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Abstract: Our paper presents a flexible enzymatic acetylcholinesterase graphene based FET biosensor
of the target organic phosphorous. The sensor’s purpose is to detect pesticide residues in the field of
food safety. In our sensor design, the material is graphene with its functionalization, and graphene
based FET structure will be discussed in one section of this paper. The mechanism of this graphene
sensor is the enzymatic linked reaction on a sensor surface. The enzyme is fixed on the sensor
surface by the linker 3-mercapto propionic acid. Measurement experiments using the biosensor were
performed for detecting the concentration of isocarbophos (an organophosphate). The enzymatic
biosensor has successfully detected 100 µg/mL isocarbophos from the water sample, presenting
a significant detection limit index for organophosphate detection.

Keywords: graphene; enzymatic sensor; organophosphate detection

1. Introduction

In China’s agriculture food safety field, many traditional pesticide residue sensors
have been developed and used over decades. However, the defects and deficiencies of
traditional sensors lead to research on and applications of new materials for sensor de-
velopment. The purpose of this paper is to present a graphene-based biosensor to detect
organophosphorus within pesticide residues. The design of micro biosensors consists
of sensor surface design, structures and mechanism. For sensor design, specific sensing
material would be placed on the sensor surface by the graphene transfer process; this
material would present a specific sensing mechanism. For instance, graphene-based sen-
sors have been fabricated for detecting hydrogen peroxide as reported in J. S. Kumar’s
paper [1]. Furthermore, other substances could become sensor materials, such as mag-
netic materials and ferromagnetic materials [2]. For example, two dimensional transition
metal di-chalcogenides (TMDC) are becoming promising [3]. Compared to TMDC material,
graphene has biocompatibility properties as the sensing material has oxide linking chemical
groups. Graphene is a zero-gap semiconductor to some general material [4,5]. Graphene
has been used as the bio-function sensor material for some specific chemical detection
tasks due to its excellent electrical and biocompatibility performance [6]. In recent years
many research groups have utilized graphene as sensor detectors [7]. Although there are
some limitations and deficiencies [8], graphene based FET sensors have also been used on
many different occasions [9]. In recent research, Labchinskii’s group used graphene-based
on-chip multisensory arrays, utilizing the synthesis technology to develop gas sensors for
detecting various vapors [10]. Furthermore, in Chen’s paper graphene oxide was used to
develop a surface plasma resonator biosensor [11]. Graphene thiolation technology was
also used in reduced graphene oxide for enhanced photodetection [12].

The detection mechanism of the enzymatic biosensor is that the organophosphorus
pesticides would inhibit the enzyme acetylcholinesterase (AChE) [13]. The traditional
detection methods, including spectrophotometry [14], spectrofluorimetry [15], quartz
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crystal microbalance [16] and so on [17], have their own disadvantages. These include
long analysis time and expensive detection cost. In contrast, the indirect flexible enzymatic
biosensor could successfully bring a rapid and cheap detection method. Furthermore,
a high quality micro biosensor would allow repeated detection of the organophosphorus
pesticides samples, providing excellent sensitivity and selectivity.

Isocarbophos is an organophosphate which has been widely used during the spread
of insecticides. It is mainly used to control cotton spider, cotton aphid, cotton bollworm
(larva and egg), red bollworm egg, spodoptera litura, and rice borer, and has a good
effect on all kinds of scale insects. In 2022, there have been research papers about micro
sensors for the rapid detection of organophosphate by some advanced means, such as
electrochemical and fluorescence methods [18,19]. In our research, a graphene based
organophosphate sensor could also have significant sensitivity and selectivity for rapid
detection of organophosphorus pesticides. For sensor signal measurement experiments, the
instrument we used is source meter Keithley 4200A-SCS, and we updated its software for
sensor data processing. This Keithley instrument is developed by the Tektronix company;
the 4200A-SCS is an industry-leading electrical characteristic parameter analyzer, providing
synchronous current voltage curve test (I−V curves measurement) and other electrical
signal measurement.

