public databases. [117]

A 14 radiomic features-based prognostic model
constructed from preoperative T2-weighted

MRI images.
652 glioma patients across three independent cohorts. [118]

A combination of 18F-DOPA PET and MRI for
distinguishing TP from TIE after RT.

76 patients showing at least one gadolinium-enhanced
lesion on the T1-w MRI sequence. [119]

The relationship between CE in MRI and fluorescence
during surgery in glioma patients.

179 patients with newly diagnosedgrade II and grade III
gliomas who received 5-ALA for resection. [120]

Differences in survival between patients with primary
and secondary GS.

94 GS patients; 70 with primary disease and 24
with secondary. [121]

The performance status of elderly patients is the most
important prognostic factor.

198 patients with grade IV glioma over 65 years at the
time of diagnosis; grade III gliomas with nonmutated

R132HIDH1 and radiographically only diagnosed gliomas.
[122]

The association between the Ki-67 index and edema. MRI studies of 70 patients with GB acquired up to one
week before surgery. [123]

Elevated prognostic capacity of imaging-based risk
stratification in patients with diffuse glioma, NOS. 220 patients classified as diffuse glioma, NOS. [124]
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Figure 10. Models for the prognosis of HGG I. (A). Elemental anomalies accompanying HGG
development within an animal’s brain might facilitate our understanding of the pathogenesis and
progress of the tumors and also determine the potential biomarkers of their extension. Regions
of tumor (red A), surrounding tissue (green B) and tumor debris (blue C) marked in the maps of
elemental distribution as well as microscopic images of brain slices taken from selected animals
implanted with patient (Pa-40)-derived GB cells (top) and U87 (U-6) established GB cell line (bottom)
groups. (B–E). Kaplan–Meier curves of OS for HGG patients based on the circulating miR-155, miR-
410, miR-181a and miR-181b signature in patients with partial tumor resection. (F). Decision-curve
analysis of four radiomic models for the non-invasive prognosis of the OS of patients with midline
gliomas. The x-axis represents the threshold probability, and the y-axis represents the net benefit. The
combined model (red line) had a higher net benefit and better application value for predicting the
survival time of patients with midline gliomas (after [103,105,106] with permission).

Glioma-initiating cells (GICs) are considered to be the origin of HGG development,
both primary and recurrent. Wang and colleagues suggested that the essential amino acid
transporter LAT1 (CD98) might be a potential biomarker of GICs [104] (Table 2). LAT1 had
previously been linked to the invasive capacity of HGGs. Wang and colleagues found that
LAT1-expressing cells possess stemness characteristics and the ability to promote HGG
development, suggesting LAT1 as a possible additional biomarker of GICs. The microenvi-
ronment of the central nervous system (CNS) is generally considered not permissive for the
development and invasiveness of HGG, although this control system can, unfortunately,
fail. De Luca and colleagues discussed several aspects of the anatomical and biological basis
of gliomagenesis, including neural stem cells, the spatiotemporal diversity of astrocytes and
microglia, and the extracellular matrix and peritumoral environment [125]. The analysis
suggested that GICs should not be considered the only source of cells capable of initiating
HGG development and recurrence.

The downregulation of miR-181a/b and miR-410 and upregulation of miR-155 have
been shown to play a role in the development and progression of HGGs. Wu, J. et al.
proposed that circulating miR-181a/b, miR-410 and miR-155 could be used as non-invasive
diagnostic and prognostic biomarkers in HGG [105] (Figure 10B–E) (Table 2).

Using the multiparametric MRI features of HGGs, Deng and co-workers devel-
oped four radiomic models for the survival prognosis of midline glioma patients [106]
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(Figure 10F) (Table 2). All four models taken individually were adequate for sensitivity and
specificity. A model combining all four features performed best and offered the highest
application value for the noninvasive prognosis of patients with midline gliomas.

The S100 protein family comprises 25 calcium (Ca2+)-binding proteins with high
structural and sequence similarity. The deregulation of this family of proteins can alter
various proliferation control mechanisms, increasing the possibility of tumor development
and progression. For example, the family member S100A4, which is secreted by tumor and
stromal cells, stimulates tumor angiogenesis, acting synergistically with VEGF. Studies with
animal models obtained through human tumor xenografts have suggested that the in vivo
expression of the S100A4 member can favor the development and invasiveness of various
types of tumors, including melanoma and pancreatic carcinoma. Using a dataset obtained
from the Chinese glioma genome atlas (CGGA) and the cancer genome atlas (TCGA), Wang,
LJ et al. proposed a prognostic model of HGGs based on the expression profiles of seventeen
S100 family genes (including S100A4) in relation to the tumor microenvironment [107]
(Figure 11A–G) (Table 2).
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(N,O) datasets revealed that the angiogenesis score was an independent prognostic factor for glioma 
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Figure 11. Models for the prognosis of HGG II. (A–G). S100A4 affects the proliferation and migration
of glioma cells. (A). qRT-PCR and (B). Western blot analysis of S100A4 knockdown efficiency in LN229
cells. (C). Analysis of the proliferation of the control and S100A4-deficient LN229 cells by CCK8 assay.
(D). Representative images and (E). statistical analysis of EdU assay in control and S100A4-deficient
LN229 cells. (F). Representative images and (G). Statistical analysis of cell migration assay in the
control and S100A4-deficient endothelial cells at the indicated times. * p < 0.05; ** p < 0.01; *** p < 0.001;
**** p < 0.0001. (H–O). Angiogenesis score, as an independent prognostic factor, reflected glioma
sensitivity to therapy. (H–K). Among glioma patients receiving chemotherapy (H,I) or RT (J,K), the
prognosis of glioma patients in the high-score group was significantly worse than that in the low-score
group in the CGGA and CGGA (array) datasets. (L,O). Univariate (L,N) and multivariate (M,O) Cox
regression analysis in the TCGA (L,M) and CGGA (N,O) datasets revealed that the angiogenesis
score was an independent prognostic factor for glioma patients (after [107,108] with permission).

