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Simple Summary: This is a comprehensive overview of the approved chimeric antigen receptor
T-cell products (CAR T-cells), their specific indications, treatment-related side effects, and scientific
challenges. CAR T-cells have been introduced to modern hematology over the last years and have
changed treatment outcomes in heavily pretreated patients with B-cell and plasma cell malignancies.
To date, six commercially available CAR T-cell products have been approved by the U.S. Food
and Drug Administration (FDA) and by the European Medicines Agency (EMA). These advanced
therapeutic medicinal products induce strong treatment effects but can also cause adverse events that
can potentially be life-threatening. Therefore, a thorough understanding of CAR T-cell function and
characteristics is essential for safety and efficacy. This review provides a comprehensive overview of
the clinical applications of CAR T-cells, focusing on the approved products and emphasizing their
benefits but also indicating limitations and challenges.

Abstract: Chimeric antigen receptor (CAR) T-cell therapy has become a powerful treatment option in
B-cell and plasma cell malignancies, and many patients have benefited from its use. To date, six CAR
T-cell products have been approved by the FDA and EMA, and many more are being developed and
investigated in clinical trials. The whole field of adoptive cell transfer has experienced an unbelievable
development process, and we are now at the edge of a new era of immune therapies that will have its
impact beyond hematologic malignancies. Areas of interest are, e.g., solid oncology, autoimmune
diseases, infectious diseases, and others. Although much has been achieved so far, there is still a huge
effort needed to overcome significant challenges and difficulties. We are witnessing a rapid expansion
of knowledge, induced by new biomedical technologies and CAR designs. The era of CAR T-cell
therapy has just begun, and new products will widen the therapeutic landscape in the future. This
review provides a comprehensive overview of the clinical applications of CAR T-cells, focusing on
the approved products and emphasizing their benefits but also indicating limitations and challenges.

Keywords: chimeric antigen receptor T-cells; CAR T-cells; tisagenlecleucel; axicabtagene ciloleu-
cel; brexucabtagene autoleucel; idecabtagene vicleucel; lisocabtagene maraleucel; ciltacabtagene
autoleucel; cytokine release syndrome; immune effector cell-associated neurotoxicity syndrome

1. Introduction

Immunotherapies are an integral part of modern medicine and have revolutionized
therapeutic options in many different areas [1–4]. In a wider sense, immunotherapy com-
prises every medical attempt to influence the patient’s immune system in a favorable
manner [1]. This includes immunosuppressive measures (e.g., glucocorticoids, chemother-
apies) [4,5], as well as attempts to modulate (e.g., immunomodulatory drugs “IMiD”)
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and activate the immune system. Monoclonal antibodies (mAbs) [1,3], antibody–drug
conjugates (ADCs) [6], and bi-specific T-cell engagers (BiTEs) [2,7] use the specific binding
abilities of the antibody system to target a defined cell of interest and to induce an antigen-
dependent treatment effect. In addition, allogeneic hematopoietic stem cell transplantation
(HSCT) and donor lymphocyte infusion (DLI) [8–11] represent early forms of cell therapies,
in which a complete immune system or immune cells of a donor are transplanted into a
recipient, respectively. Over the last years, a new subtype of immune therapies has found
its way into clinical routine: immune effector cell (IEC) therapies. IECs are characterized by
a collection step of immune cells and a manufacturing step for the production of the final
therapeutic product [1,3].

In this review, we will focus on chimeric antigen receptor (CAR) T-cells, which rep-
resent a specific type of IECs, which have been introduced in hematology/oncology over
the last years [12–23]. The term “chimeric” refers to the ancient Greek mythologic creature
“chimera”, a hybrid animal composed of different species. In this regard, “chimeric recep-
tors” are genetically engineered hybrids of antibody-derived variable regions and T-cell
receptor (TCR)-derived signaling domains.

We provide a concise overview of approved CAR T-cell products and discuss advan-
tages and disadvantages as well as relevant side effects. Finally, we discuss limitations and
obstacles that have to be solved in the near future.

2. A Short History of Immune Effector Cell Therapy

The idea of immune effector cell therapy, also known as “adoptive cell transfer”,
and its potential anti-tumor effect had been already recognized in basic research projects
starting in the 1950s [24–27]. The immune system came increasingly into focus in cancer
research due to the “graft-versus-leukemia” effect (GVL) [10,28], anti-tumor effects of
tumor-infiltrating lymphocytes (TILs) [27,29,30], and DLI [8,9]. This was supported by a
better understanding of the function and composition of the T-cell immune system on one
hand and by improved gene transfer techniques on the other hand [31].

Current gene therapy facilitates the genetic reprogramming of T-cells, which can
be used to optimize tumor antigen recognition, to improve cell survival and expansion,
and to overcome T-cell death, anergy, and immune suppression [31]. These goals can
be achieved by designing artificial antigen receptors, which can represent physiological
major histocompatibility complex (MHC)-restricted T-cell receptors (TCRs) or non-MHC-
restricted CARs [31,32].

3. Chimeric Antigen Receptor T-Cell Development

The history of CAR T-cells dates back more than three decades to the end of the 1980s
(Table 1).

Table 1. Milestones of CAR T-cell development.

1980s First reports on chimeric antigen receptor T-cells (e.g., Kuwana et al. [33],
Becker et al. [34], Eshhar et al. [35,36], Goverman et al. [37])

1990s “First-generation” CAR T-cells with scFv
(Eshhar et al. [38])

2000s

First clinical trials of “first-generation” CAR T-cells in metastatic
solid tumors

(e.g., Kershaw et al. [39], Park et al. [40], Lamers et al. [41]);
development of “second-generation” CAR T-cells (e.g., Imai et al. [42],

Maher et al. [43])

2010s Successful use of “second-generation” CAR T-cells in several clinical
trials [44–57]

2017 FDA approval of first CAR T-cell product (tisagenlecleucel)
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Several research groups worked independently on the functional expression of CARs.
Kuwana et al. first described a CAR composed of immunoglobulin-derived variable regions
and TCR-derived constant regions in 1987 [33]. Variants of CAR T-cell constructs were
also published by Becker et al. [34], Eshhar et al. [35,36], and Goverman et al. [37] in the
following years.

In 1993, Eshhar et al. described the construction of a later known “first-generation”
CAR T-cell product and already outlined its potential use in medicine [38]. In contrast to
the original antibody-based double-chain chimeric receptors, this newly generated receptor
type only consisted of a single-chain variable fragment (scFv) of a given antibody, which
was linked with gamma or zeta chains of the TCR complex. The huge advantage of these
chimeric receptors lies in the ability to directly bind their corresponding antigen on the cell
surface independently of antigen processing or MHC-restricted presentation [32]. Addi-
tionally, CAR T-cell receptors are able to recognize protein, carbohydrate, and glycolipid
antigens, whereas TCR T-cells mostly target protein antigens [58–60]. Furthermore, mouse
CAR T-cells were able to provide an acceptable anti-tumor effect in vivo for different tumor
antigens (e.g., ERBB2, CEA, TAG-72, FBP) [61–66].

Although these receptor constructs can specifically bind their corresponding target
antigen, they are not able to fully activate naïve unprimed T-cells [32]. The results of the first
CAR T-cell clinical trials in patients with metastatic solid tumors (such as ovarian cancer,
neuroblastoma, renal cell carcinoma, etc.) were published in 2006. However, they showed
no relevant anti-tumor effects and a poor persistency of CAR T-cells in patients [39–41].
This was in part due to the lack of costimulatory domains. Especially naïve CD4+ T-cells
depend on costimulation (e.g., via CD28) to undergo full activation in response to antigen
presentation and to escape anergy or apoptosis [67–71].

To overcome these issues, the “second-generation” CAR T-cell products were intro-
duced in which a costimulatory domain (e.g., CD28, 4-1BB) was fused to the receptor
construct [42,43,58,72–77]. With the support of these costimulatory domains, CAR T-cells
were now able to meet all biological requirements for T-cell priming and amplification,
which resulted in an effective immune response and represents a central aspect of the de-
velopment of immune effector cell therapy [31,43,75,78]. Five out of the six approved and
commercially available CAR T-cell products are all members of this “second generation”
(Figure 1) [76,79]. The sixth CAR T-cell product consists of a CD3ζ signaling domain and a
4-1BB costimulatory domain. In contrast to the other CAR T-cell constructs, the antigen
binding domain consists of two nanobody heavy chains (VHH) [79].

By adding additional costimulatory domains to the receptor construct, “third-generation”
CAR T-cell products are under development but have not yet found their way to clin-
ics [76,79].

Besides this “classical” CAR T-cell design, researchers have developed advanced CAR
platforms to improve safety and efficacy, including multispecific CARs, combinatorial
antigen sensing CARs, drug-regulated and adapter CARs, and many more [76,79]. These
approaches will broaden the impact of future CAR T-cell therapies.
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Figure 1. Overview of the approved CAR T-cell constructs [12–23,80].

4. Approved CAR T-Cell Products

As of February 2024, six commercially available CAR T-cell products have been
approved by the U.S. Food and Drug Administration (FDA) and the European Medicines
Agency (EMA; Figure 1).

The corresponding indications of these products are summarized in Table 2.
Table 3 gives an overview of the underlying clinical trials with their most relevant results.
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Table 2. Overview of the approved CAR T-cell products with indications.

