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Simple Summary: Hepatocellular carcinoma is the second leading cause of cancer-related deaths
and the seventh most common cancer worldwide. Although there have been rapid developments in
the treatment of hepatocellular carcinoma over the past decade, the incidence and mortality rates
of hepatocellular carcinoma remain challenging. Only about 30% of patients can be treated with
curative methods, while over 50% of patients require systemic treatment to prolong survival, with a
limited benefit. Molecular targeted therapy and immunotherapy have brought about a revolution in
hepatocellular carcinoma systemic treatment. Nevertheless, the treatment of hepatocellular carcinoma
is still a challenge due to significant drug resistance, tumor heterogeneity, lack of druggable mutation
targets, and lack of effective biomarkers. To improve outcomes of hepatocellular carcinoma patients,
we need to gain a deeper understanding of the hepatocellular carcinoma genome and explore more
combination treatment regimens.

Abstract: Hepatocellular carcinoma (HCC) is the most common form of liver cancer, accounting for
~90% of liver neoplasms. It is the second leading cause of cancer-related deaths and the seventh
most common cancer worldwide. Although there have been rapid developments in the treatment
of HCC over the past decade, the incidence and mortality rates of HCC remain a challenge. With
the widespread use of the hepatitis B vaccine and antiviral therapy, the etiology of HCC is shifting
more toward metabolic-associated steatohepatitis (MASH). Early-stage HCC can be treated with
potentially curative strategies such as surgical resection, liver transplantation, and radiofrequency
ablation, improving long-term survival. However, most HCC patients, when diagnosed, are already
in the intermediate or advanced stages. Molecular targeted therapy, followed by immune checkpoint
inhibitor immunotherapy, has been a revolution in HCC systemic treatment. Systemic treatment of
HCC especially for patients with compromised liver function is still a challenge due to a significant
resistance to immune checkpoint blockade, tumor heterogeneity, lack of oncogenic addiction, and
lack of effective predictive and therapeutic biomarkers.
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1. Introduction

Primary liver cancer is the seventh most common cancer and the second leading cause
of cancer-related deaths in the world [1]. The World Health Organization (WHO) estimates
that liver cancer will cause more than one million deaths in 2030 [2]. HCC is the most
common form of primary liver cancer, accounting for ~90% of cases [3]. Asia and Africa
have the highest incidence of HCC in the world. Due to a higher incidence of hepatitis B
virus infection, as well as having one of the largest populations in the world, China has the
highest number of HCC cases, accounting for about half of global cases [4] (Figure 1). HCC
is the fifth most common cancer and the second leading cause of cancer-related deaths in
China [5].
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in Japan, where HCV is the major risk factor for liver cancer). HCV is the dominant causative factor 
in North America and Western Europe. Excessive alcohol intake is an etiological factor in Central 
and Eastern Europe. The prevalence of metabolic risk factors for HCC, including metabolic syn-
drome, obesity, type 2 diabetes, and MAFLD/MASH, is increasing worldwide. Estimated number 
of prevalent cases (5 years) as a proportion in 2020, liver, both sexes, all ages, Copyright (2020). 
(https://gco.iarc.who.int/en) (accessed on 10 March 2023). Etiology data from [6] 

Currently, hepatitis B virus (HBV) and hepatitis C virus (HCV) remain the most signif-
icant global risk factors for HCC [6]. However, with the promotion of universal neonatal 
hepatitis vaccination and improved access to antiviral therapy for chronic hepatitis infec-
tions, the incidence of virus-related HCC has been on the decline, especially in countries 
with a high incidence of viral hepatitis. Taking HBV as an example, the infection rate of HBV 
in the United States and Western Europe is 0.1%~2%. In Japan and Mediterranean countries, 
the infection rate is 2%~8%, while in most African and Asian countries it is 8%~20%. In 1992, 
the HBV surface antigen (HBsAg)-positive rate among the Chinese population was 9.8%. 
Subsequently, the government issued and implemented a universal HBV vaccination pro-
gram for newborn babies. The HBsAg-positive rate in China decreased from 9.8% in 1992 to 
7.2% in 2006, with the HBsAg-positive rate in children under 10 years of age dropping to 
1.5% [7]. Furthermore, in children under 5 years old, the HBsAg-positive rate dropped to 
less than 0.4% in 2019 [8]. It is evident that the HBV vaccine has played a significant role in 

Figure 1. The estimated number of prevalent cases (5 years) of liver cancer, according to geographical
area and etiology, in 2020. Hepatitis B virus (HBV) is the major etiological factor in Asia (except
in Japan, where HCV is the major risk factor for liver cancer). HCV is the dominant causative
factor in North America and Western Europe. Excessive alcohol intake is an etiological factor in
Central and Eastern Europe. The prevalence of metabolic risk factors for HCC, including metabolic
syndrome, obesity, type 2 diabetes, and MAFLD/MASH, is increasing worldwide. Estimated number
of prevalent cases (5 years) as a proportion in 2020, liver, both sexes, all ages, Copyright (2020).
(https://gco.iarc.who.int/en) (accessed on 10 March 2023). Etiology data from [6].

Currently, hepatitis B virus (HBV) and hepatitis C virus (HCV) remain the most signif-
icant global risk factors for HCC [7]. However, with the promotion of universal neonatal
hepatitis vaccination and improved access to antiviral therapy for chronic hepatitis infec-
tions, the incidence of virus-related HCC has been on the decline, especially in countries
with a high incidence of viral hepatitis. Taking HBV as an example, the infection rate of
HBV in the United States and Western Europe is 0.1%~2%. In Japan and Mediterranean
countries, the infection rate is 2%~8%, while in most African and Asian countries it is
8%~20%. In 1992, the HBV surface antigen (HBsAg)-positive rate among the Chinese
population was 9.8%. Subsequently, the government issued and implemented a universal
HBV vaccination program for newborn babies. The HBsAg-positive rate in China decreased
from 9.8% in 1992 to 7.2% in 2006, with the HBsAg-positive rate in children under 10 years
of age dropping to 1.5% [8]. Furthermore, in children under 5 years old, the HBsAg-positive
rate dropped to less than 0.4% in 2019 [9]. It is evident that the HBV vaccine has played a
significant role in the prevention and control of hepatitis in China; as a result, the proportion
of Chinese HCC patients in the world decreased from 55.0% in 2008 to 45.3% in 2020 [5].

https://gco.iarc.who.int/en
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However, the prevalence of metabolic risk factors for HCC, including metabolic
syndrome, obesity, type 2 diabetes, and metabolic dysfunction-associated steatotic liver
disease (MASLD), is increasing and becoming the main cause of HCC growth, especially in
Western countries [10]. In addition, traditional factors for HCC, such as excessive alcohol
consumption, aflatoxin contamination, and smoking, remain significant and cannot be
ignored in the incidence of HCC. Because almost all HCC risk factors are theoretically
preventable, the prevention of high-risk factors should be a key strategy for reducing HCC
incidence and improving HCC prognosis.

The overall prognosis of HCC is poor, and treatment outcomes are still unsatisfac-
tory. The data show that in 2018, the incidence and mortality of HCC were roughly
equivalent [11]. HCC presents different prognoses and drug responses based on etiology.
Generally, the prognosis of HBV-related HCC is poorer. Possible reasons for this include
that HBV can integrate into the genome of patients, and compared to HCV, antiviral therapy
for HBV is less effective. Furthermore, HBV-related HCC is usually accompanied by more
severe molecular alterations, such as p53 mutations, leading to more malignant molecular
biology behavior [12].

Due to inefficient surveillance, metabolic-related HCC tends to be diagnosed later,
and this type of HCC tends to respond more poorly to immunotherapy in the advanced
but not adjuvant setting, which means that a potential improvement in prognosis is able to
be expected. The molecular pathogenesis has remained much less clear than that of viral
hepatitis; to address this problem, a series of studies are underway, including the PLANet
and ELEGANCE programs in Singapore [13].