Correct surgical/RT planning is based on defined anatomical considerations on tumor
development and progression. Zhang, Q. et al. developed an angiogenesis score using
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gene set variation analysis (GSAV) to assess the status of intra-HGG angiogenesis in
TCGA, CGGA mRNAseq_325, CGGA mRNA-array and NCBI’s gene expression omnibus
(GEO) GSE16011 datasets Correct surgical/RT planning is based on defined anatomical
considerations on tumor development and progression. Zhang, Q. et al. developed an
angiogenesis score using gene set variation analysis (GSAV) to assess the status of intra-
HGG angiogenesis in TCGA, CGGA mRNAseq_325, CGGA mRNA-array and NCBI’s
gene expression omnibus (GEO) GSE16011 datasets [108] (Figure 11H–O) (Table 2). The
scores thus calculated in the angiogenic development of the tumor can help define the
invasiveness of the tumor, its sensitivity to chemo- and RT and, ultimately, the prognosis of
the patients.

4.2. Clinical Studies

Similar to the above-discussed contributions to image-based modelling for the diag-
nosis of HGG, advances in AI may offer progress in detailing the structure and pathology
of those tumors, previously beyond the scope of human experience alone; ultimately this
contributes to improving patient prognosis. These possibilities pass through a machine
learning process involving the steps of image preprocessing, tumor segmentation, feature
extraction and the construction of classifiers which may finally lead to the development of
prognostic models [126]. Wang et al. described the characteristics of adult HGG with the
H3.3 G34 mutation (Table 2). Thirty adults with diffuse gliomas with the H3.3 G34 mutation
were retrospectively examined clinically and pathologically. A higher frequency of the
loss of Olig-2 expression, TP53 mutation, ATRX mutation, PDGFRA mutation, and MGMT
promoter methylation was found in these HGGs compared to patients with H3.3 WT
gliomas. However, no TERT promoter mutation and only one case of EGFR amplification
were detected, the frequencies of which were significantly higher in the wild-type IDH/H3
cohort. Patients with the H3.3 G34 mutation had a worse prognosis than WT patients.

It has been shown that the expression levels of the CUL2 gene, which encodes the
cullin2 protein in the cullin2-RING E3 (CRL2) DNA ligase complex, can predict the ra-
diosensitivity and prognosis of HGG patients. The expression levels of CUL2 are tightly
regulated with its copy number variations (CNVs). Zander and colleagues developed
artificial neural networks (ANNs) for the noninvasive pretreatment evaluation of HGG
patients integrating clinical measurements, genetic data, and image data [127].

Resting-state functional magnetic resonance imaging (rs-fMRI) was used to study
alterations in the functional connectivity (FC) associated with cognitive function in long-
surviving HGG patients [110] (Figure 12A–E) (Table 2). Some rs-fMRI parameters poten-
tially related to cognitive and daily functioning in HGG patients were described.

Schiavolin and collaborators proposed a possible standardization of outcome parame-
ters to compare studies on cognitive impairment in three categories of patients: affected by
HGG, meningioma or subject to cerebrovascular surgery. Identifying common outcome
measures was the first step in this standardization process [128]. RT in patients with brain
tumors may affect the structure of the hippocampus and cause dyscognitive side effects
that may contribute to the depressive symptoms often present in these patients. Prompt
and effective pharmacological intervention for these symptoms can improve the quality
of life of HGG patients. Donix et al. highlighted that the evaluation of the side effects
of RT concerning memory should include any depressive symptoms [111]. Preoperative
conventional peripheral blood and MRI tests can help inform the prognosis of patients
with HGG. Rao and colleagues proposed calculating a risk score based on the results of a
preoperative peripheral blood test and conventional MRI, then developing a prognostic
nomogram for HGG (Figure 12F–K) (Table 2). VEGFA was the most important gene related
to peripheral blood tests significantly associated with an unfavorable prognosis and the
nomogram contributed to the prognostic classification of the patient [112].
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Hemisphere. (B–E) Representative comparisons of FC between cognitively impaired and 
nonimpaired patients, where (B), left pPaHC and right SPL; (C), left pPaHC and left SPL; (D), MPFC 
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Figure 12. Models for the prognosis of HGG III. (A–E). Difference of ROI-to-ROI functional con-
nectivity (FC) between cognitively impaired and non-impaired glioma patients after controlling for
age. (A). Colors denote value of the T-statistic, yellow–red represents stronger FC in cognitively
non-impaired patients, cyan-blue denotes stronger FC in cognitively impaired patients. Position
of ROIs displayed on mid-axial slices. SPL = Superior Parietal Lobule; pSMG = Supramarginal
Gyrus, Posterior Division; pPaHC = Parahippocampal Gyrus, Posterior Division; MPFC = Medial
Prefrontal Cortex; RPFC = Rostral Prefrontal Cortex; IPS = Intraparietal Sulcus; R = Right Hemisphere;
L = Left Hemisphere. (B–E) Representative comparisons of FC between cognitively impaired and
nonimpaired patients, where (B), left pPaHC and right SPL; (C), left pPaHC and left SPL; (D), MPFC
and right RPFC; and (E), MPFC and left RPFC. (F–K). Analysis of VEGFA expression in GB patients.
(F), [gene ontology (GO)] and (G). [Kyoto encyclopedia of genes and genomes (KEGG)] analyses via
gene set enrichment analysis (GSEA) between the different VEGFA expression groups. (H). Radar
plots showing the correlation between VEGFA expression and 16 immune-related cells, (I). Thirteen
immune-related functions, (J). Immune checkpoints in GB, and (K). Distinct functional states of
cancer cells at single-cell resolution. (L,M). Basal ganglia iron levels may be used as a biomarker in
glioma prognosis and treatment. (L). A representative quantitative susceptibility mapping (QSM)
image generated with QSMnet+ and (M). The same QSM image with the regions of interest (ROI)
outlined. An enlargement of the left basal ganglia shows the labeled ROIs for the caudate nucleus,
putamen, and globus pallidus (after [110,112,113] with permission).

Invasive growth along white matter (WM) tracts is an important issue in HGG surgery.
Wang and collaborators discussed the imaging and histological characteristics of HGG
patients with WM tract invasion and summarized the possible molecular mechanism [129].
The relationship between the molecular profile of the tumor and the radiation fields used
in RT with the invasion of the white matter by the HGG tumors was also discussed.