Trade Name Generic Name Targeted Antigen Costimulatory Domains FDA Approval EMA Approval

KYMRIAH® Tisagen-
lecleucel CD19 4-1BB

- Patients ≤ 25 yo with B-cell precursor ALL
that is refractory or in second or later relapse.

- Adult patients with r/r LBCL after two or
more lines of systemic therapy, including
DLBCL not otherwise specified, HGBL, and
DLBCL arising from FL. Limitations of Use:
KYMRIAH is not indicated for treatment of
patients with primary central nervous
system lymphoma.

- Adult patients with r/r FL after two or more
lines of systemic therapy [17].

- Patients ≤ 25 yo with B-cell ALL that
is refractory, in relapse post-transplant
or in second or later relapse.

- Adult patients with r/r DLBCL after
two or more lines of systemic therapy.

- Adult patients with r/r FL after two or
more lines of systemic therapy [23].

YESCARTA® Axicabtagene
ciloleucel CD19 CD28

- Adult patients with LBCL that is refractory to
first-line chemoimmunotherapy or that
relapses within 12 months of first-line
chemoimmunotherapy.

- Adult patients with r/r LBCL after two or
more lines of systemic therapy, including
DLBCL not otherwise specified, PMBCL,
HGBL, and DLBCL arising from FL.

- Adult patients with r/r FL after two or more
lines of systemic therapy [12].

- Adult patients with DLBCL and HGBL
that relapses within 12 months from
completion of, or is refractory to,
first-line chemoimmunotherapy.

- Adult patients with r/r DLBCL and
PMBCL, after two or more lines of
systemic therapy.

- Adult patients with r/r FL after three
or more lines of systemic therapy [18].

TECARTUS® Brexucabtagene
autoleucel CD19 CD28

- Adult patients with r/r MCL.
- Adult patients with r/r B-cell precursor

ALL [13].

- Adult patients with r/r MCL after two
or more lines of systemic therapy
including a Bruton’s tyrosine kinase
(BTK) inhibitor.

- Patients ≥ 26 yo with r/r B-cell
precursor ALL [19].
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Table 2. Cont.

Trade Name Generic Name Targeted Antigen Costimulatory Domains FDA Approval EMA Approval

ABECMA® Idecabtagene
vicleucel BCMA 4-1BB

- Adult patients with r/r MM after four or more
prior lines of therapy, including an
immunomodulatory agent, a proteasome
inhibitor, and an anti-CD38 monoclonal
antibody [15].

- Adult patients with r/r MM who have
received at least three prior therapies,
including an immunomodulatory
agent, a proteasome inhibitor, and an
anti-CD38 antibody and have
demonstrated disease progression
with the last therapy [21].

BREYANZI® Lisocabtagene
maraleucel CD19 4-1BB

- Adult patients with LBCL, including DLBCL
not otherwise specified (including DLBCL
arising from indolent lymphoma), HGBL,
PMBCL, and FL grade 3B, who have
the following:

- A refractory disease to first-line
chemoimmunotherapy or relapse within
12 months of first-line chemoimmunotherapy;

- A refractory disease to first-line
chemoimmunotherapy or a relapse after
first-line chemoimmunotherapy and are not
eligible for hematopoietic stem cell
transplantation (HSCT) due to comorbidities
or age;

- An r/r disease after two or more lines of
systemic therapy [16].

- Adult patients with DLBCL, HGBL,
PMBCL, and FL grade 3B, who
relapsed within 12 months from
completion of, or are refractory to,
first-line chemoimmunotherapy.

- Adult patients with r/r DLBCL,
PMBCL, and FL grade 3B, after two or
more lines of systemic therapy [22].

CARVYKTI® Ciltacabtagene
autoleucel BCMA 4-1BB

- Adult patients with r/r MM after four or more
prior lines of therapy, including a proteasome
inhibitor, an immunomodulatory agent, and
an anti-CD38 monoclonal antibody [14].

- Adult patients with r/r MM, who have
received at least three prior therapies,
including an immunomodulatory
agent, a proteasome inhibitor, and an
anti-CD38 antibody and have
demonstrated disease progression
with the last therapy [20].

Abbreviations: ALL, acute lymphoblastic leukemia; DLBCL, diffuse large B-cell lymphoma; FL, follicular lymphoma; HGBL, high-grade B-cell lymphoma; LBCL, large B-cell lymphoma;
MCL, mantle cell lymphoma; MM, multiple myeloma; PMBCL, primary mediastinal B-cell lymphoma; r/r, relapsed/refractory. Treatment indications of the U.S. Food and Drug
Administration (FDA) and the European Medicines Agency (EMA) are generally comparable but differ in some minor aspects. Therefore, treating physicians have to be aware of the
marketing authorization of their specific region (February 2024).
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Table 3. Overview of the most relevant clinical trials for treatment approval.

Trade Name
Generic Name Most Relevant Clinical Trials Summary of Most Relevant Results

KYMRIAH®

Tisagenlecleucel

• NCT02435849—Study of Efficacy and Safety of CTL019 in Pediatric ALL
Patients (ELIANA) [44]

• NCT02445248—Study of Efficacy and Safety of CTL019 in Adult DLBCL
Patients (JULIET) [45]

• NCT02228096—Study of Efficacy and Safety of CTL019 in Pediatric ALL
Patients (ENSIGN) [46]

• NCT03568461—Efficacy and Safety of Tisagenlecleucel in Adult Patients
With r/r Follicular Lymphoma (ELARA) [47]

• NCT01029366—CART19 to Treat B-Cell Leukemia or Lymphoma That Are
Resistant or Refractory to Chemotherapy [48]

• NCT01747486—Dose Optimization Trial of CD19 Redirected Autologous T
Cells [49]

• NCT02030847—Study of Redirected Autologous T Cells Engineered to
Contain Anti-CD19 Attached to TCR and 4-1BB Signaling Domains in
Patients With Chemotherapy Resistant or Refractory Acute Lymphoblastic
Leukemia [50]

• NCT02030834—Phase IIa Study of Redirected Autologous T Cells
Engineered to Contain Anti-CD19 Attached to TCRz and 4-Signaling
Domains in Patients With Chemotherapy Relapsed or Refractory CD19+
Lymphomas [51]

ELIANA: primary end point: ORR 82.3% (95% CI, 72.1 to 90.0); secondary end
points: BOR 82.1% (95% CI, 70.8 to 90.4); BOR with MRD negative BM 81.0%
(95% CI, 70.6 to 89.0); total SAEs 79.75%, CRS 63.29%, ICANS: 3.75% [44]
JULIET: primary end point: ORR 52% (95% CI, 41 to 62); secondary end
points: 12-month median RFS 65%; CRS ≥ 3: 22%, ICANS ≥ 3: 12% [52]
ENSIGN: primary end point ORR: 70.3% (95% CI, 57.6 to 81.1); secondary end
points: median EFS 15.6 months (95% CI, 6.4 to NA), median OS 29.9 months
(95% CI, 15.1 to 42.4); total SAEs 81.25%, CRS 64.06%, ICANS 6.25% [46]
ELARA: primary end point CRR: 69.1% (95% CI, 58.8 to 78.3); secondary end
points: ORR 86.2 (95% CI, 77.5 to 92.4), total SAEs 43.3%, CRS 19.59%, ICANS
1.03% [47]
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Table 3. Cont.

Trade Name
Generic Name Most Relevant Clinical Trials Summary of Most Relevant Results

YESCARTA®

Axicabtagene ciloleucel

• NCT02348216—Study Evaluating the Safety and Efficacy of KTE-C19 in
Adult Participants With Refractory Aggressive Non-Hodgkin Lymphoma
(ZUMA-1) [53]

• NCT03105336—A Phase 2 Multicenter Study of Axicabtagene Ciloleucel in
Subjects With r/r Indolent Non-Hodgkin Lymphoma (ZUMA-5) [54]

• NCT03153462—Axicabtagene Ciloleucel Expanded Access Study
(ZUMA-9) [55]

• NCT03761056—Study to Evaluate the Efficacy and Safety of Axicabtagene
Ciloleucel as First-Line Therapy in Participants With High-Risk Large B-Cell
Lymphoma (ZUMA-12) [56]

• NCT03391466—Study of Effectiveness of Axicabtagene Ciloleucel
Compared to Standard of Care Therapy in Patients With r/r Diffuse Large B
Cell Lymphoma (ZUMA-7) [57]

ZUMA-1: primary end points: cohort 1 ORR 82% (95% CI, 71 to 90), cohort 2
ORR 83% (95% CI, 63 to 95), cohort 3: CRS ≥ 3: 3%, ICANS ≥ 3: 39%, ICANS
5: 3%, cohort 4: CRS ≥ 3: 2%, ICANS ≥ 3: 17%, cohort 5: CRS ≥ 3: 2%,
ICANS ≥ 3: 12%, cohort 6: CRS ≥ 3: 0%, ICANS ≥ 3: 15%; total SAEs
71.43% [53]
ZUMA-5: primary end point: ORR 94% (95% CI, 88–97) in FL and 77% (95%
CI, 59–90) in MZL; key secondary end points: median PFS 40.2 months in FL,
not reached in MZL; FL: total SAEs 11%, CRS ≥ 3: 0%, ICANS ≥ 3: 0%; MZL:
total SAEs 14%, CRS ≥ 3: 11%, ICANS ≥ 3: 4% [81]
ZUMA-12: primary end point: CRR 78% (95% CI, 62 to 90); secondary end
points: ORR 89% (95% CI, 75 to 97), median OS 24.5 months (95% CI, 3.6 to
24.5), total SAEs 45% [56]
ZUMA-7: primary end point: 25-month follow-up: EFS 8.3 vs. 2.0 months,
HR 0.4, (95% CI, 0.31 to 0.51, p < 0.001); secondary end points: ORR 83% vs.
50% (p < 0.001), CR 65% vs. 32%, total SAEs 91% vs. 83%; CRS ≥ 3: 6% vs. 0%,
neurologic events ≥ 3: 21% vs. 1% [82]