The prognosis and treatment strategy of Barcelona Clinic Liver Cancer (BCLC) are well
known, and management guidelines for HCC have been established in many regions of the
world. Also, the BCLC system is useful to compare the outcomes of different therapies and
is frequently used in clinical trials worldwide. In the early stages, curative methods such
as surgical resection, liver transplantation, and radiofrequency ablation can significantly
prolong the survival of patients. However, due to the poor efficiency of screening and
surveillance strategies, many patients miss the opportunity to receive curative treatments
because of late tumor staging at the time of diagnosis, resulting in limited non-curative
methods. Consequently, they have to resort to loco-regional therapy or systemic therapy
to prolong their lives. [14]. Compared to the slow progress made in surgical treatment,
systemic therapy has undergone rapid development, both in neoadjuvant therapy for early
intermediate HCC and adjuvant therapy for advanced HCC, over the past decade [15].
Since the Food and Drug Administration (FDA) approved Sorafenib for the treatment of
HCC in 2007, molecular-targeted therapy and immunotherapy (such as kinase inhibitors
(KIs), anti-angiogenic agents (AAs), and immune checkpoint inhibitors (ICIs)) have brought
about revolutionary changes [16]. However, in the real world, the efficiency of targeted
and immunotherapy drugs still cannot meet clinical needs, manifesting high primary
resistance rates, adaptive resistance rates, and acquired resistance rates. Additionally, the
lack of druggable targets with high mutation rates, the absence of effective molecular
biomarkers for patient stratification and treatment guidance, as well as a lack of consensus
on drug combination regimens have limited the effectiveness of targeted therapy and
immunotherapy [17]. In recent years, numerous clinical trials have provided evidence for
the rational use of targeted and immunotherapeutic agents, greatly improving the efficacy
of systemic treatment of HCC.

This article discusses the current status, advances, and challenges of HCC clinical
treatment based on the molecular genetic alterations of HCC. The progress undertaken in
systemic regimens will be the focus of the discussion in this review.

2. Genetic Alterations and Signaling Pathways in HCC

HCC is a highly heterogeneous tumor resulting from the accumulation of various ge-
netic mutations. Among them, mutations that promote HCC proliferation and metabolism
are defined as driver mutations, while other mutations that confer no selective growth
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advantage are defined as passenger mutations [18]. Over the past decade, the accumulation
of high-throughput analysis data from numerous samples has facilitated a deeper under-
standing of the molecular pathogenesis of HCC. As a result, some alterations, such as TERT
promoter, TP53, CTNNB1, AXIN1, ARID1A, ARID2, LRP1B, TSC2, PTEN, MYC, and JAK1,
were revealed as common HCC driver mutations [19,20]. Searching the COSMIC site for
HCC revealed the top 20 genetic mutations in HCC (Figure 2).
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A study based on the European HCC population provided a relatively complete
description of the genetic alterations associated with HCC. The study identified 11 path-
ways altered with a mutation rate of ≥5%, including TERT promoter mutations activating
telomerase expression (60%), CTNNB1 (WNT/β-catenin) (54%), PI3K/AKT/mTOR (51%),
TP53 (49%), MAPK (43%), the genetic alterations involved in hepatic differentiation (34%),
epigenetic regulation (32%), chromatin remodeling (28%), oxidative stress (12%), IL-6/JAK-
STAT (9%), and TGF-β (5%) [21]. In this study, alcohol-related HCC was significantly
enriched in CTNNB1 (WNT/β-catenin), TERT, CDKN2A, SMARCA2, and HGF alterations.
HBV-associated HCC is frequently mutated in TP53, and IL-6/JAK-STAT mutations have
been exclusively found in HCCs of unknown etiology [21]. It should be noted that this
study was based on a European HCC population, meaning that it may not totally reflect
the real situation in other regions of the world due to the different risk factors causing
HCC [22,23].

In addition, several studies have identified genetic mutations in HCC which correlate
with tumor stages. For example, mutations of TERT were early events in HCC. The
frequency of CTNNB1 (WNT/β-catenin) and TP53 mutations significantly increased in
those with advanced tumors, while amplification of the FGF19/CNND1 locus was mainly
observed in those with HCC with poor prognosis [21,24,25].

However, China accounts for half of the world’s HCC cases, and 90% of patients are
associated with HBV infection. Recently, through the Chinese Liver Cancer Atlas (CLCA)
project, deep whole genome sequencing was performed on 494 HCC-HBV in Chinese
individuals, and 23 candidate coding cancer drivers and 31 candidate non-coding drivers
were identified. Compared with the Pan-Cancer Analysis of Whole Genomes (PCAWG)-
HCC cohort, the CLCA cohort had higher proportions of HBV infection (94.5% versus
30.6%) and Edmondson-Steiner grades 3 and 4 (85.6% versus 12.1%), while it had lower
proportions of hepatitis C virus (HCV) infection (2.6% versus 55.6%), alcohol drinking

https://cancer.sanger.ac.uk/cosmic/browse/tissue?wgs=off&sn=liver&ss=all&hn=carcinoma&sh=hepatocellular_carcinoma&in=t&src=tissue&all_data=n
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(26.7% versus 58.1%), and smoking (36.8% versus 53.6%). TP53 mutations were significantly
more frequent in CLCA than in PCAWG-HCC or TCGA-HCC, while CTNNB1 mutations
were mutually exclusive with either TP53 or AXIN1 mutations, which is consistent with
HCC in European individuals [21]. Notably, the CLCA found that HBV integrations could
take the form of extrachromosomal circular DNA and that characterized catastrophic events
could occur in the late stage of HCC, including chromotropic thripsis, chromotropic plexy,
and kataegis [26]. The CLCA, based on deep whole genome sequencing, identified six
coding cancer drivers and 28 non-coding drivers that were previously unreported for HCC,
suggesting that our understanding of the HCC genome is still very limited.

HCC can be classified into two subtypes based on genomic profiling: proliferative
and nonproliferative [3,19,27,28]. Proliferative HCC is characterized by the activation of
signaling cascades involved in cell proliferation, the enrichment of poor prognostic signals,
and association with the clinical features of an aggressive tumor and poor prognosis.
Activated signaling pathways include AKT/mTOR, MET, TGFβ, IGF, and RAS/MAPK.
Clinically, proliferative HCC patients have a higher incidence of invasive tumors, higher
levels of alpha-fetoprotein [29], poor histological cell differentiation, and frequent vascular
invasion [30]. HBV-related HCC mainly belongs to this subtype. Patients with such tumors
have a higher risk of recurrence after resection and a shorter survival period.

In nonproliferative HCC, activation of the WNT/β-catenin signaling pathway is
relatively high [31], and the tumor transcriptome is more similar to normal liver physiology.
Clinically, such tumors exhibit a less aggressive phenotype, including better histological
differentiation, lower alpha-fetoprotein, and lack of enrichment in adverse prognostic
features [32]. HCV and alcohol-related HCC are more common in this subtype [33].

In this section, we discuss some of the most common mutations detected in HCC.

2.1. Telomerase Reverse Transcriptase

TERT mutations are the most common molecular alteration in HCC, along with the
entire process of hepatocyte transformation from cirrhosis to HCC [28]. This process
accompanies a transformation of liver lesion blood supply from the portal vein to the
hepatic artery, as well as an increase in invasiveness and metastatic potential [34,35].

In the human liver, telomerase is not expressed in mature hepatocytes. Cirrhotic tis-
sues exhibit telomere shortening, accompanied by replicative senescence, while telomerase
is reactivated in more than 90% of HCC cases. Lineage-specific TERT mutations and telom-
erase reactivation are key events in the malignant transformation of hepatocytes [36,37].
The mechanisms of telomerase reactivation include somatic TERT promoter mutations
(54%–60%) and TERT amplification (5%–6%), as well as HBV inserted into the TERT pro-
moter (10%–15%) [19,38], and these mechanisms are mutually exclusive. In addition, TERT
promoter mutations often work synergistically with CTNNB1 (WNT/β-catenin) mutations
in liver tumorigenesis. TERT promoter mutations appear in 6% of low-grade dysplastic
nodules (LGDNs) and 19% of high-grade dysplastic nodules (HGDNs), and the frequency
of TERT promoter mutations dramatically increases in early HCC (61%) and remains high
in advanced and terminal-stage HCC [39].

2.2. TP53

Studies have shown that about 49% of HCCs present TP53 mutations [40,41]. Genomic
aberrations in the p53 pathway are the most common abnormalities in various types of
cancer and are generally associated with HBV infection, higher histological grades, stronger
vascular invasion ability, and poorer prognosis in HCC. The TP53 gene regulates a variety
of biological processes. Aflatoxin B1 (AFB1) exposure-related HCC is confirmed to be
related to the TP53 R249S mutation [42]. Additionally, the expression of VEGFA is also
regulated by TP53 [43,44].

TP53 mutations are more frequent in advanced-stage HCC. The TP53 mutation rate
in BCLC C tumors is 35%, while it is only 15.5%–17.3% in BCLC stage 0-B tumors [45].
Current research also indicates that many HCC cases without TP53 mutations present
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TP53 inactivation, and TP53-inactivated HCC is also accompanied by changes in a series of
protein expressions in the p53 pathway, thereby promoting the occurrence and development
of HCC [45].