HGGs have been found to alter iron metabolism and transport, thus increasing the in-
tracellular iron storage possibly supporting tumor growth. Reith and colleagues determined
basal ganglia iron concentrations in HGG patients using deep neural network-trained quan-
titative susceptibility mapping (QSM) [113] (Figure 12L,M) (Table 2). The iron content in
the basal ganglia correlated with the malignancy of the tumor and the authors suggested
using the level of deposited iron as a negative prognostic biomarker.
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A prognosis model for the OS of HGG patients called “Deep Risk” has been proposed,
starting from MRI data on the whole brain without the need to segment it [114] (Table 2).
Deep Risk achieved prognostic accuracy comparable to models built using segmented
tumor images. Deep Risk had independent and incremental prognostic value over existing
models and IDH mutation status.

Wu and colleagues developed a nomogram based on MRI radiomics and clinical
characteristics to preoperatively predict the H3 K27M mutation in pediatric HGGs (pHGGs)
extending to the midline of the brain (Table 2) [115]. Qing and colleagues similarly devel-
oped a nomogram to predict the early recurrence of HGG using clinical pathology, genetics,
and MRI data [116] (Table 2).

Fu and collaborators have studied the role of autophagy-related genes (ARGs) in
the progression of HGG. An autophagic progression risk profile was described for HGG
patients, further developing a prognostic nomogram potentially useful for selecting the
most effective treatment [117] (Table 2) (Figure 13A).

A preoperative T2-weighted MRI-based radiomics model was developed by Li and
collaborators as a survival prognostic tool for HGG patients [118] (Figure 13B–D) (Table 2).
The model was based on 14 radiomic parameters, among which the extent of macrophage
infiltration was the one most influencing the prognosis.

Similar to pediatric tumors, adult diffuse midline gliomas (aDMGs) with H3 K27M
alterations are associated with relatively short survival [130]. A further negative prognostic
element in these tumors is the mutation of the ATRX gene, while RT has a positive effect
on survival.

18F-DOPA PET is used in the follow-up of HGG after RT to distinguish between RT
treatment-induced lesions and tumor progression. Bertaux and collaborators compared the
diagnostic and prognostic efficacy of PET-DOPA with the PET/DOPA associated with MRI,
finding a significant increase in resolution in favor of the latter [119] (Table 2). (Table 2). The
difficulty in treating HGGs is partly linked to their heterogeneity, which allows selected
populations of tumor cells to escape the effect of therapies. The tumor microenvironment
and the non-tumor cells within it also contribute to the tumor’s resistance ability in various
ways. Zhou and coworkers emphasized that today’s imaging techniques assisted by AI
should be developed to provide more precise information on the conformation of HGG
tissues, which are important for defining the prognosis and personalizing treatments [131].
5-ALA tumor fluorescence often correlates with the degree of malignancy. Muther and
collaborators have described imaging features related to CE indicating the tumor 5-ALA
level of fluorescence and its degree of malignancy (Figure 13E) (Table 2) noninvasively.

Gliosarcoma (GS) is a subtype of GB with sarcomatous features. GS tend to metastasize,
unlike other gliomas, with lower 5-year survival rates than GB patients. Differences in
survival between patients with primary and secondary GS have been studied and described
by Amer and colleagues [121] (Table 2).

Leibetseder and collaborators studied the clinical and radiological parameters possibly
influencing the prognosis of patients with brainstem gliomas (BSG). The ECOG Perfor-
mance Status scale, the body mass index, the WHO grade and the ADC were proposed
as possible parameters associated with the OS of BSG patients [132]. The prognosis of
HGG patients is worse with advancing age. In an epidemiological study carried out on the
Finnish population, Pirkallainen and collaborators confirmed that the performance status,
rather than the chronological age, was one of the most important parameters influencing
the choice of treatment and, ultimately, the OS of patients [122] (Figure 13F) (Table 2).

Caramanti and collaborators found a correlation between the volume of tumor-
induced oedema measured by MRI and the Ki-67 proliferation index. According to this
study, the two parameters might be considered in relation to each other and be prognostic
of OS [123] (Figure 13G,H) (Table 2).
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Figure 13. Advances in the prognosis of HGG IV. (A). A prognostic nomogram model using a TCGA
training set with clinicopathological information for predicting the 1-, 3-, and 5-year survival rates
of patients with glioma is shown. The external validation cohorts, including the CGGAseq1, CG-
GAseq2, and GSE16011 datasets, were used to evaluate the robustness and stability of the nomogram
model. According to the results of the above univariate and multivariate Cox regression analy-
ses, three independent prognostic indicators (age, grade, and autophagy-related risk signature) for
patients with glioma were incorporated into the final prediction model. (B–D). The stability of a
radiomics prediction model based on 14 features associated with immune response, especially tumor
macrophage infiltration, was validated in a prospective validation cohort. (B). Flow diagram of
glioma patients in the prospective group. A total of 224 glioma patients eligible for the study were
screened from the sample of 438 glioma patients. (C). The heat map shows clinicopathological infor-
mation of patients in different risk groups in the prospective validation cohort. (D). Kaplan–Meier
curves show the OS of patients in the high-risk group is significantly shorter than in those in the
low-risk group in the prospective validation cohort. (E). Patterns of CE on preoperative MRI. Patterns
were defined as either: none (CE 0), patchy (multiple smaller areas of enhancement covering less
than 50% of any nonenhancing tumor cross section) (CE 1), focal (1 single area of enhancement
covering less than 50% of any nonenhancing tumor cross section) (CE 2), or abundant (enhancing
tumor volume greater than 50% of nonenhancing tumor) (CE 3). CE, contrast enhancement. (F). Mor-
tality rates of different WHO performance groups with time-dependent hazard for the groups. The
mortality rates are for patients with methylated MGMT and resected tumor. The poorest-performing
patients have significantly higher risk during the first 6–9 months, after which the better-performing
patients have risk increased to a similar level. (G,H). MRI volumetric analysis of GB. (G). MRI
in T1-weighted sequence with gadolinium showing the calculation of the lesion volume for the
enhancing zone. (H). MRI in FLAIR-weighted sequence showing the calculation of the lesion volume
for the tumor edema zone. Volumetric calculations were estimated by measuring the area of interest
with a slice-by-slice semi-automatic method (after [117,118,120,122,123] with permission).