TECARTUS®

Brexucabtagene autoleucel

• NCT02601313—Study of Brexucabtagene Autoleucel (KTE-X19) in
Participants With r/r Mantle Cell Lymphoma (Cohort 1 and Cohort 2)
(ZUMA-2) [83]

• NCT02614066—A Study Evaluating the Safety and Efficacy of
Brexucabtagene Autoleucel (KTE-X19) in Adult Subjects With r/r
B-precursor Acute Lymphoblastic Leukemia (ZUMA-3) [84]

• NCT02625480—Study Evaluating Brexucabtagene Autoleucel (KTE-X19) in
Pediatric and Adolescent Participants With r/r B-precursor Acute
Lymphoblastic Leukemia or r/r B-Cell Non-Hodgkin Lymphoma
(ZUMA-4) [85]

• NCT03624036—Study to Evaluate the Safety and Tolerability of
Brexucabtagene Autoleucel (KTE-X19) in People With r/r Chronic
Lymphocytic Leukemia and Small Lymphocytic Lymphoma (ZUMA-8) [86]

• NCT04162756—Study of Brexucabtagene Autoleucel (KTE-X19) for the
Treatment of Individuals With r/r MCL (ZUMA-18) [87]

ZUMA-2: primary end points: ORR 93% (95% CI, 84 to 98); secondary end
points: CRR 67% (95% CI, 53 to 78), 12-month PFS 61% and OS 83%; CRS ≥ 3:
15%, ICANS ≥ 3: 31% [88]
ZUMA-3: primary end points: CRR 70.9% (95% CI, 57 to 82); secondary end
points: MRD negativity 76% (95% CI, 63 to 87), median DOR 12.8 months
(95% CI, 8.7 to NA), median OS 18.2 (95% CI, 15.9 to NA), total SAEs:
dose-dependent from 100% to 75%; CRS ≥ 3: 24%, ICANS ≥ 3: 25% [84,89,90]
ZUMA-8: primary end point: dose limiting toxicities (DLTs): first-stage cohort
1: 0%, first-stage cohort 2: 0%, second-stage cohort 3: 33.3%, second-stage
cohort 4A: 0%; secondary end points: ORR: first-stage cohort 1: 50% (95% CI,
11.8 to 88.2), first-stage cohort 2: 33% (95% CI, 0.8 to 90.6), second-stage cohort
3: 100% (95% CI, 29.2 to 100), second-stage cohort 4a: 0% (0.0 to 70.8) [86]
ZUMA-18: ORR: 87%; median OS not yet reached at 33.5 months of
follow-up; no new safety signals were detected
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Table 3. Cont.

Trade Name
Generic Name Most Relevant Clinical Trials Summary of Most Relevant Results

ABECMA®

Idecabtagene vicleucel

• NCT03361748—Efficacy and Safety Study of bb2121 in Subjects With r/r
Multiple Myeloma (KarMMa) [91]

• NCT03601078—An Efficacy and Safety Study of bb2121 in Subjects With r/r
Multiple Myeloma and in Subjects With High-Risk Multiple Myeloma
(KarMMa-2) [92]

• NCT03651128—Efficacy and Safety Study of bb2121 Versus Standard
Regimens in Subjects With r/r Multiple Myeloma (RRMM) (KarMMa-3) [93]

• NCT02658929—Study of bb2121 in Multiple Myeloma [94]
• NCT02786511—Longterm Follow-up of Subjects Treated With bb2121 [95]

KarMMa: primary end point: ORR 73% (95% CO, 66 to 81; p < 0.001);
secondary end points: CRR 33%, VGPR or better 52%, MRD negativity 26%
(95% CI, 19 to 34), median DOR 10.7 months (95% CI, 9.0 to 11.3), median PFS
8.8 months (95% CI, 5.6 to 11.6), total SAEs 99%, CRS ≥ 3: 5%, ICANS ≥ 3:
3% [96]
KarMMa-3: primary end point: at 18.6 months mPFS 13.3 vs. 4.4 months (HR
0,49, 95% CI, 0.38 to 0.65; p < 0.001); secondary end points: ORR 71% vs. 42%
(p < 0.001), CR 39% vs. 5%; total SAE 93% vs. 75%, CRS ≥ 3: 5%, ICANS ≥ 3:
3% [97]

BREYANZI®

Lisocabtagene maraleucel

• NCT02631044—Study Evaluating the Safety and Pharmacokinetics of
JCAR017 in B-cell Non-Hodgkin Lymphoma (TRANSCEND-NHL-001) [98]

• NCT03484702—Trial to Determine the Efficacy and Safety of JCAR017 in
Adult Participants With Aggressive B-Cell Non-Hodgkin Lymphoma
(TRANSCENDWORLD) [99]

• NCT03744676—A Safety Trial of Lisocabtagene Maraleucel (JCAR017) for
r/r B-cell Non-Hodgkin Lymphoma (NHL) in the Outpatient Setting
(TRANSCEND-OUTREACH-007) [100]

• NCT03310619—A Safety and Efficacy Trial of JCAR017 Combinations in
Subjects With r/r B-cell Malignancies (PLATFORM) [101]

• NCT03483103—Lisocabtagene Maraleucel (JCAR017) as Second-Line
Therapy (TRANSCEND-PILOT-017006) [102]

• NCT03331198—Study Evaluating Safety and Efficacy of JCAR017 in
Subjects With Relapsed or Refractory Chronic Lymphocytic Leukemia (CLL)
or Small Lymphocytic Lymphoma (SLL) [103]

• NCT03743246—A Study to Evaluate the Safety and Efficacy of JCAR017 in
Pediatric Subjects With r/r B-cell Acute Lymphoblastic Leukemia (B-ALL)
and B-cell Non-Hodgkin Lymphoma (B-NHL) [104]

• NCT03575351—A Study to Compare the Efficacy and Safety of JCAR017 to
Standard of Care in Adult Subjects With High-risk, Transplant-eligible
Relapsed or Refractory Aggressive B-cell Non-Hodgkin Lymphomas
(TRANSFORM) [105]

TRANSCEND-NHL-001: primary end point: ORR 73% (95% CI, 66.8 to 78.0);
secondary end points: CRR 53% (95% CI, 46.8 to 59.4); 12-month DOR 54.7%
(95% CI, 46.7 to 62.0), median PFS 6.8 months (95% CI, 3.3 to 14.1), 12-month
OS 57.9% (95% CI, 51.3 to 63.8); total SAE 79%, CRS ≥ 3: 2%, ICANS ≥ 3:
10% [106,107]
TRANSCEND-OUTREACH-007: primary end points: CRS ≥3: 0.0% (95% CI,
0.0 to 4.4), ICANS ≥3: 9.8% (95% CI, 4.3 to 18.3); secondary end points: total
SAE: 74.4%, ORR 80.5% (95% CI, 70.3 to 88.4), CRR 53.7 (95% CI, 42.3 to 64.7),
median DOR 14.75 months (95% CI, 5.03 to NA), median DOCR NA (95% CI,
16.59 to NA), median PFS 5.83 months (95% CI, 0.7 to 24.5), median OS
22.01 months (95% CI, 1.0 to 27.3) [100]
TRANSCEND-PILOT-017006: primary end point: ORR 80.3% (95% CI, 68.2 to
89.4); secondary end points: total SAE 78.7%, CRR 54.1% (95% CI, 40.8 to
66.9), median DOR 23.26 months (95% CI, 6.24 to NA), median PFS 9.03 (95%
CI, 4.17 to NA), median EFS 7.23 months (95% CI, 3.22 to 24.28), median OS
NA (95% CI, 16.33 to NA), CRS ≥ 3: 2%, ICANS ≥ 3: 5% [102,108]
TRANSFORM: primary end point: median EFS NA (95% CI, 9.5 to NA) vs.
2.4 months (95% CI, 2.2 to 4.9), HR 0.356 (0.243 to 0.522); secondary end
points: CRR 68% (95% CI, 63.7 to 82.5) vs. 40% (95% CI, 33.2 to 54.2)
p < 0.0001, median PFS NA (95% CI, 12.6 to NA) vs. 6.2 months (95% CI, 4.3
to 8.6), HR 0.400 (95% CI, 0.261–0.615) p < 0.0001, median OS NA (95% CI,
29.5 to NA) vs. 29.9 (95% CI, 17.9 to NA), HR 0.724 (95% CI, 0.443 to 1.183)
p = 0.099, total SAE 85% vs. 81%, CRS ≥3: 1%, ICANS ≥ 3: 4% [105,109]
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Table 3. Cont.