2.3. CTNNB1 (WNT/β-Catenin)

The WNT/β-catenin pathway plays a key role in liver physiological embryogenesis,
differentiation, and metabolic control; it is one of the most frequent oncogenic mutations
in HCC [31]. This pathway is frequently activated in HCC by activating CTNNB1 muta-
tions (11%–37%), resulting in their increased stability and nuclear translocation to drive
oncogenic transcription [46]. Inactivating AXIN1 mutations (5%–35%) and APC mutations
(1%–2%) also lead to β-catenin activation [19,47].

2.4. PI3K/AKT/mTOR and RAS/RAF/MAPK

The PI3K/AKT/mTOR and RAS/RAF/MAPK pathways are downstream of tyro-
sine kinase receptors and are involved in cell growth, proliferation, and survival [48].
Activating mutations of FGF19/CCND1 and PIK3CA, inactivating mutations of TSC1 or
TSC2, and the homozygous deletion of PTEN can all activate the PI3K/AKT/mTOR and
RAS/RAF/MAPK pathways in HCC [49].

The abnormal expression of EGFR, VEGFR, and PDGFR also promotes HCC progres-
sion and metastasis through the PI3K/AKT/mTOR and RAS/RAF/MAPK pathways [50].

2.5. FGF19/CNND1

Approximately 5%–14% of HCC cases harbor FGF19/CNND1 alterations; their high
expression is associated with poor prognosis [51]. It is now believed that FGFR4 is the sole
receptor that displays specificity for FGF19/CNND1.

2.6. VEGFA

Based on fluorescence in situ hybridization, the estimated mutation rate of VEGFA
in HCC is approximately 7%, and high VEGFA plasma levels are associated with poor
prognosis in HCC [52,53]. VEGFA can promote tumor growth by stimulating angiogenesis
and immune evasion.

3. Current Treatment Strategies for HCC

The treatment strategy for HCC is determined by the clinical stage. Despite the highest
incidence of HCC occurring in the Asian region, BCLC prognosis and treatment strategy are
not widely accepted because they do not align perfectly with the diagnostic and treatment
characteristics of HCC, although BCLC prognosis and treatment strategy guidelines remain
the most common consensus in Western countries. BCLC classifies HCC patients into five
stages: BCLC-0 (very early), BCLC-A (early), BCLC-B (intermediate), BCLC-C (advanced),
and BCLC-D (terminal). In BCLC-0- and BCLC-A-stage patients, curative methods such as
hepatectomy, liver transplantation, and radiofrequency ablation are the main treatment
methods. In intermediate HCC patients, local treatment, such as TACE, is the preferred
treatment method. For advanced HCC patients, curative or local regional treatment is no
longer suitable, and systemic therapy is a survival-benefit treatment option. For terminal-
stage HCC patients, the best supportive care is recommended [14]. Corresponding to BCLC
prognosis and treatment strategy, the estimated survival period for each stage is as follows:
the early stage is more than 5 years, 2.5 years for the intermediate stage, 2 years for the
advanced stage, and only 3 months for the terminal stage [14].

Due to the insidious onset of symptoms, more than 50% of HCC patients diagnosed
worldwide require systemic treatment [54]. In recent years, unlike the slow progress of
curative approaches for early-stage HCC, systemic treatment regimens for advanced HCC
have evolved rapidly. In 2007, the FDA approved Sorafenib for the treatment of advanced
HCC, which significantly changed the treatment mode. In the following decade, many clin-
ical trials were conducted, but these did not solicit much success. Until 2017, Regorafenib
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was approved as a second-line treatment for advanced HCC, and then the treatment of
HCC entered a period of rapid development [55]. With the support of more successful
clinical trials, more molecular-targeted and immunotherapy agents were approved for
clinical use, as shown in Figure 3.
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Despite the revolutionary advances that have been made in molecular-targeted therapy
and immunotherapy for HCC, the overall survival of patients receiving systemic therapy
is still limited, with only some patients benefiting from these therapies because of non-
response and drug resistance. In this section, we will discuss approved systemic regimens
that are commonly used in clinical practice.

3.1. Atezolizumab–Bevacizumab/Sintilimab–IBI305

For BCLC-C HCC patients having preserved liver function and no esophageal varices,
the current guidelines recommend the use of Atezolizumab–Bevacizumab (PD-L1 inhibitor–
VEGF inhibitor) as the first-line treatment [14].

Atezolizumab–Bevacizumab regimen is a new milestone in the field of HCC treatment.
It is the first time that an immune checkpoint inhibitor in combination with antiangiogenic
inhibitor drugs has been established as a first-line recommended regimen [7].

The combination of PD-1/PD-L1 inhibitors with VEGF inhibitors has been established
as a new paradigm for the treatment of advanced HCC based on the IMbrave150 phase III
clinical trial [44]. In advanced HCC patients with no prior treatment, the phase Ib study of
Atezolizumab–Bevacizumab showed good safety and antitumor activity, with an achieved
encouraging objective response rate (ORR) of 36% and median progression-free survival
(mPFS) of 7.3 months [56]. Subsequently, in the Sorafenib-controlled IMbrave150 trial,
Atezolizumab–Bevacizumab significantly reduced the risk of death and improved median
overall survival (mOS), mPFS, and ORR [44] (details shown in Table 1).

The success of the Atezolizumab–Bevacizumab regimen may be attributed to synergis-
tic antitumor activities. PD-L1 inhibition activates T cell immune response, while VEGF
inhibition reduces VEGF-mediated immune suppression and enhances T cell function in
the tumor microenvironment. Similar to the IMbrave150 trial, the ORIENT-32 trial tested
Sintilimab (PD-1 inhibitor)–IBI305 (Bevacizumab biosimilar) versus Sorafenib in Chinese
HCC patients. Compared to Sorafenib, Sintilimab–IBI305 showed significant improvements
in terms of both mOS and mPFS (details shown in Table 2). Based on the ORIENT-32 trial,
the National Medical Products Administration (NMPA) approved Sintilimab–IBI305 as a
first-line treatment option in Chinese HCC patients [57].
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Table 1. The critical results of phase III clinical trials for therapies approved by the FDA.

Treatments
(Trial)

Dosing Regimen Line Setting/
Patients Number

Outcome TRAE

RemarkmOS (Months)
(HR, p-Value)

mPFS
(Months) (HR,

p-Value)
ORR (%) CR (%) ≥Grade 3 (%) Death/Grade

5 (%)

Sorafenib vs.
Placebo

(SHARP)
KI monotherapy 1L/602 10.7 vs. 7.9

HR 0.69, p < 0.001 NA NA NA NA NA

TTP: 5.5 vs. 2.8 months
(HR 0.58, p < 0.001);

any-grade TRAEs: 80%
vs. 52%

Sorafenib vs.
Placebo

(Asia–Pacific)
KI monotherapy 1L/271 6.5 vs. 4.2

HR 0.68, p = 0.014 NA
3.3 vs. 1.3
Based on

RECIST v1.0
NA NA NA TTP: 2.8 vs. 1.4 months

(HR 0.57, p = 0.0005)

Lenvatinib vs.
Sorafenib

(REFLECT)
KI monotherapy 1L/954

13.6 vs. 12.3
HR 0.92,

noninferiority
Based on
mRECIST

7.3 vs. 3.6
HR 0.65, p < 0.0001 18.8 vs. 6.5 0.4 vs. <0.2 56.7 vs. 48.6 2.3 vs. 0.8

The mOS of Lenvatinib is
noninferior to Sorafenib in

the REFLECT trial. However,
Lenvatinib has shown a

tendency to be superior to
Sorafenib, especially in

HBV-related and
AFP-elevated HCC

subgroups.

Regorafenib vs.
Placebo

(RESORCE)
KI monotherapy 2L/567 10.6 vs. 7.8

HR 0.63, p < 0.0001
3.4 vs. 1.5

HR 0.43, p < 0.0001 6.6 vs. 2.6 0.5 vs. 0 50.0 vs. 16.6 1.9 vs. 1.0

Cabozantinib vs.
Placebo

(CELESTIAL)
KI monotherapy 2L/707 10.2 vs. 8.0

HR 0.76, p = 0.005
5.2 vs. 1.9

HR 0.44, p < 0.001 3.8 vs. <0.4 0 vs. 0 67.7 vs. 36.3 1.3 vs. 0.4

Ramucirumab vs.
Placebo

(REACH-2)

anti-VEGFR
monotherapy 2L/292 8.5 vs. 7.3

HR 0.71, p = 0.0199

2.8 vs. 1.6
HR: 0.45,
p < 0.0001

4.6 vs. 1.1 NA NA 1.% vs. 0
Only recommended for

patients with AFP
≥ 400 ng/mL.