Some gliomas escape precise histopathological classification and are referred to as not
otherwise specified (NOS). Jang and colleagues attempted to determine the prognosis of
patient survival based on the imaging characteristics of these tumors. Three risk categories
for NOS gliomas were identified. The predictive capacity was particularly high for long-
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survival prognoses (three or five years of survival) [124] (Table 2). This prognostic imaging
model could also be useful to direct molecular investigations for these types of gliomas.

5. Discussion
5.1. Modelling the Diagnosis of HGG

The publication of subsequent versions of the classification criteria for brain tumors
testifies to identifying increasingly numerous entities through the progressive advancement
of molecular diagnostic techniques. Examples in adults are IDH mutant astrocytoma;
IDH mutant oligodendroglioma and codeletions 1p/19q; glioblastoma, IDH-wild-type. In
children, the examples are as follows: diffuse hemispheric glioma with H3 G34R mutation
and HGGs with wild-type H3 and IDH genes [133,134]. Alongside molecular investigations
on tissues and tumor cells, the advancement of tumor imaging techniques contributes to
the identification and typing of lesions, the prediction of metastasis and, ultimately, the
prognosis of patient survival. In addition to distinguishing between different morphologies
of primary brain tumors, they help to distinguish tumors of different tissue origin, such as
PCNSL and brain metastases, e.g., originating from lung tumors; brain lesions induced by
treatments (e.g., necrosis) and pseudo-progression phenomena.

Advanced MRI techniques such as DSC, DWI, DCE, BOLD and ASL can intervene
at various levels in this diagnostic process [135]. In particular, perfusion with dynamic
sensitivity can contribute to the diagnostic differentiation between tumor progression
and radiation damage in patients with HGG [136]. DWI combined with choline levels
determined by MRS can also significantly improve the differential diagnosis of recurrent
HGG and radiation damage, as well as the intraoperative characterization of tumor type
and margin [137–139]. MR relaxometry, a quantitative imaging method that measures
tissue relaxation properties, can help differentiate between gliomas and metastases and
between different grades of glioma [140]. Relaxometry can help define the peritumoral
areas with a greater probability of tumor infiltration and the hypoxic areas not identified by
perfusion. Studies on the response to anti-tumor therapy have also suggested an association
between survival and progression with tumor relaxometric profiles.

Combined with MRI, PET, especially if carried out with radiolabeled amino acids, is
acquiring an increasingly relevant role in the distinction between HGG and PCNSL [141],
HGG and metastases [142,143] and HGG and therapy-related damage [144,145].

However, the diagnosis of HGG carried out using advanced neuroradiology tech-
niques is still in an experimental phase and lacks standard protocols. The definition of the
latter is key to fully exploiting the potential of the many advanced imaging techniques
currently available. Meritorious attempts in this sense are underway by the working group
of the Imaging Biomarker Standardization Initiative which has proposed standardized
radiomic characteristics for phenotyping based on high-throughput images [146]. The adop-
tion of standard algorithms should significantly improve the reproducibility of AI-based
radiomic models, and it represents an essential step for its widespread adoption in the clinic.
Unfortunately, this is easier said than done; the definition of standardized procedures can
only go through multicenter clinical studies on large samples [19,44,147,148].

5.2. Modelling the Prognosis of HGG

Prognostic tests that can be carried out on liquid biopsies from which circulating cells,
circulating DNA and RNA can be analyzed are under investigation, but truly informative
markers for the prognosis of HGG patients are sparse [149,150]. Modified RNAs that are
important factors in the metabolic cooperation between HGG and TME [151,152] have
been proposed as diagnostic and prognostic markers. However, those results require large
validating multicenter clinical studies [153]. While multifocal HGGs and their infratento-
rial recurrences (ITR) negatively influence the prognosis of HGG patients [154,155], the
socioeconomic status (SES) has been indicated as a positive prognostic factor. Here again,
large and well-designed studies are necessary [156]. A recent meta-analysis reported that
several nutritional indicators, including the prognostic nutritional index (PNI) score and
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the control nutritional status (CONUT) score, as well as the assessment of sarcopenia, may
contribute to the prognosis of HGG patients [157,158].

Due to the different types of evidence, indices of immunoinflammation may be prog-
nostic markers at a more advanced stage of characterization [159]. Macrophages, nTreg and
Th2 cells perform immunosuppressive functions in the TME and can be markers of tumor
progression. In particular, while glioma-associated M1-type macrophages are characterized
by an increased secretion of proinflammatory cytokines, such as interleukin (IL)-1ß, tumor
necrosis factor (TNF), IL-27, matrix metalloproteinases (MMP), C-C motif chemokine ligand
2 (CCL2), VEGF and insulin-like growth factor 1 (IGF1), and can lead to the destruction of
tumor tissue, those of the M2 type have more of an immunosuppressive action and promote
tumor progression through the production of IL-10, IL-35 and transforming growth factor ß
(TGF-β) [160]. The overexpression of NFE2L2, NOX4 and PD-L1 genes correlates with such
immunosuppression phenotype [161]. Simple blood count indices of immunoinflammation,
such as the ratio of platelets to lymphocytes, may also contribute to the prognosis of HGG
patients [162].

5.3. Regulating the End of Life

Despite research efforts, the prognosis for HGG patients remains poor with a median
OS of 36 and 15 months for grade III and IV tumors, respectively. In this regard, there is
much to do when the end of life approaches, and this point must be discussed. A profound
burden of cognitive and relational symptoms can afflict the patient’s disease course and the
emotional and physical burden of their caregivers. Predominant symptoms include seizures,
headaches, depression, fatigue and treatment-induced toxicity, which can be addressed
through the appropriate organization of specialist palliative care services to mitigate the
tremendous impacts of the disease [163]. Unfortunately, while such organization has
become relatively common in systemic tumors, it remains unjustifiably limited in neuro-
oncology [164].

Cognitive decline can heavily limit the patient’s capacity to distinguish and express
preferences regarding the continuation of treatments. This is an important ethical issue
involving patients, their families and healthcare professionals. It is valuable in these cases
to compile, when the neurocognitive functions are still intact, a living will that details the
conditions and methods chosen by the patient for the treatments to undergo at the end
of life. However, although this living will has had legal value in Italy since 2017 (Law 22
December 2017, n. 219 “Provisions for informed consent and advance directives treatment”),
it is unfortunately still filled out by a minority of HGG patients [165]. A much stronger
communicative effort is needed on these options to make the end of life course more defined
and shared between the patient, his/her family and healthcare professionals [166].