Trade Name
Generic Name Most Relevant Clinical Trials Summary of Most Relevant Results

CARVYKTI®

Ciltacabtagene autoleucel

• NCT03548207—A Study of JNJ-68284528, a Chimeric Antigen Receptor T
Cell (CAR-T) Therapy Directed Against B-Cell Maturation Antigen (BCMA)
in Participants With Relapsed or Refractory Multiple Myeloma
(CARTITUDE-1) [110]

• NCT04133636—A Study of JNJ-68284528, a Chimeric Antigen Receptor T
Cell (CAR-T) Therapy Directed Against B-cell Maturation Antigen (BCMA)
in Participants With Multiple Myeloma (CARTITUDE-2) [111]

• NCT04181827—A Study Comparing JNJ-68284528, a CAR-T Therapy
Directed Against B-cell Maturation Antigen (BCMA), Versus Pomalidomide,
Bortezomib and Dexamethasone (PVd) or Daratumumab, Pomalidomide
and Dexamethasone (DPd) in Participants With Relapsed and
Lenalidomide-Refractory Multiple Myeloma (CARTITUDE-4) [112]

CARTITUDE-1: primary end point: ORR 97.9% (95% CI, 92.7 to 99.7);
secondary end points: sCR 82.5% (95% CI, 73.4 to 89.4), MRD negative sCR
44.3% (95% CI, 34.2 to 54.8), 27-month OS 70.4%, total SAE 91%, CRS ≥ 3:
5.1% (one related death), ICANS ≥ 3: 12.3% (one related death) [113,114]
CARTITUDE-2: primary end point: MRD negativity 35% (95% CI, 15.4 to
59.2); secondary end points: ORR 60.0% (95% CI, 36.1 to 80.9), median DOR
11.5 months (95% CI, 7.0 to NA), total SAE 95%, CRS ≥ 3: 0%, ICANS ≥ 3:
10% [115]
CARTITUDE-4: primary end point: 12-month PFS 75.9% (95% CI, 69.4 to 81.1)
vs 48.6% (95% CI, 41.5 to 55.3); secondary end points: ORR 84.6% vs. 67.3%,
HR 2.2 (95% CI, 1.5 to 3.1) p < 0.001, CR or better 73.1% vs. 21.8%, HR 2.9 (95%
CI, 2.3 to 3.7) p < 0.001; total SAE 96.6% vs. 94.2%, CRS ≥ 3: 1.1%, ICANS ≥ 3:
2.8% [115]
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4.1. Tisagenlecleucel (Kymriah®)

In 2009, Milone et al. described the engineering of an anti-CD19-CD137(4–1BB)-
CD3ζ CAR T-cell product, which exhibited a strong antileukemic effect and prolonged
(>6 months) survival in vivo [74]. In 2011, the first in-patient results of this CAR T-cell
product (CTL019) were published showing a strong and long-lasting antileukemia effect
after infusion of CTL019 CAR T-cells [116,117].

In 2013, investigators reported the primary results of the application of CTL019 CAR
T-cells in two children with relapsed and refractory pre-B-cell acute lymphoblastic leukemia
(ALL) [118,119]. After infusion of 1.4 × 106 to 1.2 × 107 CTL019 cells per kilogram of body
weight, both patients responded well and initially achieved a complete remission (CR)
of the ALL [118]. Both patients developed cytokine release syndrome (CRS) and B-cell
aplasia, with one child experiencing severe CRS, which had to be treated with etanercept
and tocilizumab on an intensive care unit [118]. Although both children responded initially
very well to CTL019 therapy, one child developed a CD19- (negative) relapse two months
after infusion [118]. The final results were published in 2014 [120]. A total of thirty children
and adults (twenty-five children (5–22 years of age); five adults (26–60 years of age)) with
relapsed and refractory CD19+ ALL were treated with CTL019. Sustained remission was
achieved with a 6-month event-free survival (EFS) rate of 67% and an overall survival (OS)
rate of 78%. All patients developed CRS, while 27% experienced severe CRS, which was
associated with a higher disease burden prior to infusion [120].

Based on these remarkable results, a single-cohort, multicenter study of tisagenle-
cleucel (formerly known as CTL019) was conducted [44,121,122]. Between April 2015 and
July 2019, 97 patients with relapsed or refractory B-cell ALL were enrolled, and 79 (81%)
received tisagenlecleucel (median age of 11 years (range, 3 to 24); the patients underwent
a median of three previous therapies (range, 1 to 8)) [121,123]. The overall response rate
(ORR) within 3 months was 82% (95% CI, 72% to 90%) [123]. In patients who achieved a
CR with incomplete hematologic recovery (CRi), the median duration of remission (DOR)
was not reached [123]. Estimated relapse-free survival (RFS) was 58% (95% CI, 43% to 70%)
at 24 months and 52% at 36 months (95% CI, 37% to 66%) [124]. The median event-free
survival (EFS) of all infused patients was 24 months (95% CI, 9.2 months to not reached),
and the median EFS among responders was not reached (95% CI, 18.7 months to not
reached) [123].

In August 2017, based on preliminary results [121], the FDA approved tisagenlecleucel
for the treatment of patients up to 25 years of age with B-cell precursor ALL that is refractory
in second or later relapse [125]. In addition, tisagenlecleucel was approved by the EMA in
August 2018 [23].

In April 2018, the FDA extended the approval by adding the treatment of adult patients
with relapsed or refractory (r/r) large B-cell lymphoma (DLBCL) after two or more lines
of systemic therapy as a new indication [17]. This extension was justified by a phase 2,
single-arm, multicenter trial in adult patients with DLBCL [45]. In this study, 93 adult
patients with r/r DLBCL were enrolled who were ineligible for or had disease progression
after high-dose chemotherapy and autologous hematopoietic stem cell transplantation [52].
The ORR was 52% (95% CI, 41% to 62%), with CR in 40% and partial responses (PRs) in
12%. The 12-month RFS was 65% (79% among patients with CR). Common side effects,
such as CRS and immune effector cell-associated neurotoxicity syndrome (ICANS), were
similar as compared to patients with ALL [52]. This indication was already included in the
EMA’s marketing authorization of August 2018 [23].

To investigate the effectiveness of tisagenlecleucel in patients with r/r follicular lym-
phoma (FL), a phase 2, single-arm, multicenter, open-label trial was initiated in November
2018 [47]. For the interim analysis, 97 of 98 enrolled patients received tisagenlecleucel. The
complete response rate (CRR) was 69.1% (95% CI, 58.8% to 78.3%), and the ORR was 86.2%
(95% CI, 77.5% to 92.4%) [124]. The safety profile was comparable to other indications
without treatment-related deaths [124,126].
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On 27 May 2022, the FDA approved tisagenlecleucel for the treatment of adult patients
with r/r FL after two or more lines of systemic therapy [17]. Accordingly, the EMA
marketing authorization for the use of tisagenlecleucel was also extended [23].

4.2. Axicabtagene Ciloleucel (Yescarta®)

Axicabtagene ciloleucel (formerly known as KTE-C19) is a second-generation CAR
T-cell construct consisting of an anti-CD19 scFv, derived from the FMC63 mouse hy-
bridoma, a human CD28 costimulatory domain, and an intracellular TCR-CD3ζ signaling
domain [127,128]. In a phase 1/2 clinical trial, Rosenberg et al. were able to show suc-
cessful and long-lasting responses in patients with r/r B-cell non-Hodgkin lymphomas
(NHLs) [127,129–131].

Axicabtagene ciloleucel was investigated in another phase 1/2 trial (NCT02348216—
ZUMA-1) [53]. In the phase 1 part, nine patients were enrolled, and the results demon-
strated sufficient safety and feasibility of production. Additionally, a robust CAR T-cell
expansion and durable clinical responses could be observed, which led to the initiation of
the pivotal ZUMA-1 phase 2 trial [132]. The results of phase 2 of ZUMA-1 and an updated
analysis of phase 1 with one year of follow-up were published in 2017 [133]. Overall, the
trial included 111 patients with either refractory DLBCL (cohort 1) and primary mediastinal
B-cell lymphoma (PMBCL) or transformed FL (cohort 2). Refractory disease was defined
as progressive or stable disease as the best response to the most recent chemotherapy
or disease progression or relapse within 12 months after high-dose chemotherapy and
autologous HSCT [133]. Axicabtagene ciloleucel was produced for 110 participants and
administered to 101 [133]. After 6 months of follow-up, the ORR was 82% (95% CI, 72% to
89%) [133]. Among patients with response to therapy, the CRR was 52% [133]. The median
OS was not reached (95% CI, 12.0 months to not reached), with OS rates of 78% (95% CI,
69% to 85%) at 6 months, 59% (95% CI, 49% to 68%) at 12 months, and 52% (95% CI, 41%
to 62%) at 18 months [133,134]. Based on these results, the FDA approved axicabtagene
ciloleucel for the treatment of adult patients with r/r large B-cell lymphoma after two or
more lines of systemic therapy [12]. In June 2018, the EMA granted authorization for the
EU with a similar indication [18].