2. Sensor Design

In this biosensor design, after adequate research we chose the model solution gate
field-effect transistor (FET) sensor; the sensing material is graphene. In order to detect the
target organophosphorus sample, the graphene surface needs to be processed by a special
functionalization protocol. The sensor bottom is p doped Si/SiO2 substrate; the substrate’s
bottom side is Si, and the upper side is SiO2. The oxide layer thickness is 100 nm. The Au
electrode was chosen for its excellent electrical performance; the two gold electrodes were
finished by a metal deposition process. The graphene size is 1.1 mm × 0.6 mm; during the
fabrication process we would place this graphene nanoribbon across the two electrodes
by graphene transfer protocol. In order to form the experiment chamber, we selected the
material silicone rubber, and let the silicone rubber surrounding the graphene nanoribbon.
For measurement, we need to apply the VDS between source and drain electrodes, and the
sensor chip would be fixed on the probe station surface.

There are several kinds of FET, such as back-gate FET and solution gate FET. In our
experiment, because our target sample is liquid, so we designed a solution gate FET sensor.
During the experiment process, the sensor chip was fixed on the probe station surface,
and the third needle of this probe station would touch the solution area to apply the gate
voltage. The source-drain bias and source-gate bias share common grounding for safety
reasons, which is the common practice of sensor design and electrical circuit design. The
overall design of our biosensor is shown in Figure 1.
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3. Fabrication and Functionalization
3.1. Fabrication of the Biosensor

After the sensor design, we need to process the fabrication and functionalization.
At the beginning the fabrication protocol needs to be processed. For the first step of
fabrication, we need to finish the fabrication of the substrate with electrodes. After we
obtained the Si/SiO2 substrate, this substrate was cleaned in acetone, alcohol, IPA and DI
water consecutively. It was then placed in plasma cleaner for 10 min. Later, we conducted
the process with the spin-coater; the photoresist was spin coated on the substrate SiO2
side. Next, the sensor chip was placed on a hotplate for prebake, under the temperature
110 ◦C for 10 min. In order to form the electrode pattern on the SiO2 side of the substrate,
a photolithography process was conducted with our designed photomask. The next step
is metal deposition: the two electrodes are deposited on the SiO2 side of the substrate,
the electrode material is chosen as Cr/Au, the gold electrode’s thickness is 100 nm, while
the thickness of Cr is 15 nm for the Cr/Au electrode. The metal deposition process was
conducted by Q150 TS in our laboratory. For the second step of fabrication, we needed
to process graphene direct transfer. We placed one layer of PMMA on the Cu side of
the graphene/Cu sheet, 30 min for drying. Next, the graphene sheet was placed into
FeCl3 aqueous solution at room temperature in order to etch the Cu layer. For about
10 h, the Cu material detached from the former graphene sheet, and what we obtained
was PMMA/graphene. After this step we placed the PMMA/graphene sheet onto the
substrate’s SiO2 side. Then the chip was under post bake at 80 ◦C for 5 min, and the post
bake was at 150 ◦C for 15 min. Lastly, acetone is used to wash away the PMMA layer.
For the third step of fabrication, we needed to transfer the finished graphene on the spare
chip to the experimental chip. Finally, we therefor adjusted the graphene nanoribbon at
an appropriate position and angle on the center of the substrate, as the graphene across
the source electrode and drain electrode. The fabrication process and the pattern of this
graphene sensor are shown in the Figure 2.
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Figure 2. The schematic figures for the fabrication steps of the biosensor. (a) The sensor surface
material had been processed in two photolithography process. (b) The fabrication of gold electrodes
was according to the designed pattern.
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3.2. Functionalization of the Biosensor

For the first step of functionalization, 25:75 (v:v) water/ethanol solution within 70 mM
MPA was dripped onto the sensor sensitive area for about 9 h, in order to establish the Au-
MPA SAM. Then the chip was washed thoroughly by the 1:3 ethanolic solution and dried
by N2 gas. For the second step of functionalization, EDC/NHS activation was conducted
to activate the NHS. This solution was dropped onto the gold gate surface and left for
4 h. For the third step of functionalization, the samples were again thoroughly washed by
PBS buffer, after which we immediately dropped 50 µL of 2 mg/mL AChE on the FET’s
gate area which had been activated. For the fourth step of functionalization, we kept the
samples for drying at room temperature for around 12 h, in order to let the liquid evaporate.
When the functionalization steps were finished, the samples were washed by PBS buffer
and stored at 4 ◦C in the laboratory refrigerator. The functionalization was performed on
the entire sensor surface, after which the active graphene area would be surrounded by
silicone rubber. The functionalization sequence is shown in the Figure 3.
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Figure 3. The linker is 3-Mercaptopropionic Acid(3-MPA), the enzymatic complex is acetyl-
cholinesterase (AChE).