Already present in the laws of several European and overseas countries, assisted sui-
cide choices have now also been made possible by a sentence of the Italian Constitutional
Court (242/2019), which provides for it in cases where the following four conditions have
been verified by a public structure of the national health service, following the opinion
of the territorially competent ethics committee: 1. Intention to commit suicide, indepen-
dently and freely formed. 2. Person kept alive by life-sustaining treatments. 3. Person
suffering from an irreversible pathology, a source of physical or psychological suffering
that he/she considers intolerable. 4. Person fully capable of making free and informed deci-
sions https://www.cortecostituzionale.it/documenti/download/doc/recent_judgments/
Sentenza_n_242_del_2019_Modugno_en.pdf (accessed on 17 April 2024). In this regard,
depression is a common complication that can cause psychological severe barriers, rapidly
deteriorate the patient’s quality of life (QoL) and limit the capabilities referred to in point
4. Currently, the Hospital Anxiety and Depression Scale (HADS) is the most commonly
used tool to diagnose depression in HGG patients. Female gender, unmarried status, low
level of education, high tumor grade, and a history of mental illness may increase the risk
of depression and depressive symptoms in patients with HGG.

https://www.cortecostituzionale.it/documenti/download/doc/recent_judgments/Sentenza_n_242_del_2019_Modugno_en.pdf
https://www.cortecostituzionale.it/documenti/download/doc/recent_judgments/Sentenza_n_242_del_2019_Modugno_en.pdf
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6. Conclusions

The conversion of radiological images into data (radiomics and radiogenomics) through
AI may allow automatic learning processes for machines, contributing non-invasively to
molecular profiling, albeit with lower resolution than histopathological techniques [167].
The most robust radio genomics acquisition at the moment is the ability to predict the
mutated state of the IDH gene, which can significantly influence the course of HGG dis-
eases. The low sample size of studies and the different protocols/methodologies used in
clinical trials still represent formidable limits to harmonizing methodologies, comparing
the results, assembling data and achieving robust, validated radiomic protocols [168]. To
those aims, it is urgent to define an international consensus to which the various clinical
research groups operating in the field may refer.

A number of novel prognostic markers for HGG have been proposed in the first
semester of 2022 in preclinical or monocentric clinical studies. While preclinical studies
provide valuable insights, the translation of findings to clinical practice may be limited due
to the differences between animal models and human pathology. Randomized multicenter
clinical studies validating the prognostic capacity of most markers have not yet even started
and are eagerly waited for.

Research on palliative care for HGGs, and often their availability for HGG patients,
is lagging. In many cases, once patients leave the hospital, they find themselves with-
out adequate and early palliative interventions, especially when they live alone. More
research is needed on the coordination of these treatments and their specific aspects. We
must define the timing, context, and specific components of palliative intervention care,
including effective communication protocols [169]. Bio-psycho-social (pharmacological–
psychotherapeutic–sociotherapeutic) evaluation and intervention on mood disorders may
improve the awareness and overall quality of life of patients with HGG and help them face
the end of their life with greater serenity [170].
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gence; 5-ALA, 5-aminolevulinic acid; ANN, artificial neural network; APT, amide proton
transfer; APTw, amide proton transfer weighted; ARG, autophagy-related gene; ASL, arte-
rial spin labeling; BM, brain metastasis; BOLD, blood oxygen level-dependent; BRAVO,
brain volume contrast-enhanced; BSC, bound sodium concentrations; BSG, brainstem
glioma; BT, brain tumor; CCA, contrast clearance analysis; CCL2,C-C motif chemokine
ligand 2; CE, contrast enhancement; CEST, chemical exchange saturation transfer; Cho,
choline; CGGA, Chinese glioma genome atlas; CLNA, contralateral normal appearing,
nonenhancing area; cMRI, conventional MRI; CNN, convolutional neural network; CNS,
central nervous system; CNV, copy number variation; CONUT, control nutritional status;
CPOX, coproporphyrinogen oxidase; Cre, creatine; CSF, cerebrospinal fluid; CRL2, cullin2-
RING E3 DNA ligase complex; CT, computed tomography; CTP, computed tomography
perfusion; DAG-G, diffuse astrocytic glioma, IDH-WT with molecular features of GB; DCE,
dynamic CE; DIPG, diffuse intrinsic pontine glioma DKI, diffusive kurtosis imaging; DMG,
diffuse midline glioma; DOPA, dihydroxyphenylalanine; 18F-DOPA, 3,4-dihydroxy-6-18F-
fluoro-L-phenylalanine; DPA-714, a high affinity translocator protein (TSPO) ligand; DSC,
dynamic susceptibility contrast; DTI, diffusion tensor imaging; DWI, diffusion-weighted
imaging; EGFR, epidermal growth factor receptor; FA, fractional anisotropy; FAC, fer-
ric ammonium citrate; FBY,18F-fluoroboronotyrosine; FC, functional connectivity; FECH,
ferrochelatase; FET, fluoro ethyl tyrosine; 18F-FET, 2-18F-fluoroethyl)-L-tyrosine; FLAIR,
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fluid-attenuated inversion recovery; fMRI, functional MRI; GaDOTA-SSTR, GaDOTA-
somatostatin receptor; GB, glioblastoma; GBCM, gadolinium-based contrast media; GEO,
gene expression omnibus; GIC, glioma initiating cell; GS, gliosarcoma; GSAV, gene set
variation analysis; HADS, hospital anxiety and depression scale; HGG, high-grade glioma;
1H-MRS, hydrogen proton MRS; IAUC, initial area under the enhancement curve; IDH, isoc-
itrate dehydrogenase; IDIPGR, international DIPG registry; IGF1, insulin-like growth factor
1; iHGG, infant HGG; IL, interleukin; ioRT, intraoperative RT; IS, interstitial iodine-125; ITR,
infratentorial recurrence; Kep, rate constant for transfer from extravascular extracellular
space to the blood compartment; Ktrans, volume transfer constant from the plasma com-
partment to the extravascular extracellular space; LAT-1, neutral amino acid transporter
1; LGG, low-grade gliomas LP, lumbar puncture; LTS, long-term survivors; MD, mean
diffusivity; MET, methionine; mDMG, mutant DMG; MGMT, O6 methylguanine DNA
methyltransferase; MMP, matrix metalloproteinase; MRI, magnetic resonance imaging;
MRS, magnetic resonance spectroscopy; MS, multiple sclerosis; NNA, nearby nonenhanc-
ing area; NOS, not otherwise specified; OCB, oligoclonal band; OPG, optic pathway glioma;
OS, overall survival; PBT, proton beam RT; PCNSL, primary central nervous system lym-
phoma; PD, progressive disease; PET, positron emission tomography; PFS, progression
free survival; pHGG, pediatric HGG; PNI, prognostic nutritional index; PPOX, protopor-
phyrinogen oxidase; PSMA, prostate-specific membrane antigen; PsP, pseudoprogression;
PSR, percent signal recovery; PT, posttreatment enhancement; PWI, perfusion weighted
imaging; QoL, quality of life; QSM, quantitative susceptibility mapping; RANO, response
assessment in neuro-oncology; rCBV, relative cerebral blood volume; RD, radial diffusivity;
RN, radiation necrosis; ROI, region of interest; rs-fMRI, resting-state functional MRI; RT,
radiotherapy; SE, spin echo; SES, socioeconomic status; STS, short-term survivors; UV,
standardized uptake value; SWI, sensitivity-weighted imaging; syMRI, synthetic MRI;
TA, texture analysis; TCGA, the cancer genome atlas; TDL, tumefactive demyelinating
lesion; TERT, telomerase reverse transcriptase; TGF-β, transforming growth factor ß; TIE,
treatment induced effects; TM, tumoral enhancement; TMZ, temozolomide; tNAA, total
N-acetylaspartate; TNF, tumor necrosis factor; TP, tumor progression; TSC, total sodium
concentrations; TSE, turbo spin-echo; VEGF, vascular endothelial growth factor; VMAT,
volumetric modulated arc therapy; WHO, world health organization; WM, white matter;
WT, wild type; XRT, photon beam RT.