Nivolumab vs.
Sorafenib

(CheckMate459)

anti-PD-1
monotherapy 1L/743

16.4 vs. 14.7
HR: 0.85,
p = 0.075

3.7 vs. 3.8
HR:0.93

p value NA
15.4 vs. 6.9 3.8 vs. 1.3 22.3 vs. 49.6 NA

Based on CheckMate 040,
Nivolumab was approved by

the FDA as a second-line
treatment for advanced HCC.
However, the indication of

Nivolumab as a
monotherapy for second-line
treatment of advanced HCC
has been withdrawn due to

the failure of CheckMate 459.
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Table 1. Cont.

Treatments
(Trial)

Dosing Regimen Line Setting/
Patients Number

Outcome TRAE

RemarkmOS (Months)
(HR, p-Value)

mPFS
(Months) (HR,

p-Value)
ORR (%) CR (%) ≥Grade 3 (%) Death/Grade

5 (%)

Pembrolizumab
vs. Sorafenib

(KEYNOTE-394)

anti-PD-1
monotherapy 2L/453 14.6 vs. 13.0

HR 0.79, p = 0.0180
2.6 vs. 2.3

HR 0.74, p = 0.0032 13.7 vs. 1.3 2.0 vs. 0.7 14.4 vs. 5.9 1.0 vs. 0

Pembrolizumab was
approved by the FDA for

advanced HCC second-line
treatments based on

KEYNOTE-224, while
KEYNOTE-394 is the
updated support trial.

Atezolizumab–
Bevacizumab
Vs. Sorafenib
(IMbrave150)

anti-PD-L1 and
anti-VEGF 1L/501 19.2 vs. 13.4

HR 0.66, p < 0.001
6.9 vs. 4.3

HR 0.65, p < 0.001 29.8 vs. 11.3 7.7 vs. 0.6 43.5 vs. 46.2 1.8 vs. 0.6

Patients should have
adequate endoscopic

evaluation and management
for esophageal varices before

administration.

Tremelimumab–
Durvalumab vs.

Sorafenib
(HIMALAYA)

anti-CTLA-4 and
anti-PD-L1 1L/1171

16.4 vs. 13.8
HR: 0.78,
p = 0.0035

3.8 vs. 4.1
HR:0.90,

p value NA
20.1 vs. 5.1 3.1 vs. 0 25.8 vs. 36.9 2.3 vs. 0.8

Durvalumab vs.
Sorafenib

(HIMALAYA)

anti-PD-L1
monotherapy 1L/1171

16.6 vs. 13.8
HR:0.86,

noninferiority
margin 1.08

3.7 vs. 4.1
HR:1.02,

p value NA
17.0 vs. 5.1 1.5 vs. 0 12.9 vs. 36.9 0 vs. 0.8

Objective response rate (ORR) and progression-free survival (PFS) are based on RECIST version 1.1 unless otherwise indicated. TRAEs, treatment-related adverse events; mOS, median
overall survival; mPFS, median progression-free survival; ORR, objective response rate; CR, complete response rate; KI, kinase inhibitors; 1L, first-line; 2L, second-line; NA, not available;
TTP, time to progression; HR, hazard ratio;
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Table 2. The critical results of phase III clinical trials for therapies approved by the NMPA *.

Treatments
(Trial)

Dosing
Regimen

Line Setting/
Patients
Number

Outcome TRAE

RemarkmOS (Months)
(HR, p Value)

mPFS
(Months) (HR,

p Value)
ORR (%) CR (%) ≥Grade 3 (%) Death/Grade

5 (%)

Rivoceranib vs.
Placebo

(AHELP)

anti-VEGFR
monotherapy 2L/400

8.7 vs. 6.8
HR 0.785,
p = 0·048

4.5 vs. 1.9
HR 0·471,
p <0·0001;

10.7 vs. 1.5 0 vs. 0 77.4 vs. 19.2 0 vs. 0
The study

population is
limited to China

Donafenib vs.
Sorafenib
(ZGDH3)

KI monotherapy 1L/668
12.1 vs. 10.3

HR 0.83,
p = 0.0245

3.7 vs. 3.6
HR 0.91, p = 0.057 4.6 vs. 2.7 0.3 vs. 0 37.5 vs. 49.7 1.8 vs. 3.6

The study
population is

limited to China

Tislelizumab vs.
Sorafenib

(RATIONALE-301)

anti-PD-1
monotherapy 1L/674

15.9 vs. 14.1
HR: 0.85,
p = 0.0398

2.2 vs. 3.6
HR: 1.11,

p value NA
14.3 vs. 5.4 2.9 vs. 0.3 22.2 vs. 53.4 4.4 vs. 5.2

Sintilimab + IBI305
vs. Sorafenib
(ORIENT-32)

anti-PD-1 and
anti-VEGF 1L/571

NE vs. 10.4
HR 0.57,

p < 0.0001

4.6 vs. 2.8
HR 0.56,

p < 0.0001
20.5 vs. 4.1 0 vs. 0 33.7 vs. 35.7 1.6 vs. 1.0

The study
population is

limited to China

Camrelizumab–
Rivoceranib vs.

Sorafenib
(CARES-310)

anti-PD-1 and
anti-VEGFR 1L/543

22.1 vs. 15.2
HR 0.62,

p < 0.0001

5.6 vs. 3.7
HR 0.52,

p < 0.0001
25.4 vs. 5.9 1.1 vs. 0.4 80.9 vs. 52.4 0.4 vs. 0.4

Objective response rate (ORR) and progression-free survival (PFS) are based on RECIST version 1.1 unless otherwise indicated. TRAEs, treatment-related adverse events; mOS, median
overall survival; mPFS, median progression-free survival; ORR, objective response rate; CR, complete response rate; KI, kinase inhibitors; 1L, first-line; 2L, second-line; NA, not available;
HR, hazard ratio; NE, not estimable. * This table only includes NMPA-approved treatment therapies for advanced HCC developed by Chinese companies.
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Surprisingly, a recent clinical trial confirmed that Atezolizumab-Bevacizumab adjuvant
therapy can reduce the recurrence in HCC patients who received curative treatment. The
IMbrave050 clinical trial, which mainly included Asian HBV-HCC populations, showed that
the risk of disease recurrence or death was 28% lower with Atezolizumab–Bevacizumab
adjuvant treatment than with active surveillance (HR 0.72, adjusted 95% CI 0.53–0.98;
p = 0.012). The difference in RFS event-free rates at 12 months was 13% (95% CI 6–20),
while the median RFS was not reached in either group. IMbrave050 is the first positive
phase 3 trial for adjuvant treatment in HCC, and it provides a new reference upon which to
base further treatment advances for early-stage hepatocellular carcinoma in the future [15].

3.2. Tremelimumab–Durvalumab

Based on the results of the HIMALAYA phase III trial, the FDA approved Tremelimumab–
Durvalumab (CTLA-4 inhibitor–PD-L1 inhibitor) for the first-line treatment of HCC in
October 2022 [58]. The combination of Tremelimumab and Durvalumab is also a new
milestone in the treatment of HCC as it represents the first recommendation for combination
regimens of CTLA-4 inhibitor and PD-L1 inhibitor for the first-line treatment of HCC.
Previously, the combination of PD-1/PD-L1 inhibitors and CTLA-4 inhibitors was the most
studied immune–oncology combination in HCC. Theoretically, PD-1/PD-L1 inhibition
enhances the antitumor activity of effector T cells, and CTLA-4 inhibition increases the
abundance of CD4+ and CD8+ T cells in the tumor microenvironment, while the sufficient
infiltration and adequate function of cytotoxic T lymphocytes are key to immunotherapy.
The success of the HIMALAYA trial has translated this theory into clinical benefits [59].

The Nivolumab–Ipilimumab combination regimen is the first PD-1/PD-L1 inhibitor
and CTLA-4 inhibitor combination regimen approved by the FDA for the second-line
treatment of advanced HCC. A subset of the CheckMate 040 trial showed an impressive
ORR of approximately 30% in patients previously treated with Sorafenib. Compared to
immune checkpoint inhibitors monotherapy, Nivolumab–Ipilimumab combination therapy
exhibited a higher response rate [60].

In the HIMALAYA phase III trial, Tremelimumab–Durvalumab combination regimens
demonstrated significant efficacy as a first-line treatment. A new dosing approach called
STRIDE (Single Tremelimumab Regular-Interval Durvalumab) was used in this study,
which resulted in a statistically significant improvement in the STRIDE regimen compared
to Sorafenib monotherapy. Additionally, the noninferiority of Durvalumab to Sorafenib
was also demonstrated in this study [61,62] (details shown in Table 1).