Interestingly, follow-up analysis of the ZUMA-1 trial did not only show a potent and
constringent early response to therapy but also a long-term disease-specific estimated
survival of 51% at 5 years with a polyclonal B-cell recovery after therapy [134]. These
findings raise hope for a potentially curative treatment effect in a subset of patients with
large B-cell lymphomas [134].

In an international, randomized, phase 3 clinical trial, the efficacy of axicabtagene
ciloleucel was compared with standard care (SOC—defined as two or three cycles of
platinum-based chemotherapy, followed by high-dose chemotherapy and autologous
HSCT) as a second-line treatment in patients with early r/r large B-cell lymphoma (NCT0339
1466—ZUMA-7) [57,82]. A total of 359 patients with large B-cell lymphomas that were
refractory to or had relapsed within 12 months after first-line chemoimmunotherapy were
enrolled and randomly assigned, in a 1:1 ratio, to receive axicabtagene ciloleucel or SOC [82].
In total, 180 patients were assigned to the axicabtagene ciloleucel group, 178 underwent
leukapheresis, and 170 received the CAR T-cell product. In the SOC group, 168 (94%)
patients received a platinum-based salvage chemotherapy, and 64 (36%) were treated with
high-dose chemotherapy and autologous HSCT [82]. The median EFS was significantly
longer in the axicabtagene ciloleucel group (8.3 months; 95% CI, 4.5 months to 15.8 months)
as compared to that in the SOC group (2.0 months; 95% CI, 1.6 months to 2.8 months) [82].
The estimated EFS at 24 months was 41% (95% CI, 33% to 48%) in the CAR T-cell group vs.
16% (95% CI, 11% to 22%) in the SOC group [82]. At a median follow-up of 47.2 months,
the OS was significantly higher after treatment with axicabtagene ciloleucel as compared
to SOC [135]. The estimated 4-year OS rate was 54.6% (95% CI, 47.0% to 61.6%) with
axicabtagene ciloleucel as compared to 46.0% (95% CI, 38.4% to 53.2%) with SOC [135]. The
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median OS was not reached in the axicabtagene ciloleucel group (95% CI, 28.6 months to not
reached) and was 31.1 months in the SOC group (95% CI, 17.1 months to not reached) [135].

In summary, treatment with axicabtagene ciloleucel resulted in a significant (27.4%)
reduction in the risk of death and an improvement in survival of 8.6% at 4 years [135].

To investigate the efficacy of axicabtagene ciloleucel in patients with r/r indolent NHL,
a phase 2 multicenter study was conducted (NCT03105336—ZUMA-5) [54,136]. In this
study, axicabtagene ciloleucel induced a high ORR of 92% (95% CI, 85–97%) and CR in 74%
of the patients. Among patients with FL, 94% (95% CI, 87–97%) had an OR, of whom 79%
achieved a CR [136]. Among patients with marginal zone lymphoma (MZL) 85% (95% CI,
62–97%) had an OR, of whom 55% experienced a CR [136]. Axicabtagene ciloleucel was
able to induce long-lasting responses, with 59% of patients having an ongoing response at
data cutoff (median follow-up of 23.3 months) [136]. Thus, the FDA and EMA amended
the approval for axicabtagene ciloleucel, accordingly [12,18].

4.3. Brexucabtagene Autoleucel (Tecartus®)

Brexucabtagene autoleucel (formerly known as KTE-X19) is an anti-CD19 CAR T-cell
product that expresses the same CAR T-cell receptor construct as axicabtagene ciloleucel
(anti-CD19-CD28-CD3ζ) [88]. However, the manufacturing process of brexucabtagene
autoleucel is different as compared to axicabtagene ciloleucel in a relevant step [88]. During
the manufacturing process of brexucabtagene autoleucel, circulating CD19 expressing
(malignant) cells are removed to reduce the possible activation and exhaustion of anti-
CD19 CAR T-cells during the ex vivo manufacturing process [88]. Thus, brexucabtagene
autoleucel was specifically designed for the treatment of leukemic CD19-positive malignant
diseases, e.g., mantle cell lymphoma (MCL) and B-cell leukemias [88].

In a single-group, multicenter, phase 2 clinical trial, the efficacy of brexucabtagene
autoleucel was evaluated in patients with r/r MCL (NCT02601313—ZUMA-2) [83,88].
Previous treatment consisted of up to five prior regimens, including anthracycline- or
bendamustine-containing chemotherapy, an anti-CD20 mAb, and Bruton’s tyrosine kinase
inhibitory therapy with ibrutinib or acalabrutinib [88]. From October 2016 to April 2019, a
total of 74 patients were assigned to the ZUMA-2 clinical trial. The CAR T-cell product could
be successfully manufactured for 71 patients (96%) and infused in 68 patients (92%) [88].
After a follow-up of at least 7 months, 93% of the patients (95% CI, 84% to 98%) had an
objective response to therapy, with 67% (95% CI, 53% to 78%) showing a CR [88]. At
12 months, the estimated PFS and OS were 61% and 83%, respectively [88].

In addition, the efficacy and safety of brexucabtagene autoleucel was investigated in a
phase 1 study in adult patients with r/r B-ALL [84]. Overall, 54 patients were included,
and brexucabtagene autoleucel could be manufactured for all patients, with a median time
from leukapheresis to delivery of 15 days [91]. In total, 45 of 54 (83%) patients were treated
with brexucabtagene autoleucel. At a median follow-up of 22.1 months, the ORR was 69%,
with 53% of patients achieving CR and 16% achieving CRi [89]. No dose limiting toxicities
(DLTs) were observed, and the adverse events (AEs) were similar to those in previous
studies of anti-CD19 CAR T-cell therapies [89].

In phase 2 of the ZUMA-3 study, 71 patients were enrolled. The CAR T-cell product
was successfully manufactured for 65 (92%) and could be infused into 55 (77%) patients [92].
Thirty-nine patients (71%) achieved a CR or CRi [90]. Moreover, 42 (76%) of all treated
patients became MRD-negative, with a high rate of MRD negativity among responders
(n = 38/39; 97%) [90].

Based on these results, brexucabtagene autoleucel was approved by the FDA and EMA
for the treatment of adult patients with r/r MCL and r/r B-ALL [13,19].

4.4. Idecabtagene Vicleucel (Abecma®)

Idecabtagene vicleucel (formerly known as bb2121) is an autologous CAR T-cell
product, which was developed for the treatment of patients with r/r multiple myeloma
(MM) [96,137,138]. In contrast to other approved CAR T-cell products that target the CD19
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antigen, idecabtagene vicleucel contains an anti-BCMA single-chain variable fragment,
targeting the B-cell maturation antigen (BCMA) [137–139]. The BCMA is highly expressed
on MM cells, plasma cells, and mature B-cells, whereas CD19 is only expressed on a small
fraction of myeloma cells and is therefore not a suitable target antigen [139–141].

Idecabtagene vicleucel is produced by the transduction of autologous T-cells with a
second-generation CAR consisting of an anti-BCMA scFv, a 4-1BB costimulatory domain,
and a CD3ζ signaling domain [138].

In a multicenter phase 1 study, 36 adult patients with r/r MM were enrolled [94,137].
The patients had to be refractory to at least three prior lines of therapy, including a pro-
teasome inhibitor and an IMiD [137]. Overall, 33 of 36 (92%) patients received the man-
ufactured CAR T-cell product. The ORR was 85% (95% CI, 68.1% to 94.9%), with 45%
having a CR (9%) or stringent CR (36%). A strong expansion of CAR T-cells in vivo could
be observed, and a durable persistence of CAR T-cells could be achieved, with 96%, 86%,
57%, and 20% of the patients having detectable CAR T-cells at 1, 3, 6, and 12 months, respec-
tively [137]. The median response duration was 10.9 months [137]. Regarding the safety
profile, CRS and ICANS frequencies seemed to be lower in comparison to anti-CD19-CAR
T-cell therapies [137].

A single-group, phase 2 study enrolled adult patients with r/r MM, who had received
at least three previous treatment lines (incl. IMiDs, proteasome inhibitors, anti-CD38-
mAb) [91,96]. Overall, 140 patients were enrolled, of whom 128 received the final CAR
T-cell product (NCT03361748—KarMMa) [91,96]. At a median follow-up of 13.3 months, 94
of 128 patients (73%) had a response, and 33% had a CR or stringent CR [96]. In addition,
52% of the patients achieved at least a very good partial response (VGPR) [96]. The
estimated median of PFS was dose-dependent, with overall 8.8 months (95% CI, 5.6 months
to 11.6 months), 12.1 months (95% CI, 8.8 months to 12.3 months) at a dose of 450 × 106 cells,
and 20.2 months (95% CI, 12.3 months to not reached) in patients with CR or stringent
CR [96]. Interestingly, after disease progression, 28 patients were retreated with the CAR
T-cell product. Of those, 21% showed a second response [96]. Severe AEs grade 3 or 4
occurred in 99% of all patients [96]. Most grade 3 or grade 4 toxicities were hematologic
events, including neutropenia (89%), anemia (60%), and thrombocytopenia (52%) [96]. In
contrast to anti-CD19 CAR T-cell products, severe CRS or ICANS were quite uncommon
and were observed in no more than 6% of all patients [96].

These promising results led to a multicenter, randomized, open-label, phase 3 study,
investigating the safety and efficacy of idecabtagene vicleucel compared to standard regi-
mens in patients with r/r MM (NCT03651128—KarMMa-3) [93]. Overall, 386 patients were
assigned in a 2:1 ratio to receive idecabtagene vicleucel or a standard therapy regimen [97].