References
1. Castaño-Vinyals, G.; Sadetzki, S.; Vermeulen, R.; Momoli, F.; Kundi, M.; Merletti, F.; Maslanyj, M.; Calderon, C.; Wiart, J.; Lee,

A.K.; et al. Wireless Phone use in Childhood and Adolescence and Neuroepithelial Brain Tumours: Results from the International
MOBI-Kids Study. Environ. Int. 2022, 160, 107069. [CrossRef]

2. Schüz, J.; Pirie, K.; Reeves, G.K.; Floud, S.; Beral, V.; Million Women Study Collaborators. Cellular Telephone use and the Risk of
Brain Tumors: Update of the UK Million Women Study. J. Natl. Cancer Inst. 2022, 114, 704–711. [CrossRef]

3. Braganza, M.Z.; Kitahara, C.M.; Berrington de Gonzalez, A.; Inskip, P.D.; Johnson, K.J.; Rajaraman, P. Ionizing Radiation and the
Risk of Brain and Central Nervous System Tumors: A Systematic Review. Neuro-Oncology 2012, 14, 1316–1324. [CrossRef]

4. Auvinen, A.; Cardis, E.; Blettner, M.; Moissonnier, M.; Sadetzki, S.; Giles, G.; Johansen, C.; Swerdlow, A.; Cook, A.; Fleming, S.;
et al. Diagnostic Radiological Examinations and Risk of Intracranial Tumours in Adults-Findings from the Interphone Study. Int.
J. Epidemiol. 2022, 51, 537–546. [CrossRef]

5. Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn,
U.; et al. Radiotherapy Plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N. Engl. J. Med. 2005, 352, 987–996.
[CrossRef]

6. Montella, L.; Cuomo, M.; Del Gaudio, N.; Buonaiuto, M.; Costabile, D.; Visconti, R.; Di Risi, T.; Vinciguerra, R.; Trio, F.; Ferraro, S.;
et al. Epigenetic Alterations in Glioblastomas: Diagnostic, Prognostic and Therapeutic Relevance. Int. J. Cancer 2023, 153, 476–488.
[CrossRef]

7. Wu, H.; Wei, M.; Li, Y.; Ma, Q.; Zhang, H. Research Progress on the Regulation Mechanism of Key Signal Pathways Affecting the
Prognosis of Glioma. Front. Mol. Neurosci. 2022, 15, 910543. [CrossRef]

8. Yu, J.; Lai, M.; Zhou, Z.; Zhou, J.; Hu, Q.; Li, J.; Li, H.; Chen, L.; Wen, L.; Zhou, M.; et al. The PTEN-Associated Immune Prognostic
Signature Reveals the Landscape of the Tumor Microenvironment in Glioblastoma. J. Neuroimmunol. 2023, 376, 578034. [CrossRef]

https://doi.org/10.1016/j.envint.2021.107069
https://doi.org/10.1093/jnci/djac042
https://doi.org/10.1093/neuonc/nos208
https://doi.org/10.1093/ije/dyab140
https://doi.org/10.1056/NEJMoa043330
https://doi.org/10.1002/ijc.34381
https://doi.org/10.3389/fnmol.2022.910543
https://doi.org/10.1016/j.jneuroim.2023.578034


Cancers 2024, 16, 1566 34 of 41

9. Mekala, J.R.; Adusumilli, K.; Chamarthy, S.; Angirekula, H.S.R. Novel Sights on Therapeutic, Prognostic, and Diagnostics Aspects
of Non-Coding RNAs in Glioblastoma Multiforme. Metab. Brain Dis. 2023, 38, 1801–1829. [CrossRef]

10. Di Nunno, V.; Gatto, L.; Tosoni, A.; Bartolini, S.; Franceschi, E. Implications of BRAF V600E Mutation in Gliomas: Molecular
Considerations, Prognostic Value and Treatment Evolution. Front. Oncol. 2023, 12, 1067252. [CrossRef]

11. Muniz, T.P.; Mason, W.P. BRAF Mutations in CNS Tumors-Prognostic Markers and Therapeutic Targets. CNS Drugs 2023, 37,
587–598. [CrossRef]