Analysis of the data from the IMbrave150 and HIMALAYA trials suggests that
Atezolizumab–Bevacizumab may be more effective than the STRIDE regimen, with a
higher ORR (29.8% vs. 20.1%), better complete response rate (CR) (8% vs. 3%), and
greater reduction in the risk of death (34% vs. 22%) compared to Sorafenib [62,63]. How-
ever, the HIMALAYA study showed that Tremelimumab–Durvalumab exhibited fewer
treatment-related adverse events (TRAEs), such as no concern for gastrointestinal bleed-
ing symptoms and no need for routine gastrointestinal endoscopy before administration.
Nevertheless, it should be noted that the comparison between different clinical trials is less
convincing/conclusive and more future assessments are needed (details shown in Table 3).



Cancers 2024, 16, 1582 12 of 26

Table 3. Comparison of phase III clinical trials of different immunotherapy combination strategies.

(HIMALAYA) (IMbrave150) (CARES-310) LEAP 002

Immunotherapy Combination Strategies Dual-Immunotherapy
(Anti-CTLA-4 and Anti-PD-L1)

ICIs and Anti-VEGF/VEGFR
(Anti-PD-L1 and Anti-VEGF)

ICIs and Anti-VEGF/VEGFR
(Anti-PD-1 and Anti-VEGFR)

ICIs and KIs
(Anti-PD-1 And KI)

Treatments Tremelimumab–Durvalumab Atezolizumab–Bevacizumab Camrelizumab–Rivoceranib Pembrolizumab–Lenvatinib

Control agent Sorafenib Sorafenib Sorafenib Lenvatinib

Endpoints and results
(RECIST 1.1)

Primary endpoint: mOS
STRIDE arm was superior to Sorafenib;

Durvalumab monotherapy was
noninferior to Sorafenib.

Primary endpoint: mOS
and mPFS

Both meet with statistical
significance.

Primary endpoint: mOS
and mPFS

Both meet with statistical
significance.

Primary endpoint: mOS
and mPFS

Neither meets the prespecified
statistical significance.

Outcome

mOS
(months)

(HR, p value)

STRIDE vs. Sorafenib:
16.43 vs. 13.77

HR: 0.78, p = 0.0035
Durvalumab vs. Sorafenib:

16.56 vs. 13.77
HR:0.86, noninferiority margin 1.08

19.2 vs. 13.4
HR: 0.66

p = 0.0009

22.1 vs. 15.2
HR: 0.62

p < 0.0001

21.2 vs. 19.0
HR: 0.840
p = 0.0227

mPFS
(months)

(HR, p value)

STRIDE vs. Durvalumab vs. Sorafenib:
3.78 vs. 3.65 vs. 4.07

p value NA

6.9 vs. 4.3
HR: 0.65

p = 0.0001

5.6 vs. 3.7
HR: 0.52

p < 0.0001

8.2 vs. 8.0
HR: 0.867
p = 0.0446

ORR (%) STRIDE vs. Durvalumab vs. Sorafenib:
20.1 vs. 17.0 vs. 5.1 29.8 vs. 11.3 25.4 vs. 5.9 26.1 vs. 17.5

CR (%) STRIDE vs. Durvalumab vs. Sorafenib:
3.1 vs. 1.5 vs. 0 7.7 vs. 0.6 1.1 vs. 0.4 1.5 vs. 1.5

PR (%) STRIDE vs. Durvalumab vs. Sorafenib:
17.0 vs. 15.4 vs. 5.1 22.1 vs. 10.7 24.3 vs. 5.5 24.6 vs. 16.0

SD (%) STRIDE vs. Durvalumab vs. Sorafenib:
39.9 vs. 37.8 vs. 55.5 44.2 vs. 43.4 52.9 vs. 48.0 55.2 vs. 60.9

DCR (%) STRIDE vs. Durvalumab vs. Sorafenib
60.1 vs. 54.8 vs. 60.7 73.9 vs. 54.7 78.3 vs. 53.9 81.3 vs. 78.4

DoR (months)
STRIDE:22.34

STRIDE: long-tail effect;
3-year survival rate was 30.7%

18.1 14.8 16.6
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Table 3. Cont.

(HIMALAYA) (IMbrave150) (CARES-310) LEAP 002

Immunotherapy Combination Strategies Dual-Immunotherapy
(Anti-CTLA-4 and Anti-PD-L1)

ICIs and Anti-VEGF/VEGFR
(Anti-PD-L1 and Anti-VEGF)

ICIs and Anti-VEGF/VEGFR
(Anti-PD-1 and Anti-VEGFR)

ICIs and KIs
(Anti-PD-1 And KI)

Safety profile

TRAE
≥Grade 3 (%)

STRIDE vs. Durvalumab vs. Sorafenib:
25.8 vs. 12.9 vs. 36.9 43.5 vs. 46.2 80.9 vs. 52.4 61.5 vs. 56.7

Discontinuation (%) STRIDE vs. Durvalumab vs. Sorafenib:
8.2 vs. 4.1 vs. 11.0 15.5 vs. 10.3 24.3 vs. 4.5 18.0 vs. 10.6

TRAE
Grade 5/Death (%)

STRIDE vs. Durvalumab vs. Sorafenib:
2.3 vs. 0 vs. 0.8 1.8 vs. 0.6 0.4 vs. 0.4 1.0 vs. 0.8

Remark

The success of the HIMALAYA trial
transformed the theoretical advantages
of dual-immunotherapy treatment into
clinical benefits. STRIDE regimen is a

successful paradigm of sequential
combination therapy.

Dual-immunotherapy treatment shows
an excellent DoR, a long-tail effect, and

lower toxicity.

The IMbrave150 trial
established the

anti-PD-L1/PD-1 inhibitor and
anti-VEGF/VEGFR

combination strategies as the
first-line recommendation for

advanced HCC.
Atezolizumab–Bevacizumab

combination therapy
significantly improved mOS of

patients with portal vein
invasion at the main portal

branch (Vp4).

The CARES-310 trial reached
the longest mOS in clinical
trials for advanced HCC

systemic treatment agents.
Comparison of HR between

trials shows anti-PD-1/PD-L1
and TKI/anti-VEGF have better

ORR and PD outcomes than
dual-immunotherapy

regimens.

The LEAP 002 trial is the sole
clinical trial with a

double-blind design in this
table, and it is the sole clinical

trial that used Lenvatinib as the
control agent in this table.

Pembrolizumab–Lenvatinib
therapy shows a clear tendency

of OS benefit, although the
prespecified significance

endpoint is not met.

Objective response rate (ORR) and progression-free survival (PFS) are based on RECIST version 1.1 unless otherwise indicated. mOS, median overall survival; mPFS, median
progression-free survival; ORR, objective response rate; CR, complete response rate; PR, partial response; SD, stable disease; DCR, disease control rate; DoR, duration of response;
STRIDE, single Tremelimumab regular-interval Durvalumab; HR, hazard ratio.
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3.3. Sorafenib, Lenvatinib, Donafenib, and Rivoceranib

For BCLC-C HCC patients having preserved liver function who are not suitable
for Atezolizumab–Bevacizumab or Tremelimumab–Durvalumab treatment, the current
guidelines recommend systemic treatment with Lenvatinib/Sorafenib/Durvalumab [14].
Some guidelines suggest that if radiological progression is considered first rather than
adverse events, Lenvatinib is preferred over Sorafenib [64].

Sorafenib was the first targeted therapy proven to be effective in advanced HCC, and
it has been the standard of care for over a decade. The approval of Lenvatinib in 2018
further solidified the role of kinase inhibitors (KIs) in the first-line treatment of advanced
HCC. In a preclinical study, Sorafenib showed better antitumor activity in TP53 wild-type
HCC, while Lenvatinib is more sensitive in HCCs with TP53 mutation [65,66]. However,
the therapeutic effects of both drugs are far from satisfactory. In HCC patients, Sorafenib
only provides a survival benefit of 2.8 months compared to placebo [67]. Despite a high
response rate, Lenvatinib has demonstrated noninferiority compared to Sorafenib and
offers limited overall survival prolongation [68].

So far, in clinical trials and real-world studies, Lenvatinib has shown a tendency to be
superior to Sorafenib, especially in HBV-related and AFP-elevated HCC subgroups [69,70].

Donafenib is a modified form of Sorafenib with improved pharmacokinetic charac-
teristics. In the ZGDH3 phase III trial, Donafenib demonstrated a statistically significant
improvement in overall survival compared to Sorafenib (details shown in Table 2) [71].
Based on the ZGDH3 phase III trial, the NMPA approved Donafenib as a first-line recom-
mended drug in China. Rivoceranib (also known as Apatinib) is another KI with high
selectivity for VEGFR2. In the AHELP phase III trial, compared to the placebo group,
overall survival in the Rivoceranib group was significantly improved (details shown in
Table 2) [72]. Based on the AHELP phase III trial, Rivoceranib was approved by the NMPA
in 2020 for advanced HCC patients who have failed or are intolerant to at least one line of
systemic treatment.