At a median follow-up of 18.6 months, the PFS was significantly higher in the idecab-
tagene vicleucel group at 13.3 months as compared to 4.4 months in the standard treatment
group [97]. In addition, the OR was significantly higher in the CAR T-cell group with 71%
(95% CI, 66–77%) as compared to 42% (95% CI, 33–50%) with HR 3.47 (95% CI, 2.24–5.39;
p < 0.001) in the standard treatment group [97].

Thus, the FDA and EMA approved idecabtagene vicleucel for heavily pretreated adult
patients with r/r MM, making it the first approved anti-BCMA-CAR T-cell product [15,21].

In addition, on January 26, 2024 the Committee for Medicinal Products for Human Use
(CHMP) of the EMA has recommended marketing authorization approval of idecabtagene
vicleucel for the treatment of adult patients with r/r MM who have received at least two
prior therapies, including an immunomodulatory agent (IMiD), a proteasome inhibitor (PI),
and an anti-CD38 monoclonal antibody. Recommendation for approval was based on the
phase 3 KarMMa-3 trial in which idecabtagene vicleucel demonstrated superiority over
standard regimens, significantly improved PFS and a well-established safety profile with
mostly low-grade occurrences of CRS and neurotoxicity (NCT03651128—KarMMa-3) [93].
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4.5. Lisocabtagene Maraleucel (Breyanzi®)

Lisocabtagene maraleucel (formerly known as JCAR017) is an autologous anti-CD19
CAR T-cell product, which was developed for the treatment of CD19-positive B-cell malig-
nancies [106]. The second-generation anti-CD19 CAR T receptor construct consists of an
scFv of the CD19-specific mAb FMC63, a 4-1BB costimulatory domain, and an intracellular
CD3ζ signaling domain [142]. In contrast to other anti-CD19 CAR T-cell products, the
manufacturing process of lisocabtagene maraleucel involves a selection of CD8+ and CD4+
T-cells from the leukapheresis material, followed by independent CD8+ and CD4+ T-cell
activation, transduction, expansion, formulation, and cryopreservation [143]. Lisocabta-
gene maraleucel is administered at equal target doses of CD8+ and CD4+ CAR T-cells and
is given as two separate infusions, sequentially [106,143].

The safety, pharmacokinetics, and anti-tumor activity of lisocabtagene maraleucel
in adult patients with r/r aggressive B-cell lymphoma were investigated in a phase 1
study (NCT02631044—TRANSCEND-NHL-001) [98,106,107]. In this study, eligible adult
patients had PET-positive r/r DLBCL, high-grade B-cell lymphoma with rearrangements
in MYC and either BCL2, BCL6, or both (double-hit or triple-hit lymphoma), PMBCL, or
FL grade 3B [98,106]. All patients had received ≥2 previous lines of systemic treatment
with subsequent relapse (previous autologous or allogeneic HSCT possible) [98,106,107].
Overall, 344 patients underwent leukapheresis for CAR T-cell production. CAR T-cells
were administered to 294 (85%) patients: 269 received lisocabtagene maraleucel and 25
received a non-conforming CAR T-cell product [106]. Overall, 256 patients were included in
the efficacy analysis. The OR rate was 73%, of whom 53% achieved a CR [106]. These good
response rates were accompanied also by long-lasting effects, with a median DOR that was
not reached (95% CI, 8.6 months—not reached) at a median follow-up of 12.0 months. The
estimated DOR rate for 1 year was 55% (95% CI, 46.7–62.0%) for all participants and 65%
(95% CI, 56.2–72.8%) in the CR group [106]. Of note, grade 3 or 4 CRS occurred in only
2% of all patients and ICANS in only 10% of all patients [106]. The most common grade
≥3 AEs were related to hematotoxicity, with neutropenia occurring in 60%, anemia in 37%,
and thrombocytopenia in 27% [106,107].

In a phase 2 multicenter study to determine the efficacy and safety of lisocabtagene
maraleucel, 74 patients underwent leukapheresis and 61 received the CAR T-cell product
(NCT03483103—TRANSCEND-PILOT-017006) [102,108]. All patients had r/r large B-cell
lymphoma and PET-positive disease and were not intended for high-dose chemotherapy
and HSCT [108]. The median age was 74 years, and 26% had an Eastern Cooperative On-
cology Group (ECOG) performance status of 2 [108]. The ORR was 80% (95% CI, 68–89%),
with a CRR of 54% (95% CI, 41–67%) and PRR of 26% (95% CI, 16–39%) [108]. At a median
follow-up of 13.0 months, the median PFS was 9.03 months, and at a median follow-up of
17.6 months, the median OS was not reached (95% CI, 17.28 months—not reached) [108].
The median DOR for patients with CR was 21.65 months (95% CI, 12.09 months—not
reached) [108]. Notably, grade ≥ 3 CRS and ICANS occurred in only 2% and 5%, respec-
tively [108]. These results suggested that CAR T-cell therapy is feasible in elderly and
fragile patients, who are not eligible for high-dose chemotherapy and HSCT, and that CAR
T-cell therapy leads to strong responses with long-lasting remissions [108].

In a global, randomized, multicenter phase 3 trial, lisocabtagene maraleucel was
compared to SOC in adult patients with high-risk, second-line, transplant-eligible r/r
aggressive B-cell NHL (NCT03575351—TRANSFORM) [105,109]. With a median follow-up
of 17.5 months, the primary endpoint EFS was not reached for the CAR T-cell product and
was 2.4 months for SOC [109]. The CRR was 74% for lisocabtagene maraleucel as compared
to 43% for SOC (p < 0.0001); the median PFS was not reached for lisocabtagene maraleucel
as compared to 6.2 months for SOC. In addition, the median OS was not reached (95% CI,
29.5 months to not reached) for lisocabtagene maraleucel as compared to 29.9 months (95%
CI, 17.9 months to not reached) for SOC (p = 0.0987). There was no significant difference in
the OS, which was due to a limited number of events (deaths). In fact, 66% of the patients in
the SOC arm crossed over and received lisocabtagene maraleucel [109]. As with previous
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trials, the incidence of CAR T-cell-related AEs was well manageable, and the frequency of
grade ≥3 CRS or ICANS was quite low (6% and 21%, respectively) [109].

These results led to the approval of lisocabtagene maraleucel by the FDA and EMA
(Table 2).

4.6. Ciltacabtagene Autoleucel (Carvykti®)

Ciltacabtagene autoleucel is a CAR T-cell product developed for the treatment of r/r
MM [14,20,113,144]. The CAR T-cell product consists of two BCMA-targeting nanobody heavy
chains (VHH), a 4-1BB costimulatory domain, and a CD3ζ signaling domain [79,113,145].
Thus, ciltacabtagene autoleucel is able to bind two different BCMA epitopes [113].

In a single-arm, open-label, phase 1b/2 study, the safety and efficacy of ciltacabtagene au-
toleucel was investigated in patients with r/r MM (NCT03548207—CARTITUDE-1) [110,114].
Overall, 113 patients were enrolled and underwent leukapheresis [110,114]. Due to disease
progression, death, or study withdrawal, 14% of the patients did not receive the final CAR
T-cell product [113]. The ORR at a median follow-up of 12.4 months was 97% (95% CI,
91.2–99.4%). Overall, 67% of the patients developed a stringent CR [113]. The median PFS
was not reached (95% CI, 16.8 months—not reached), and the overall 12-month PFS rate
was 77% (95% CI; 66.0–84.3%) [113]. The 12-month OSR was 89% [113]. Hematological
toxicities were the most common AEs, particularly cytopenias, whereas grade ≥3 CRS
(4%) and ICANS (2%) were uncommon. Unfortunately, one patient subsequently died as a
result of CRS and hemophagocytic lymphohistiocytosis [113,114]. Of note, besides ICANS,
other neurotoxicities occurred in 12% of the patients, and one patient died from grade 5
neurotoxicity, whereas four patients died due to other reasons, so a further evaluation of
the neurotoxicity outcome was not possible [113]. The CARTITUDE-1 trial proved that
ciltacabtagene autoleucel leads to an early, deep, and durable response, with an ORR of
98% at two years, and did not reach median DOR and median PFS [114,115].

A phase 2 study of ciltacabtagene autoleucel investigated the overall MRD negativity
rate (NCT04133636—CARTITUDE-2) [111,115]. In this study, patients with r/r MM were
divided into several subgroups, and the response to treatment with ciltacabtagene autoleu-
cel was evaluated [115]. In patients who had previously received a BCMA-targeting drug
(e.g., belantamab mafodotin), ciltacabtagene autoleucel induced a MRD negativity rate of
70%, with an ORR of 60%, a median DOR of 11.5 months, and a median PFS of 9.1 months
at a median follow-up of 11.3 months [115]. These results suggest that patients who have
been treated previously with an anti-BCMA-therapy can still benefit from therapy with
ciltacabtagene autoleucel [115].