12. Lhermitte, B.; Wolf, T.; Chenard, M.P.; Coca, A.; Todeschi, J.; Proust, F.; Hirsch, E.; Schott, R.; Noel, G.; Guerin, E.; et al. Molecular
Heterogeneity in BRAF-Mutant Gliomas: Diagnostic, Prognostic, and Therapeutic Implications. Cancers 2023, 15, 1268. [CrossRef]

13. Horbinski, C.; Berger, T.; Packer, R.J.; Wen, P.Y. Clinical Implications of the 2021 Edition of the WHO Classification of Central
Nervous System Tumours. Nat. Rev. Neurol. 2022, 18, 515–529. [CrossRef]

14. Frosina, G. Recapitulating the Key Advances in the Diagnosis and Prognosis of High-Grade Gliomas: Second Half of 2021 Update.
Int. J. Mol. Sci. 2023, 24, 6375. [CrossRef]

15. Frosina, G. Radiotherapy of High-Grade Gliomas: Dealing with a Stalemate. Crit. Rev. Oncol. Hematol. 2023, 190, 104110.
[CrossRef]

16. Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.;
Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71.
[CrossRef]

17. Carloni, A.; Bernardini, M.; Mattei, C.; De Magistris, A.V.; Llabres-Diaz, F.; Williams, J.; Gutierrez-Quintana, R.; Oevermann, A.;
Schweizer-Gorgas, D.; Finck, C.; et al. Can MRI Differentiate between Ring-Enhancing Gliomas and Intra-Axial Abscesses? Vet.
Radiol. Ultrasound 2022, 63, 563–572. [CrossRef]

18. Ebrahimpour, A.; Tirgar, F.; Hajipour-Verdom, B.; Abbasi, A.; Hadjighassem, M.; Abdolmaleki, P.; Hosseindoost, S.; Javadi, S.A.H.;
Hashemi, H.; Foroushani, A.R.; et al. Detection of Glioblastoma Multiforme using Quantitative Molecular Magnetic Resonance
Imaging Based on 5-Aminolevulinic Acid: In Vitro and In Vivo Studies. Magn. Reson. Mater. Phys. Biol. Med. 2022, 35, 3–15.
[CrossRef]

19. Carrete, L.R.; Young, J.S.; Cha, S. Advanced Imaging Techniques for Newly Diagnosed and Recurrent Gliomas. Front. Neurosci.
2022, 16, 787755. [CrossRef]

20. Muscas, G.; Orlandini, S.; Becattini, E.; Battista, F.; Staartjes, V.E.; Serra, C.; Della Puppa, A. Radiomic Features Associated with
Extent of Resection in Glioma Surgery. Acta Neurochir. Suppl. 2022, 134, 341–347.

21. Fatania, K.; Mohamud, F.; Clark, A.; Nix, M.; Short, S.C.; O’Connor, J.; Scarsbrook, A.F.; Currie, S. Intensity Standardization of
MRI Prior to Radiomic Feature Extraction for Artificial Intelligence Research in Glioma-a Systematic Review. Eur. Radiol. 2022, 32,
7014–7025. [CrossRef]

22. Ehret, F.; Kaul, D.; Clusmann, H.; Delev, D.; Kernbach, J.M. Machine Learning-Based Radiomics in Neuro-Oncology. Acta
Neurochir. Suppl. 2022, 134, 139–151.

23. Seo, M.; Ahn, K.J.; Choi, Y.; Shin, N.Y.; Jang, J.; Kim, B.S. Volumetric Measurement of Relative CBV using T1-Perfusion-Weighted
MRI with High Temporal Resolution Compared with Traditional T2*-Perfusion-Weighted MRI in Postoperative Patients with
High-Grade Gliomas. AJNR Am. J. Neuroradiol. 2022, 43, 864–871. [CrossRef]

24. Scola, E.; Desideri, I.; Bianchi, A.; Gadda, D.; Busto, G.; Fiorenza, A.; Amadori, T.; Mancini, S.; Miele, V.; Fainardi, E. Assessment of
Brain Tumors by Magnetic Resonance Dynamic Susceptibility Contrast Perfusion-Weighted Imaging and Computed Tomography
Perfusion: A Comparison Study. Radiol. Med. 2022, 127, 664–672. [CrossRef]

25. Stadlbauer, A.; Marhold, F.; Oberndorfer, S.; Heinz, G.; Buchfelder, M.; Kinfe, T.M.; Meyer-Bäse, A. Radiophysiomics: Brain
Tumors Classification by Machine Learning and Physiological MRI Data. Cancers 2022, 14, 2363. [CrossRef]

26. Zeineldin, R.A.; Karar, M.E.; Elshaer, Z.; Coburger, J.; Wirtz, C.R.; Burgert, O.; Mathis-Ullrich, F. Explainability of Deep Neural
Networks for MRI Analysis of Brain Tumors. Int. J. Comput. Assist. Radiol. Surg. 2022, 17, 1673–1683. [CrossRef]

27. Lerner, M.; Medin, J.; Jamtheim Gustafsson, C.; Alkner, S.; Olsson, L.E. Prospective Clinical Feasibility Study for MRI-Only Brain
Radiotherapy. Front. Oncol. 2022, 11, 812643. [CrossRef]

28. Ammari, S.; Bône, A.; Balleyguier, C.; Moulton, E.; Chouzenoux, É.; Volk, A.; Menu, Y.; Bidault, F.; Nicolas, F.; Robert, P.; et al.
Can Deep Learning Replace Gadolinium in Neuro-Oncology?: A Reader Study. Investig. Radiol. 2022, 57, 99–107. [CrossRef]

29. Calabrese, E.; Rudie, J.D.; Rauschecker, A.M.; Villanueva-Meyer, J.E.; Clarke, J.L.; Solomon, D.A.; Cha, S. Combining Radiomics
and Deep Convolutional Neural Network Features from Preoperative MRI for Predicting Clinically Relevant Genetic Biomarkers
in Glioblastoma. Neurooncol. Adv. 2022, 4, vdac060. [CrossRef]