The same occurred with the ZGDH3 phase III trial. The limitation of the AHELP phase
III trial is that the study population comes from a single geographic area.

3.4. Other Systemic Drugs

It is worth mentioning that based on the CARES-310 phase III trial, the NMPA ap-
proved the Camrelizumab–Rivoceranib (PD-1 inhibitor–VEGFR inhibitor) regimen as a
first-line treatment for advanced HCC in China in 2023. In the CARES-310 phase III
trial, Camrelizumab– Rivoceranib demonstrated excellent performance compared to So-
rafenib, with an mOS of up to 22.1 months, the longest mOS among all systemic agents
treated in HCC clinical trials so far. At the same time, the adverse events associated with
Camrelizumab–Rivoceranib were manageable in this trial [73] (details shown in Table 2).

In the updated 2022 BCLC prognosis and treatment strategy recommendations, Rego-
rafenib, Cabozantinib, and Ramucirumab are recommended as second-line treatments for
patients who have progressed on Sorafenib [14]. It is believed that patients who switch to
second-line treatment may benefit from Regorafenib if they tolerate Sorafenib; however,
Regorafenib should not be used in patients who cannot tolerate Sorafenib due to toxic-
ity. Ramucirumab may benefit patients with AFP levels >400 ng/dL who are resistant
to Sorafenib. Cabozantinib may benefit patients who are tolerating Sorafenib, and it is
also recommended as a third-line treatment [14]. Different from the NCCN guidelines of
the United States, the prognosis and treatment strategy of the BCLC do not recommend
Pembrolizumab, Nivolumab, or Ipilimumab due to insufficient supporting data.

For patients who fail first-line systemic therapy but still have preserved liver function,
subsequent treatment can be selected comprehensively. Currently, there are no comparative
studies among approved second-line therapies to guide the decision of the preferred
regimen for second-line therapy.
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4. The Challenges of Systemic Treatment for HCC

Since the launch of Sorafenib in 2007, the treatment paradigm of HCC has under-
gone revolutions. After 2017, based on more successful clinical trials, the application of
new targeted and immunotherapy monotherapy or combination regimens has once again
greatly advanced HCC treatment, prolonging the survival of patients. However, due to
the high heterogeneity of HCC patients, less druggable mutation targets, and lack of ef-
fective biomarkers leading to inadequate stratification, HCC systemic treatment still faces
many challenges.

4.1. The Lack of Effective Druggable Targets with a High Mutation Rate

The rationale of molecular-targeted therapy is to control tumor growth by inhibiting
the molecular pathways that are essential for tumor growth and maintenance. Screening
targets with a high mutation rate and effective intervention is the premise of molecular-
targeted therapy. However, the precise molecular events leading to the formation of HCC
are still only partially understood, and there are currently no satisfactory highly mutated
and druggable targets. The main known mutation drivers of HCC, such as TERT, CTNNB1
(WNT/β-catenin), and TP53, are still considered undruggable [19,55]. Therefore, screening
for highly mutated and druggable targets is the biggest challenge in the molecular-targeted
therapy of HCC, and drugging the existing high mutation targets that have been discovered
is also a challenging task, where new modalities are likely needed against interfering
mutated genes.

Encouragingly, relevant research is ongoing. In a preclinical study of HCC, the silenc-
ing of TERT expression with antisense oligonucleotides achieved the inhibition of tumor
growth in tumor cells and animal models [74]. Several inhibitors of the WNT/β-catenin
pathway are currently being tested in clinical trials, such as targeted WNT inhibitors
PRI-724 and BBI608 [75]. Accumulating lines of evidence also suggest that nonsteroidal
anti-inflammatory agents (NSAIDs) such as celecoxib and sulindac can inhibit the WNT/β-
catenin signaling pathway in human cancer cells [76]. The overexpression of wild-type
AXIN1 can inhibit proliferation and accelerate the programmed cell death of HCC cell
lines, indicating that AXIN1 is a therapeutic target in HCC if small molecules can enhance
its expression and/or stability. Inhibiting poly-ADP-ribosylating enzymes tankyrase 1
and tankyrase 2 with small-molecule inhibitor XAV939 to stabilize AXIN is considered a
new approach to targeting the WNT/β-catenin pathway [77]. In addition, drugs targeting
upstream molecules of the WNT/β-catenin signaling pathway, such as salinomycin [78]
and NVP-TNKS656 [79], have been developed and tested in preclinical HCC models.

Efforts targeting the p53 pathway are also underway. One study showed that small-
molecule inhibitors of MDM4 may be effective against HCC [80], while arsenic trioxide
potentially treats p53 mutant tumors by reactivating the mutated p53 protein [81].

4.2. Lack of Effective Biomarkers

Currently, systemic therapy for advanced HCC patients usually exhibits highly incon-
sistent efficacy, meaning that identifying biomarkers to predict drug efficacy and select
appropriate treatment regimens is a matter of urgency. So far, HCC lacks effective molecular
biomarkers to guide treatment [82].

It is generally believed that PD-1, PD-L1, CD3, and CD8 have a certain predictive
effect on the efficacy of immune checkpoint inhibitors. Nevertheless, PD-L1, as a biomarker,
is not reliable [83]. In NSCLC, up to 50% of patients with high PD-L1 expression do
not respond to immune therapy [84]. In the CheckMate040 trial [60], Nivolumab had an
objective response, regardless of tumor PD-L1 expression, whereas in KEYNOTE-224 [85],
some patients responded to Pembrolizumab in association with PD-L1 expression. PD-
L1 expression is regulated by multiple pathways, partly by the inherent expression of
tumor cells, and partly by the release of IFN-γ when T cells kill tumor cells in the tumor
microenvironment, which induces PD-L1 expression [86]. In addition, the expression of
PD-L1 is influenced by various tumor signals, such as YAP/TAZ [87], which upregulates
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PD-L1 expression. The induction of PD-L1 expression by γ-IFN [88] has a good predictive
effect on the efficacy of PD-1 inhibitors, while the relationship between PD-L1 from other
pathways and the efficacy of PD-1 inhibitors is still unclear. This suggests that PD-L1 is not
always a sufficient predictor of ICI therapy efficacy.

Pfister et al. conducted a study showing that anti-PD-1 therapy promotes the progres-
sion of NASH-induced HCC. Anti-PD-1 treatment expanded activated CD8+PD1+ T cells
within the tumor; meanwhile, the incidence of NASH-HCC and the number and size of
tumor nodules increased. Additionally, the increase in HCC induced by anti-PD1 therapy
was prevented by either CD8+ T cell depletion or TNF neutralization. This study highlights
once again that biomarker-based stratification of patients for optimal response to therapy
is an unmet need [89].

Tumor mutation burden (TMB) is the most studied genomic biomarker and has
demonstrated predictive ability in multiple tumors, such as melanoma, NSCLC, and
bladder cancer [90]. However, one study claims that TMB did not show predictive ability
in HCC [91].

There are also sporadic reports of biomarkers for KI drug selection, such as mutations
in the PI3K-AKT-mTOR pathway being associated with the poor efficacy of Sorafenib, and
VEGF, ANG2, and FGF21, as well as FGFR4 immunostaining positivity being associated
with the clinical efficacy of Lenvatinib, but these approaches have not yet gained routine
use in clinical practice as more comprehensive evaluations are needed [55].

Given the high heterogeneity of HCC, there is a lack of druggable targets with high mu-
tation rates. A novel way of thinking about how to address HCC biomarkers in recent years
is to look for the co-localization of biomarkers, leading to coherent molecular mechanisms.

Ankur Sharma et al. employed scRNA sequencing to extensively characterize the
cellular landscape of the human liver from development to disease. They revealed a
shared immunosuppressive oncofetal ecosystem in the fetal liver and HCC, shown as
the enrichment of Tregs and exhausted CD8+T cells. Further results have suggested
that VEGF and NOTCH signaling pathways play an important role in the maintenance
of the immunosuppressive fetal cancer ecosystem [92]. Combined with the excellent
performance of VEGF inhibitors in patients with HCC, the co-localization of biomarkers is
more convincing.