4. Experiment and Data
4.1. Experimental Setup

After fabrication and functionalization, the sensor chip was fixed on the center of
the probe station by magnetic force. As shown in Figure 4, the left needle and the right
needle contact source and drain electrodes, providing source meter Keithley 4200A’s bias
voltage. For measurement, we conducted the control experiment and the target organic
phosphorous experiment, respectively. In the control experiment, we added PBS, while
we added isocarbophos solution for the target phosphorous detection experiment. For
both the control experiment and the target phosphorous detection experiment, the bias
voltage Vds was scanned from −0.1 V to 0.1 V for I−V curve measurement. The solution
gate FET was chosen for the measurement, and the PBS solution and the target organic
phosphorous solution were added into the recording chamber of the sensor. For transfer
curve measurement, the gate voltage Vg was scanned from 0 V to 0.8 V. The measurement
instrument Keithley 4200-SCS is famous for its excellent parameter analysis performance,
and the EPS-300 probe station also provides the optimal experiment conditions for our
measurement. The figure of the experiment is shown in Figure 4.
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Figure 4. The schematic figure for the probe station with its three needles, contacting the source
electrode, the drain electrode and the gate of the FET sensor, respectively.

For data collection and data processing, we used the source meter Keithley 4200A and
its software. During the experiment, the source meter recorded two channels’ sensor signal.

Before the measurements, we needed to culture the pesticide residue organic phospho-
rous. Organic phosphorous was purchased from Guangdong lab. In our experiment, we
set Vg = 0 V, and VDS = 0.1 V. The target organophosphate isocarbophos’s chemical formula
is C11H16NO4PS, and its molecular mass is 289.29. The relationship between isocarbophos
and the enzyme AChE is inhibition [20]. For the gold electrode, the linker MPA’s alkane
thiol group is prone to form a self-assembly monolayer due to its high affinity to gold [21].
After the ordered monolayers of alkane thiol group form, this linker could be used to
immobilize the enzyme [22]. In our experiment, we planned to use the enzyme AChE on
the gold electrode surface of the graphene-based FET sensor.

4.2. Sensor Surface Characterization

In order to present and study the sensor material’s performance, we conducted Raman
spectrum and atomic force microscopy (AFM) scanning for this biosensor. The Raman
spectra of graphene on the electrode area, and on the silicone substrate area are shown
in Figures 5 and 6, respectively. Usually the graphene Raman spectrum has two peaks.
The left peak is the G peak, and the right peak is the 2D peak. In our graphene Raman
spectrum, the G peak is about 1583.41/cm2, and the 2D peak is about 2705.71/cm2. The
multi-layers graphene would have different Raman spectrum peaks compared with single-
layer graphene; when the layers increase the G peak would decrease, while the 2D peak
would increase. The Raman spectrum peaks have been explained recently by the spectrum
analyses in references [23,24].
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Figure 6. The graphene’s Raman spectrum on the silicone substrate area.

From the Raman spectrum we could see that in our experiment the graphene was
mainly two-layer graphene. Additionally, the defect peak of graphene was weak in the gold
electrode area and silicone substrate area, indicating that the experimental graphene had
few defects. The second characterization we undertook was AFM scanning. AFM stands
for Atomic Force Microscope; this can detect the physical properties, including morphology,
from regions of various materials and samples in the atmosphere and liquid environment.
For AFM characterization, there are three working modes during this process, includingthe
non-contact mode, the contact mode and the tapping mode. During the characterization
process, the AFM instrument was in tapping mode. The AFM characterization image
recorded is shown in Figure 7:
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Figure 7. The AFM characterization figure of the sensor surface during the experiment process.
(a) is the AFM characterization for sensor surface’s inactive area without graphene, (b) is the AFM
characterization for sensor surface’s active area before graphene transfer, (c) is the AFM characteri-
zation for sensor surface’s active area after graphene transfer, (d) is the Section 3D figure for AFM
characterization with size and scale (size: 1.4 × 1.4 µm, scale: one line segment represents 0.2 µm).

In summary, from the AFM characterization we could observe the sensor surface’s
condition for both graphene and electrodes, and we could also observe the surface mor-
phology by AFM’s special features. The entire sensor chip size was 1 cm × 1 cm during
the characterization and the following measurement, while the electrode width was about
1 mm (Figure 7b,c). Figure 7b shows the sensor surface’s active area before the graphene
transfer process, while Figure 7c shows the sensor surface’s active area after the graphene
transfer process. Figure 7a shows the sensor surface’s inactive area. Figure 7d was collected
from the borderline area between the graphene nanoribbon and electrode. The scansize
is 1.4 × 1.4 µm, and the scale is that one line segment represents 0.2 µm. Compared to
electron microscopy, AFM could be able to represent the surface morphology of this sensor,
displaying the three-dimensional perspectives of the graphene sensor surface.