30. Duran-Peña, A.; Ducray, F.; Ramirez, C.; Bauchet, L.; Constans, J.M.; Grand, S.; Guillamo, J.S.; Larrieu-Ciron, D.; Frappaz, D.;
Pyatigorskaya, N.; et al. Adult Brainstem Glioma Differential Diagnoses: An MRI-Based Approach in a Series of 68 Patients.
J. Neurol. 2022, 269, 4349–4362. [CrossRef]

31. Fuster-Garcia, E.; Thokle Hovden, I.; Fløgstad Svensson, S.; Larsson, C.; Vardal, J.; Bjørnerud, A.; Emblem, K.E. Quantification of
Tissue Compression Identifies High-Grade Glioma Patients with Reduced Survival. Cancers 2022, 14, 1725. [CrossRef]

32. Wamelink, I.J.H.G.; Kuijer, J.P.A.; Padrela, B.E.; Zhang, Y.; Barkhof, F.; Mutsaerts, H.J.M.M.; Petr, J.; van de Giessen, E.; Keil,
V.C. Reproducibility of 3 T APT-CEST in Healthy Volunteers and Patients with Brain Glioma. J. Magn. Reson. Imaging 2022, 57,
206–215. [CrossRef]

https://doi.org/10.1007/s11011-023-01234-2
https://doi.org/10.3389/fonc.2022.1067252
https://doi.org/10.1007/s40263-023-01016-5
https://doi.org/10.3390/cancers15041268
https://doi.org/10.1038/s41582-022-00679-w
https://doi.org/10.3390/ijms24076375
https://doi.org/10.1016/j.critrevonc.2023.104110
https://doi.org/10.1136/bmj.n71
https://doi.org/10.1111/vru.13098
https://doi.org/10.1007/s10334-021-00978-1
https://doi.org/10.3389/fnins.2022.787755
https://doi.org/10.1007/s00330-022-08807-2
https://doi.org/10.3174/ajnr.A7527
https://doi.org/10.1007/s11547-022-01470-z
https://doi.org/10.3390/cancers14102363
https://doi.org/10.1007/s11548-022-02619-x
https://doi.org/10.3389/fonc.2021.812643
https://doi.org/10.1097/RLI.0000000000000811
https://doi.org/10.1093/noajnl/vdac060
https://doi.org/10.1007/s00415-022-11070-6
https://doi.org/10.3390/cancers14071725
https://doi.org/10.1002/jmri.28239


Cancers 2024, 16, 1566 35 of 41

33. Friismose, A.I.; Markovic, L.; Nguyen, N.; Gerke, O.; Schulz, M.K.; Mussmann, B.R. Amide Proton Transfer-Weighted MRI in the
Clinical Setting—Correlation with Dynamic Susceptibility Contrast Perfusion in the Post-Treatment Imaging of Adult Glioma
Patients at 3T. Radiography 2022, 28, 95–101. [CrossRef]

34. Zhang, H.W.; Liu, X.L.; Zhang, H.B.; Li, Y.Q.; Wang, Y.L.; Feng, Y.N.; Deng, K.; Lei, Y.; Huang, B.; Lin, F. Differentiation of
Meningiomas and Gliomas by Amide Proton Transfer Imaging: A Preliminary Study of Brain Tumour Infiltration. Front. Oncol.
2022, 12, 886968. [CrossRef]

35. Shakir, T.M.; Fengli, L.; Chenguang, G.; Chen, N.; Zhang, M.; Shaohui, M. 1H-MR Spectroscopy in Grading of Cerebral Glioma: A
New View Point, MRS Image Quality Assessment. Acta Radiol. Open 2022, 11, 20584601221077068. [CrossRef]

36. Lavrova, A.; Teunissen, W.H.T.; Warnert, E.A.H.; van den Bent, M.; Smits, M. Diagnostic Accuracy of Arterial Spin Labeling in
Comparison with Dynamic Susceptibility Contrast-Enhanced Perfusion for Brain Tumor Surveillance at 3T MRI. Front. Oncol.
2022, 12, 849657. [CrossRef]

37. Qin, J.; Yu, Z.; Yao, Y.; Liang, Y.; Tang, Y.; Wang, B. Susceptibility-Weighted Imaging Cannot Distinguish Radionecrosis from
Recurrence in Brain Metastases After Radiotherapy: A Comparison with High-Grade Gliomas. Clin. Radiol. 2022, 77, e585–e591.
[CrossRef]

38. Voicu, I.P.; Pravatà, E.; Panara, V.; Navarra, R.; Mattei, P.A.; Caulo, M. Differentiating Solitary Brain Metastases from High-Grade
Gliomas with MR: Comparing Qualitative Versus Quantitative Diagnostic Strategies. Radiol. Med. 2022, 127, 891–898. [CrossRef]

39. Farche, M.K.; Fachinetti, N.O.; da Silva, L.R.; Matos, L.A.; Appenzeller, S.; Cendes, F.; Reis, F. Revisiting the use of Proton
Magnetic Resonance Spectroscopy in Distinguishing between Primary and Secondary Malignant Tumors of the Central Nervous
System. Neuroradiol. J. 2022, 35, 619–626. [CrossRef]

40. Bodensohn, R.; Forbrig, R.; Quach, S.; Reis, J.; Boulesteix, A.L.; Mansmann, U.; Hadi, I.; Fleischmann, D.F.; Mücke, J.; Holzgreve,
A.; et al. MRI-Based Contrast Clearance Analysis shows High Differentiation Accuracy between Radiation-Induced Reactions
and Progressive Disease After Cranial Radiotherapy. ESMO Open 2022, 7, 100424. [CrossRef]

41. Mansour, M.; Vitale, V.; Lombardi, G.; Riva, G.; Pancheri, F.; Zanusso, M. Modification of MRI Pattern of High-Grade Glioma
Pseudoprogression in Regorafenib Therapy. J. Med. Imaging Radiat. Oncol. 2022, 66, 414–418. [CrossRef] [PubMed]

42. Ari, A.P.; Akkurt, B.H.; Musigmann, M.; Mammadov, O.; Blömer, D.A.; Kasap, D.N.G.; Henssen, D.J.H.A.; Nacul, N.G.; Sartoretti,
E.; Sartoretti, T.; et al. Pseudoprogression Prediction in High Grade Primary CNS Tumors by use of Radiomics. Sci. Rep. 2022, 12,
5915. [CrossRef] [PubMed]
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