4.3. How Do We Select Optimal Treatment Regimens Efficiently?

The high heterogeneity of HCC patients results in significant differences in response to
the same agents among different patients. Current guidelines recommend diverse treatment
regimens, which indeed increase the flexibility of clinicians, but also cause difficulties in
choosing the right treatment for specific patients, resulting in randomness in therapy, a
consequence not desired by the patients or doctors. For the selection of systemic agents
for advanced HCC, currently, the most reliable evidence supports a sequential treatment,
starting with Sorafenib. Depending on different situations, Regorafenib, Cabozantinib, and
Ramucirumab can be chosen when the patient is progressing or becoming intolerant to
Sorafenib, as mentioned above, although this is not the most ideal outcome for patients [14].
In this case, much more research is needed to identify biomarkers that are valuable in
stratifying patients for response to different treatments.

Since more regimens have been recommended as first-line treatments, and because
the performance of these new first-line regimens is better than, or at least not inferior to,
Sorafenib, this undoubtedly reduces the probability of Sorafenib as the first-line option,
which also leads to a lack of evidence supporting the selection of second-line treatment
agents [14,93]. Again, more focused research to identify predictive biomarkers will be
essential for better stratification of patients for the most suitable treatments.

More importantly, the selection among various first-line regimens currently lacks a
strong scientific or clinical foundation, and the specific treatment for individual patients
often requires comprehensive consideration of the first-line, second-line, and subsequent
treatments. At present, there is insufficient evidence to support the selection of several
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regimens within the first-line treatment and the selection of various sequential treatments
among the first-line and subsequent treatments. Therefore, a new therapy is desired that is
superior to existing first-line therapies and is more applicable to an increased number of
patients in addition to identifying predictable biomarkers for current therapies.

5. Potential Future Treatments

With the increasing progress in our understanding of the molecular mechanisms of
HCC and future efforts in identifying predictive biomarkers for current therapies, we hope
to transform the latest findings and knowledge into new targets, new therapies, and more
precision biomarkers, ultimately improving patient outcomes. In fact, these discoveries
have indeed contributed to the development of HCC treatment, such as immune checkpoint
inhibitors becoming an important treatment, with a response rate of about 19% for anti-PD-
1 therapy, including approximately 5% complete response and durable benefits in some
patients [75]. However, despite the progress in HCC molecular therapy resulting from
these discoveries, the effect on improving patient survival has been limited [93].

Based on the clinical performance of existing regimens, we believe that immunother-
apy will remain the core of systemic treatment for HCC until new breakthrough therapies
emerge. Various combination therapies and clinical trials focused on immunotherapy
continue to drive the treatment progress made in HCC treatment. With an in-depth study
on the tumorigenesis and drug resistance mechanism of HCC being revealed, precision
therapy guided by molecular mechanisms, such as sequential combination therapy and
synthetic lethality therapy, will be the future direction of HCC molecular treatment. In
clinical practice, conversion therapy, which combines local therapy and systemic drugs as
the method and aims to improve the R0 surgical resection rate of HCC patients, will also
become an important area.

5.1. Exploration Surrounding Immunotherapy

The essence of immunotherapy is to activate the patient’s own immune system, es-
pecially for cytotoxic T cells to attack tumor cells. In HCC, the “inflammatory” subgroup
accounts for about 30%–35% of all HCC patients, which is higher than most other tu-
mor types. This inflammatory subgroup is sensitive to immunotherapy, which is why
immunotherapy has become the main systemic treatment for HCC [54]. As mentioned
above, the most commonly used immune regimens in HCC include dual-immunotherapy
combination therapy, the combination of ICIs and anti-VEGF/VEGFR, and combinations
of ICIs and KIs. Additionally, other immunotherapy approaches are also being evaluated
in HCC.

5.1.1. Dual-Immunotherapy Combination Therapy

The mechanisms of different antitumor immune inhibitors vary greatly, providing
opportunities for developing dual or multiple immunotherapy combinations. Currently,
PD-1/PD-L1 inhibitor and CTLA-4 inhibitor combination regimens are the most studied
immune combination in HCC. Tremelimumab (CTLA-4 inhibitor)–Durvalumab (PD-L1
inhibitor) combination therapy and Nivolumab (PD-1 inhibitor)–Ipilimumab (CTLA-4
inhibitor) combination therapy have been approved by the FDA as the first-line and
second-line treatment of advanced HCC, respectively [14]. Some studies suggest that
PD-1 inhibitors may provide better mOS and mPFS than PD-L1 inhibitors because they
can simultaneously block PD-L1 and PD-L2; however, more clinical trials are needed to
support this hypothesis [94]. Another phase III clinical trial of dual-immunotherapy combi-
nation evaluating the combination of Nivolumab–Ipilimumab for the first-line treatment
of HCC, CheckMate 9DW, is currently ongoing, with Sorafenib/Lenvatinib used as the
control [55,95]. In the future, there should be more combination therapies of PD-1/PD-L1
inhibitors and CTLA-4 inhibitors entering clinical use with the support of clinical trials.
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5.1.2. Combination of ICIs and Anti-VEGF/VEGFR

Aberrant tumor angiogenesis driven by VEGF can lead to the formation of an immuno-
suppressive tumor microenvironment. VEGF/VEGFR inhibitors can inhibit angiogenesis
and reprogram the tumor microenvironment through various mechanisms [96]. The Ate-
zolizumab (PD-L1 inhibitor)–Bevacizumab (VEGF inhibitor) regimen and the Sintilimab
(PD-1 inhibitor)–IBI305 (VEGF inhibitor) regimen have been approved by the FDA and
NMPA for the first-line treatment of advanced HCC, respectively [55,97].

In 2023, the NMPA approved the Camrelizumab (PD-1 inhibitor)–Rivoceranib (VEGFR
inhibitor) regimen as a first-line treatment for advanced HCC in China. In the CARES-
310 phase III trial, the Camrelizumab–Rivoceranib combination regimen is significantly
superior to Sorafenib in terms of both mOS and mPFS, and mOS reached an unprece-
dented 22.1 months, demonstrating the good prospects of the combination of ICIs and
anti-VEGF/VEGFR regimens [73] (details shown in Table 3).

In addition, the safety and preliminary efficacy of the Durvalumab–Ramucirumab
combination regimen has also been evaluated in a phase Ia/b JVDJ trial [98], which
comprised various solid tumors, including HCC. Ramucirumab may be safer than Be-
vacizumab [55,99].

5.1.3. Combinations of ICIs and KIs

Kis not only target the corresponding tumor signaling pathways but also can have
an antiangiogenic effect. Compared with antiangiogenic drugs, they usually have rela-
tively stronger tumor-killing and tumor necrosis activity, thus inducing the release of more
tumor antigens and enhancing tumor immunogenicity [55]. In addition, because their
targets include VEGFRs, they can also exert immunomodulatory functions similar to VEGF
antibodies, which is more conducive to being synergistic with ICIs [100]. Therefore, theoret-
ically, the combination of ICIs and Kis is one of the most promising combination regimens.

Almost all Kis currently used in clinical practice have been evaluated for their synergis-
tic potential with ICIs, among which Lenvatinib is the most studied drug. In the previous
KEYNOTE-524 phase I study, the ORR of Pembrolizumab (PD-1 inhibitor)–Lenvatinib
(tyrosine kinase inhibitor) reached 36.0% [101,102], which was double that achieved with
Pembrolizumab monotherapy. Therefore, the results of the LEAP-002 trial evaluating the
Pembrolizumab–Lenvatinib regimen versus Lenvatinib monotherapy were highly antici-
pated. However, the LEAP-002, announced in 2022, showed that the primary endpoints of
mOS and mPFS did not reach prespecified statistical significance [103]. Nevertheless, the
data showed that the Pembrolizumab–Lenvatinib combination achieved a very satisfactory
mOS (21.2 months), and no new severe TRAEs were observed [103] (details shown in
Table 3).

At present, the two recommended regimens for the first-line systemic treatment
of HCC are Atezolizumab–Bevacizumab and Tremelimumab–Durvalumab. In updated
Imbrave-150 data, the mOS of Atezolizumab–Bevacizumab is 19.2 months [63].
Tremelimumab–Durvalumab showed a mOS of 16.4 months in the HIMALAYA trial
study [59]. In some subgroup analyses, the Pembrolizumab–Lenvatinib combination
demonstrated a significant advantage, with a 22% decrease in death risk for the subgroup
with macrovascular invasion/extrahepatic spread and a 33% decrease in death risk for the
subgroup with elevated AFP [103]. Additionally, LEAP-002 used Lenvatinib as the control
agent, while almost all phase III clinical trials to date have used Sorafenib as the control. If
Sorafenib was also used as a control in this trial, the results would be of interest (details
shown in Table 3).