5. Sensor Signal Analysis

When we conducted the sensor experiment, the theoretical analysis was also un-
dertaken to explain our results. From a theoretical point of view, the ideal graphene is
considered without doping. However, in reality, the actual graphene has different degrees
of doping level. In our experiment, the copper-based CVD graphene we used presented
as p-doped even under Vg = 0 V. For the FET sensor, the gate voltage could be used to
adjust the doping level via field effect. The source meter Keithley 4200A could help us
record the I−V curves and transfer curves; by observing the curves we could find there are
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differences between experimental curves and theoretical curves. There have been some pre-
vious research papers about adjusting the doping level [25]. There are some relationships
between the carrier density and doping level; in this case the equation about carrier density
is utilised, as shown in Equation (1):

n =
√

n2
0 + (COX(Vg −VD)/e)2 (1)

For theoretical analysis, the I−V curves and C−V curves could be deduced with their
inherent relationship from the Landauer formula [26]. Later in Meric’s paper, the actual
curve was compared with the theoretical curve by mathematical deduction, considering
some important parameters in the equation below:

Id =
W
L

∫ L

0
en(x)υdri f t(x)dx (2)

The reference paper constructed the compact mathematical model for this biosensor [27].
Furthermore, Petrone undertook theoretical analysis to strengthen this mathematical
model [28]. Combining those references, the I−V relationship could be shown in the
equation below:

IDS = e
W
L

µe f f noVds (3)

IDS =

W
2L eµe f f (−Cox(Vg −VD)/e +

√
n2

0 + (Cox(Vg −VD)/e)2)Vds

1 +
µe f f Vds

Lνsat

(4)

After adding the target solution, the realistic I−V relationship could be as presented
in Equation (5):

I′DS = e
W
L

µe f f (n0 +
VI
VT
· c · ρ0kT

ρ0kT + 1
·QE)Vds + ∆Id (5)

In these equations, Equation (3) describes this sensor’s I−V performance under
Vg = 0 V for both the control experiment and the target detection experiment; Equation (5)
presents the transfer curves under specific circumstances when we set a gate voltage Vg
together with the fixed Vds. In the above equations, W and L stand for channel width
and length respectively, µeff is the effective carrier mobility, n0 is the initial carrier density
under Vg = 0 V situation, Vg is gate voltage, VD is threshold voltage at Dirac point, Vds is
bias voltage. When we consider C−V curves, the gate capacitance would be considered.
Cox stands for the oxidation layer gate capacitance, c stands for the organophosphorus
solution concentration.

In our experiment, the measurement instrument Keithley 4200A source meter recorded
the I−V curves and transfer curves for the control experiment and the target detection
experiment. When we set Vg = 0 V, the I−V curves would be obtained from the source
meter. In this experiment, we did not focus on transfer curves, which were obtained
from the condition that when we set a gate voltage Vg together with the fixed Vds. For
the I−V curves recording process, the parameters were set as follows: the bias voltage
Vds = 0.1 V, the gate voltage Vg = 0 V. For transfer curves measurement, we set the bias
voltage Vds = 0.1 V, while Vg ranged from −0.8 V to 0.8 V. The prepared isocarbophos
sample was obtained from the China National Analytical Centre (NACC), Guangzhou. The
concentration of the isocarbophos sample was about 100 µg/mL. The reference paper about
the Landauer theoretical model suggested the conditions for monolayer graphene [29]. For
multilayer graphene and actual graphene surface, the surface chemical groups should be
considered in the theoretical analytical model, such as sulfhydryl and hydroxyl groups.