To investigate ciltacabtagene autoleucel in earlier treatment lines in patients with
lenalidomide-refractory disease, a randomized, phase 3, open-label trial was conducted
(NCT04181827—CARTITUDE-4) [112,146]. All patients had received one to three previous
treatment lines. Overall, 419 patients were enrolled and 208 were treated with ciltacabtagene
autoleucel as compared to 211 who received SOC treatment [146]. At a median follow-up
of 15.9 months, the median PFS was not reached in the ciltacabtagene autoleucel group
as compared to 11.8 months in the SOC group. The PFS at 12 months was 75.9% (95%
CI, 69.4% to 81.1%) after treatment with ciltacabtagene autoleucel as compared to 48.6%
(95% CI, 41.5% to 55.3%) after treatment with SOC. Ciltacabtagene autoleucel induced a
higher OS rate (84.6% vs. 67.3%), a higher CRR (73.1% vs. 21.8%), and a higher rate of
MRD negativity (60.6% vs. 15.6%) [146]. Treatment with ciltacabtagene autoleucel was
associated with typical AEs, e.g., hematologic toxicities, CRS, and ICANS, but fortunately,
grade ≥ 3 CRS (1.1%, no grade 5) and ICANS (0%) were uncommon [146].

Thus, the FDA approved ciltacabtagene autoleucel in March 2021, and the EMA
granted marketing authorization in May 2022.

In addition, on 22 February 2024, the CHMP of the EMA adopted an extension to the
existing indication to include treatment of adult patients with r/r MM who have received
at least one prior therapy, including an immunomodulatory agent and a proteasome
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inhibitor, have demonstrated disease progression on the last therapy, and are refractory
to lenalidomide.

5. Treatment-Related Adverse Events

CAR T-cell therapy has improved the response to treatment and outcome in many
hematologic malignancies [147]. But these strong effects come with a cost: Treatment-
related AEs are frequent and need to be addressed by a well-trained team of experts [147].
Over the last years, in clinical trials, but also in clinical routine, there has been a better
understanding of these, in part specific side effects, and guidelines for prevention and
prophylaxis have been published [148–151]. This has led to a remarkable improvement
in management and prognosis, and fatal outcomes have become rare events [148–151].
Nevertheless, every patient needs to be evaluated properly ahead of CAR T-cell therapy,
and risk factors, e.g., high tumor burden, uncontrolled disease, secondary diagnoses, and
performance status (e.g., ECOG score), have to be taken into account [151]. A thorough
examination and interpretation of these and other baseline parameters (such as lactate
dehydrogenase, c-reactive protein (CRP), lung function, heart function) can reduce the risk
of serious and fatal side effects, sufficiently [150,151].

The following overview highlights the most common CAR T-cell-specific AEs and
gives some information about prophylaxis and treatment.

5.1. Immune Effector Cell-Associated Hematotoxicity (ICAHT)/Hemophagocytic
Lymphohistiocytosis (HLH)/Macrophage Activation Syndrome (MAS) after CAR T-Cell Therapy

CAR T-cell therapy is associated with hematologic toxicities, which can be severe and
long-lasting [149]. Hematologic toxicity represents the most common grade ≥3 AEs after
CAR T-cell therapy and can pave the way to serious infections, which are then major drivers
of morbidity and non-relapse mortality after therapy. Therefore, the term “immune effector
cell-associated hematotoxicity” (ICAHT) has been introduced for further investigation and
the development of treatment recommendations [149,152–154]. Severe cytopenias occur
after CAR T-cell therapy regardless of the specific target antigen and are described across
various malignancies [149]. The underlying pathophysiologic mechanisms are still under
investigation, but growing evidence shows that patients’ individual hematopoiesis ahead
of CAR T-cell infusion and inflammatory stress are most relevant [149,155,156]. In 2023,
the European Hematology Association (EHA) and the European Society for Blood and
Marrow Transplantation (EBMT) published consensus recommendations for the treatment
of ICAHT, based on an international expert committee [154]. Based on an international
survey, the expert panel divided ICAHT into an early form (occurrence within 30 days
after CAR T-cell infusion) and a late form (occurrence beyond day +30 after CAR T-cell
infusion) [154]. A grading system based on the neutrophil count was proposed, which
includes the onset and duration as well as the severity of neutropenia [154]. Risk factors
associated with the occurrence of ICAHT are disease-related features (e.g., disease burden),
previous therapies (e.g., number of treatment lines, used drugs), bone marrow function (e.g.,
bone marrow infiltration, clonal hematopoiesis of indeterminate potential), inflammatory
markers (CRP, ferritin), and CAR T-cell product specificities (e.g., costimulatory domain,
type of construct) [153,154]. The “CAR-HEMATOTOX” score can help to identify patients
at a high risk for prolonged neutropenia and can be calculated ahead of lymphodepleting
conditioning, although it features only a limited positive predictive value [149,153,154].

Besides ICAHT, which is relatively common, the incidence of hemophagocytic lym-
phohistiocytosis (HLH) ranges from 1% to 3.4% [157,158]. HLH is a serious inflammatory
syndrome characterized by elevated blood ferritin levels, coagulatory dysfunction, hepatic
impairment, and cytopenia [159]. The American Society of Transplantation and Cellular
Therapy (ASTCT) composed a working group of 30 experts to provide a clinical guideline
for the recognition and treatment of the newly termed “Immune Effector Cell-associated
HLH-like syndrome” (IEC-HS) [159]. The ASTCT developed an IEC-HS grading system
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and provides clinicians with helpful treatment recommendations, although admitting the
lack of clinical evidence and the need for prospective clinical examinations [159].

In summary, due to the lack of prospective clinical trials, treatment recommendations
depend mainly on expert opinions [149,159]. There are no specific recommendations for the
transfusion of blood products available. Infectious prophylaxis is similar to recommenda-
tions for allogeneic HSCT [149]. The expert panel of EHA/EBMT proposes the prophylactic
use of G-CSF for patients with a high-risk profile for ICAHT, whereas thrombopoietin (TPO)
agonists are considered primarily in the context of prolonged and late-onset thrombocy-
topenia [149]. However, data on supporting the use of TPO agonists are very limited [149].
In situations of prolonged cytopenia, usually characterized by unresponsive neutropenia
to G-CSF stimulation beyond day +14 after CAR T-cell infusion, or sustained anemia and
thrombocytopenia, the transfusion of autologous hematopoietic stem cells (HSCs) should
be considered [160,161]. Allogeneic HSCT remains an option when autologous HSCs are
unavailable or in cases of treatment failure. Nevertheless, allogeneic HSCT is not considered
as a routine procedure and needs to be discussed for each patient, individually [154].

5.2. Cytokine Release Syndrome (CRS)

Besides hematotoxicity, CRS is the most common AE after CAR T-cell infusion [151,158,162].
It is triggered by the activation of T-cells, which release cytokines and other mediators to
activate surrounding bystander immune cells [158,162]. Patients typically experience con-
stitutional symptoms, e.g., fever, headache, and myalgias, but serious and life-threatening
complications, such as hypoxia, hypotension, and shock, may also occur [158]. Usually,
CRS symptoms develop during the first week after CAR T-cell infusion, with a peak of
severity about 1–2 weeks after administration [151,158,162]. Therefore, patients have to
be monitored systematically, and precautions have to be taken ahead of therapy [148,151].
There are several grading systems available [158,163–165], making comparisons between
clinical studies and the development of treatment guidelines difficult [158]. The ASTCT
initiated a harmonization meeting, including members of the Center for International Blood
and Marrow Transplant Research (CIBMTR), the American Society of Hematology (ASH),
and the National Cancer Institute (NCI) [160]. This consensus on CRS grading divides CRS
into five different grades, depending on clinical symptoms, like fever, hypotension, and
hypoxia (Table 4) [148].

Table 4. ASTCT CRS Consensus Grading [148].

CRS Grade 1 Grade 2 Grade 3 Grade 4 Grade 5

Fever
(not attributable to other causes) ≥38 ◦C ≥38 ◦C ≥38 ◦C ≥38 ◦C Death

With

Hypotension None Not requiring
vasopressors

Requiring a vasopressor
with or without

vasopressin

Requiring multiple
vasopressors (excluding

vasopressin)
Death

And/or

Hypoxia None
Requiring low-flow

nasal cannula or
blow-by

Requiring high-flow
nasal cannula, facemask,
nonrebreather mask, or

venturi mask

Requiring positive
pressure (e.g., CPAP,

BiPAP, intubation, and
mechanical ventilation)

Death

Abbreviations: BiPAP, bilevel positive airway pressure; CPAP, continuous positive airway pressure; CRS, cytokine
release syndrome.

There are several CRS definitions and grading systems in use, making comparisons
between clinical studies and the development of treatment guidelines difficult. The ASTCT
CRS Consensus Grading system comprises three clinical parameters (fever, hypotension,
hypoxia) that are robust and can be easily evaluated.

The EBMT and the Joint Accreditation Committee of International Society for Cell &
Gene Therapy and EBMT (JACIE) and the EHA have established best practice recommen-
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dations for the management of CAR T-cell therapy [150]. Based on the above-mentioned
ASTCT consensus criteria, an algorithm was created for each CRS grade, giving detailed
information on medical action and intervention [150]. Depending on the severity and dura-
tion of CRS, the recommendation comprises the use of tocilizumab, glucocorticoids, and
supportive treatment and, in serious situations, transfer to an intensive care unit [150,151].