Recently, the results from a real-world study in China support the efficacy of the
Pembrolizumab–Lenvatinib regimen in advanced HCC. In this real-world study, which
included 378 patients with unresectable HCC, 89.9% of cases were caused by HBV infection.
The mOS for the Pembrolizumab–Lenvatinib regimen was 17.8 months, the median mPFS
was 6.9 months, and the ORR and DCR were 19.6% and 73.5%, respectively. The researchers
concluded that the Pembrolizumab–Lenvatinib regimen showed promising survival, ORR,
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and DCR in real-world studies [104]. Increasingly, clinical trial data for targeted and
immune therapies have shown that a high ORR does not always translate into prolonged
overall survival. Many other trials combining Lenvatinib with other ICIs are also underway,
and their results are also eagerly awaited [55].

There are many other clinical trials of ICIs combined with Kis, such as Axitinib and
Anlotinib, showing promising preliminary results, with ORRs as high as 30%. Although no
ICI-KI combined regimen has been approved for the clinical treatment of HCC, it is likely
to be one of the most promising regimens.

5.1.4. Other Immunotherapy

In addition to the immunotherapy strategies mentioned above that have been exten-
sively studied, many other immunotherapies are being tested for HCC, such as CAR-T
cell therapy, which aims to increase the T cell infiltration of engineered T cells [105], TGFβ
inhibitors that relieve immune-suppressive signals in the tumor microenvironment [106],
PRL3–Zumab [107], therapeutic vaccines [108], and bispecific antibodies [109], etc.

In regards to the development of targeted agents against other immune modulatory
molecules, these drugs can synergize and complement the effects of PD-1/PD-L1 or CTLA-4
inhibitors to treat tumors [94]. In 2022, the combination of the LAG3 inhibitor Relatlimumab
and Nivolumab was approved by the FDA for the treatment of melanoma [110]. At the
same time, other regimens, including Relatlimumab–Nivolumab, which is different from
PD-1/PD-L1 or CTLA-4 inhibitors, are also actively undergoing clinical research for the
treatment of HCC.

Furthermore, in recent years, increasing research has detected a close relationship
between the Hippo signaling pathway and immunotherapy [111]. The main effectors of the
Hippo pathway, YAP/TAZ, are associated with PD-L1 expression in various tumors [87].
YAP/TAZ are found to be highly expressed in HCC cells, MDSCs, and Tregs, and are closely
related to immunotherapy [112–114]. Several studies suggest that targeting YAP/TAZ can
significantly downregulate the function of immune-inhibitory cells in the tumor microen-
vironment, and some preclinical trials have been confirmed [87]. The role of the Hippo
signaling pathway in immunotherapy requires further in-depth investigation.

Enhanced toxicity is a major challenge when using combination therapy. Current
evidence suggests that the dual-immunotherapy combination appears to have the best
safety in HCC, followed by a combination of ICIs and anti-VEGF/VEGFR, and then
combinations of ICIs and KIs [55].

5.2. Precision Therapy Guided by Molecular Mechanisms

Along with our further understanding of HCC tumorigenesis, some combination
therapies based on molecular mechanisms have arisen, such as sequential combination
therapy and synthetic lethality therapy, which can be defined as precision therapy guided
by molecular mechanisms.

Sequential combination therapy is a targeted therapy strategy that has emerged in
the past few years. The basic strategy is to administer drugs one after another, with the
first drug inducing the vulnerability of cancer cells, making them more susceptible to the
second drug, increasing the synergistic antitumor effect while reducing the toxicity of
the combination. The STRIDE regimen used in the HIMALAYA trial is a good example
of sequential administration [59]. In this trial, a single dose of 300 mg Tremelimumab
was given as a starting dose, followed by regular intervals of Durvalumab. The starting
dose of Tremelimumab can improve the abundance and function of T cells in the tumor
microenvironment by inhibiting CTLA-4, while Durvalumab works by inhibiting PD-L1 to
activate T cells to exert an antitumor effect, thereby showing synergistic effects.

The activation of compensatory signaling pathways is a major reason for molecular-
targeted therapy resistance. Based on an understanding of the molecular mechanisms of
compensatory signaling pathways, inhibiting the activated bypass pathway to achieve
the reversal of drug resistance is the main strategy used to overcome molecular-targeted
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drug resistance. Studies have found that after treatment with Lenvatinib for HCC, the
expression of EGFR in tumor tissue increases. Mechanistically, Lenvatinib treatment inhibits
FGFR, leading to feedback activation of the EGFR-PAK2-ERK5 signaling axis. Researchers
have combined the EGFR inhibitor Gefitinib with Lenvatinib for EGFR-High expression
HCC treatment. This combination regimen achieves meaningful clinical responses in
12 advanced HCC patients unresponsive to Lenvatinib monotherapy [115].

Interestingly, in the SEARCH phase III study without EGFR expression prescreening,
the combination of Sorafenib and EGFR inhibitor did not show a statistically significant
efficacy improvement [116]. The contrasting results of these two studies highlight the
importance of thoroughly studying the molecular mechanisms of treatment.

The EMERALD-1 phase III clinical trial, announced in 2024, explored the efficacy of
TACE in combination with Durvalumab, with or without Bevacizumab, against patients
with embolization-eligible uHCC. At the final analysis, mPFS significantly improved for
Durvalumab + Bevacizumab +TACE vs TACE (15.0 vs. 8.2; HR 0.77; p = 0.032). The safety
was manageable and consistent with the safety of Durvalumab, Bevacizumab, and TACE
in uHCC.

It is worth mentioning that the background of the EMERALD-1 design is that TACE
generates proinflammatory tumor microenvironment and increases VEGF signaling, lead-
ing to most people with uHCC treated with TACE progress within 1 year. The positive
results of the EMERALD-1 trial also underscore Precision therapy guided by molecular
mechanisms [117].

5.3. Conversion Therapy Aimed at Improving the R0 Resection Rate

Although systemic drugs have been the fastest-growing field in HCC treatment for
over a decade, radical surgical resection remains the best treatment because it can provide
the longest survival period or even a cure. Based on the background of the rapid develop-
ment of systemic treatment agents, conversion therapy aimed at improving the R0 resection
rate of HCC patients has become a hot topic for clinicians, and it has achieved encouraging
results [118].

The goal of conversion therapy is to transform unresectable advanced HCC into the
resectable stage. Commonly used conversion therapies include local treatment (TACE,
transarterial radioembolization, or hepatic arterial infusion chemotherapy (HAIC)), sys-
temic treatment (targeted therapy alone or combined with immunotherapy), and a thera-
peutic alliance (TACE combined with radiotherapy, TACE combined with targeted therapy,
HAIC combined with targeted therapy, or HAIC combined with targeted therapy and
immunotherapy) [119].

In a study of 63 patients with unresectable HCC, combination therapy with KI and
anti-PD-1 antibodies was used for treatment, and 10 patients underwent R0 resection
surgery 3.2 months later. Postoperatively, one patient died from immune-related adverse
events 2.4 months after hepatectomy. After a median follow-up of 11.2 months in the other
nine patients, eight patients remained alive without disease recurrence, and one suffered
tumor recurrence [120]. This study indicates that the combination of KI and PD-1 antibodies
is a feasible conversion therapy for patients with unresectable HCC.

There have been many successful conversion therapy reports. In the IMbrave150 trial,
the Atezolizumab–Bevacizumab regimen demonstrated excellent antitumor activity against
tumor invasion in the main portal trunk (Vp4). Vascular invasion is one of the main reasons
why HCC patients are not suitable for R0 resection. Therefore, the IMbrave150 trial has
also sparked the expectation for the use of the Atezolizumab–Bevacizumab regimen in
conversion therapy [121].

It is worth noting that, with the continuous increase of HCC treatment approaches, the
management of HCC patients has become more complex. The current treatment strategy
based strictly on stage is being challenged. Recently, the Italian Association for the Study
of the Liver put forward a new concept of HCC treatment, that is, to choose a more
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personalized treatment plan for patients with survival-benefit as the orientation, and expert
tumor boards should assume a central role in the selection of treatment [122].

6. Conclusions

Although HBV and HCV remain the most common risk factors for HCC worldwide,
the proportion of metabolic-related HCC is increasing. In recent years, the treatment
of HCC has achieved rapid development, mainly manifested in an increasing number
of targeted and immunological agents approved for systemic treatment, as well as the
establishment of immunotherapy as the standard of care. The prospect of HCC treatment
in the short term includes the continuous emergence of various combination therapies
centered around immunotherapy agents, the development of a precision dosing regimen
guided by exact molecular mechanisms, and the success of conversion therapy under the
combination of local and systemic treatments. Currently, the treatment of HCC still faces
many challenges, such as the lack of effective druggable targets with high mutation, the
lack of effective molecular markers for patient stratification and treatment guidance, and
the lack of efficient guidelines for selecting optimal treatment. The solutions to the above
issues will depend on further research into the molecular mechanisms of HCC and the
identification and application of predictive biomarkers.
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