The above Figure 8 demonstrates the result of the sensor for sensing the neurotrans-
mitter acetylcholine. After adding the AChE, there was an obvious increase in the drain-to-
source current. After AChE hydrolysis reaction, the reaction products included choline and



Crystals 2022, 12, 1327 9 of 13

acetic acid, releasing H+ ions into the electrolyte, producing H2O. The ACh’s hydrolysis
process could be presented in the chemical Equation (6) below:

CH3COO (CH 2)2N+(CH3)3 + H2O AChE→ (CH 3)3 (CH 2)2NOH + CH3COOH + H+

CH3COOH � CH3COO− + H+
(6)
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The above chemical equations are a pair of combination equations, which happen
concurrently in the sensor’s chamber. For this pair reaction, the decomposition reaction of
acetic acid is a reversible reaction. The AChE becomes the catalytic agent of the hydrolysis
process. During the experiment, after adding the ACh, the enzyme AChE leads to the
catalytic reaction [30]. The enzyme concentration would affect the tendency of the chemical
equilibrium, being regarded as the catalyzer of the reaction. The H+ ions released on the
sensor surface caused the potential change [31].

This kind of biosensor is firstly used as a neurotransmitter acetylcholine sensor [32].
Solutions of the organophosphate isocarbophos were prepared in the solvent of PBS buffer,
at a concentration of 1 mM. For the control experiment, the bias current was measured with
a 1 nM acetylcholine concentration without the target isocarbophos, and was recorded as
Vds,control. After the target organic phosphorous isocarbophos was attached the solution
was well mixed for some time about 5 min. Then the drain-to-source current was recorded
as Ids. We calculated the inhibition of the enzyme activity from the difference of these
two drain-to-source current values [33]. The inhibition equation is shown in Equation (7):

Inhibition% =
Ids,control − Ids

Ids,control
× 100% (7)

In the above formula, Ids stands for the current measured in in 1 nM acetylcholine
solution after exposed in 100 µg/mL isocarbophos solution (solvent: PBS buffer). In order
to study this biosensor’s detection effect, we need to compare the experiment concentra-
tion with the detection limit of the target organic phosphorous isocarbophos [34]. The
I−V curves were recorded when gate voltage Vg = 0 V before and after the addition of
organic phosphorous, and graphene FET transfer curve characteristics were also recorded
with a fixed bias voltage. We applied 0.8 V to the solution gate chamber, and this bias
voltage Vds remained at 0.1 V. The I−V curves were recorded in the Figure 9. The Keithley
4200 instrument was kept in the transfer curve sweeping and recording mode. Thus, the
transfer curves of each step of the experiment were recorded and drawn for comparison. We
have recorded the transfer curves of the initial signal, the thiolation signal, the function sig-
nal and target signal. For the inhibition ratio calculation, the most important is the transfer
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curves after adding the target organophosphorus isocarbophos [35]. In our experiment, the
transfer curves were recorded when the target organophosphorus isocarbophos was added
at the 1st minute, the 5th minute and the 10th minute, presenting in the Figure 10 below.
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We calculated the inhibition ratio over time, as shown in Figure 11:
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To analyze our sensor’s performance, we have conducted the transfer curves com-
parison and the inhibition curve comparison. The transfer curves in the 1st minute, the
5th minute, the 10th minute during the incubation of isocarbophos were recorded. It is
indicated that as the incubation time increases, the transfer curve tends to be stable and
the inhibition ratio is beginning to indicated saturation. The maximum inhibition ratio is
maintained around the value below 50%.

However, our experiment has some limitations. We should have conducted mea-
surement for more concentrations of the target isocarbophos and tested other kinds of
organophosphorus. We will plan to replenish our measurement experiments and test
more samples when the coronavirus crisis is over. Other organophosphorus compounds
including malathion, chlorpyrifos and parathion samples will be collected and tested in our
future experiments. Our research is of great significance to the pesticide residue detection
and food safety field.

6. Conclusions

In summary, a graphene-based FET enzymatic sensor for organophosphorus detection
has been developed, and the following sensing mechanism was demonstrated to explain
the sensor signal. In the sensor fabrication and function process, the enzyme was fixed on
the gold electrode by functionalization by using the linker MPA molecule. This sensor’s
many detection indexes to the target isocarbophos have been demonstrated. The biosensor
result for detecting isocarbophos could be read from the I−V curves and transfer curves.
Because the organic phosphorous molecules present a negative charge after attachment, the
pesticide residue would cause an increase in holes with positive charge. In that case, the
FET’s bias current would increase due to the target molecules’ attachment. Comparatively,
the theoretical derivation could provide evidence for our experiment signal variation; the
concentration of isocarbophos was detected to the limit of detection measurement. In our
future research plan we would collect samples in more areas of China. We would add
more experiments on the detection limits of organophosphorus measurement and test more
kinds of organophosphorus including malathion, chlorpyrifos and parathion. The further
detection work in future would strengthen and broaden research in the biosensor and food
safety field.
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