5.3. Immune Effector Cell-Associated Neurotoxicity Syndrome (ICANS)

ICANS is a common adverse event after CAR T-cell therapy and may manifest, e.g., as en-
cephalopathy, aphasia, lethargy, disorientation, agitation, or cerebral edema [148,151,158,166].
These neurologic symptoms may occur simultaneously or after CRS [148,167]. The phys-
iologic processes behind ICANS remain generally unclear, and there are currently no
established diagnostic tools available which would help to predict the onset and severity of
ICANS ahead of CAR T-cell therapy [148,167]. Similarly to CRS, the ASTCT developed a
consensus ICANS grading system (Table 5) [148].

Table 5. ASTCT ICANS Consensus Grading for Adults [148].

Neurotoxicity Grade 1 Grade 2 Grade 3 Grade 4

ICE score 7–9 3–6 0–2
0

Patient is unarousable and unable to
perform ICE

Depressed level of
consciousness

Awakens
spontaneously Awakens to voice Awakens only to tactile stimulus

Patient is unarousable or requires
vigorous or repetitive tactile stimuli to

arouse (stupor or coma)

Seizure NA NA

Any clinical seizure, focal or
generalized, which resolves

rapidly or nonconvulsive seizures
on EEG that resolve with

intervention

Life-threatening prolonged seizure
(>5 min) or repetitive clinical or electrical

seizures without return to baseline
in between

Motor findings NA NA NA Deep focal motor weakness such as
hemiparesis or paraparesis

Elevated ICP/
cerebral edema NA NA Focal/local edema on

neuroimaging

Diffuse cerebral edema on neuroimaging;
decerebrate or decorticate posturing or
cranial nerve VI palsy; papilledema; or

Cushing’s triad

Abbreviations: EEG, electroencephalography; ICE, immune effector cell-associated encephalopathy; ICP, in-
tracranial pressure. Immune effector cell-associated neurotoxicity is characterized by different mainly unspecific
symptoms. The ASTCT ICANS Consensus Grading for Adults evaluates neurologic symptoms and the results of
neuroimaging techniques.

The working group introduced the immune effector cell-associated encephalopathy
(ICE) score (Table 6) to objectively evaluate patients’ neurologic constitution [148]. Depend-
ing on the ICE score results, the ICANS score is determined and divided into five different
grades [148]. This consensus definition provides a helpful tool to evaluate ICANS and it
helps to define, analyze, and compare ICANS in prospective clinical trials.

Table 6. Immune effector cell-associated encephalopathy (ICE) score [148].

Ability Points

Orientation Ability to name the year, month, city, and hospital: 4 points

Naming Ability to name 3 different objects: 3 points

Following commands Ability to follow simple commands (e.g., “show me 2 fingers”):
1 point

Writing Ability to write a certain sentence (e.g., “our national bird is the bald
eagle”): 1 point

Attention Ability to count backwards from 100 by 10 to 0: 1 point
Scoring: best result: 10 points, no impairment; worst result: 0 points, patient unarousable and unable to perform
ICE assessment (grade 4 ICANS).
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Importantly, the ICE score assessment is a valuable analytic tool for the supervision of
adult patients during CAR T-cell therapy. For <12 yo children, the ASCTC recommends
the use of the “Cornell Assessment of Pediatric Delirium” (CAPD) questionnaire [148].
Therefore, a pediatrician evaluates behavioral aspects of the child, activity level, and
response to interactions [148].

Treatment recommendations have been developed by the EBMT, JACIE, and EHA [150].
The specific treatment algorithm, which is adapted for the ICANS grading system by
ASTCT [148], comprises the use of dexamethasone and methylprednisolone [150]. The
therapeutic role for tocilizumab in the context of ICANS is unclear, and its use is therefore
not recommended [150,151,167].

6. CAR T-Cell Therapy in Solid Oncology

In contrast to the phenomenal success of CAR T-cell therapy in hematologic malig-
nancies, CAR T-cells have largely failed in solid oncology, so far [78,80]. Major challenges
include on-target off-tumor toxicity, CRS, tumor antigen heterogeneity, and the immuno-
suppressive tumor microenvironment (TME) [76,80,168].

Especially the TME causes some obstacles which are difficult to overcome [76,80,169].
A tumor represents a hostile microenvironment for T lymphocytes [169]. The reduced
expression of adhesion molecules on endothelial cells hampers adhesion and trafficking of
lymphocytes into the tumor [169]. Besides physical barriers, hypoxia and alterations in the
energy metabolism of tumor cells lead to an uncomfortable area that limits the survival
and function of different immune cells because of a lack of nutrition and oxygen [169]. Ad-
ditionally, tumor cells and the surrounding bystander cells (e.g., regulatory T-cells) actively
inhibit immune cell function by secreting immunosuppressive cytokines, leading to anergy
and the apoptosis of tumor-infiltrating lymphocytes and immune effector cells [76,80,166].

Another hurdle is the heterogenous expression of so-called tumor-specific antigens in
solid tumors and, as a result, on-target off-tumor activity [76,77]. Anti-CD19 CAR T-cells
and anti-BCMA CAR T-cells are effective in the treatment of B-cell malignancies and MM
because of the highly specific expression of these antigens on B-cells and plasma cells,
respectively. But this effect is not tumor-specific, as these CAR T-cell products eliminate
every cell expressing these antigens on its surface, without discriminating between normal
and abnormal, cancerous cells [77]. The off-tumor activity, which leads to B-cell or plasma
cell aplasia, can be tolerated in these instances, and the positive treatment effect outweighs
this adverse reaction [77]. Although tumors often show a higher expression of certain
antigens, these antigens are also present on healthy cells in different tissues. Therefore,
CAR T-cells can be directed against healthy tissue, which can lead in these situations to
intolerable toxicities, which limits the use of these CAR T-cell products [76,77]. Besides
these challenges, solid tumors are typically very heterogenous, meaning that the expression
of certain antigens varies within the tumor, leading to a negative selection of tumor cells
not expression the target antigen [77,79]. This antigen escape also plays a major role of
resistance in hematologic malignancies, where antigen loss under CAR T-cell therapy is a
well-known phenomenon [76,79]. Treatment-related effects, which are eminent for CAR
T-cell function, can also be dangerous if they appear in certain locations. In clinical trials
for tumors of the central nervous system (CNS), distinct from CRS and ICANS, tumor
inflammation-associated neurotoxicity (TIAN) is a serious AE which limits the therapeutic
use of CAR T-cells [170]. This is a dilemma for the treatment of CNS malignancies: on one
hand, CAR T-cells shall deliver their anti-tumor activity at the site of the tumor (on-target
effect); on the other hand, the pharmacologic mechanism, which is the immune-mediated
inflammation against the tumor, leads to side effects, which can be fatal in the CNS [170].

To date, there are no CAR T-cell products approved for the treatment of solid tu-
mors, and there is still much research needed to overcome the above-mentioned obstacles
and limitations.
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7. Obstacles and Limitations

CAR T-cells combine two aspects of the adoptive immune system: the antigen speci-
ficity of an antibody binding domain and the cytotoxic and immune modulating activity of
the T-cell system [77,80]. This makes CAR T-cell products a powerful tool for the eradica-
tion of specific target cells [77]. Hence, these two features are also responsible for central
obstacles and limitations [77,80]. A key limitation for CAR T-cell design is identifying
a targetable and tumor-specific antigen [77,80]. Most antigens of interest are not tumor-
specific in a proper sense, meaning that these antigens are also expressed by healthy cells.
Additionally, due to tumor heterogeneity, tumor cells often show different expression
levels of an antigen of interest, and in the context of tumor evolution, antigen loss is often
experienced [76,77,80]. Besides this fundamental problem, there are many more challenges,
e.g., CAR T-cell expansion, persistence, tumor infiltration, TME, and serious AEs, which
potentially limit the use of CAR T-cells [76,77,80].

8. Conclusions

Over the last years, CAR T-cell therapy has become a new treatment option for certain
hematologic malignancies, and many patients have benefited from its use. Besides its
success in B-cell and plasma cell malignancies, there have been reports about the efficacy
of CAR T-cells in different areas of medicine, e.g., solid oncology, autoimmune diseases,
and infectious diseases [76,77,80]. Nevertheless, there are limitations and obstacles that
must be taken seriously, and further research is needed. Severe, sometimes life-threatening
side effects, on-target off-tumor effects, tumor heterogeneity, antigen escape, and many
more challenges remain to be solved [76,77,80]. Finally, emerging data suggest that there
is a certain risk of T-cell malignancies after CAR T-cell therapy [171]. However, existing
data from follow-up studies suggest a low risk compared with other cancer treatments.
Thus, the benefits of CAR T-cells should not be withheld when it appears to be the best
option available. Nevertheless, patients and clinical trial participants receiving treatment
with these products should be monitored for life for new malignancies. Besides these
medical and scientific difficulties, therapy-related costs are also worth mentioning and are
a relevant burden for the health care system. However, the manufacturing of CAR T-cell
products will probably become less expensive over the next years. Due to new competitors
and the expiry of protecting patents, manufacturing capacities will increase, which will
have a relevant impact on supply and demand. This will probably lead to a significant
price reduction.

Emerging new technologies, improvements in CAR design, and the combination of
different treatment modalities will be helpful in overcoming these difficulties. CAR T-cells’
triumph has just begun.
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