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Abstract: The demands of low-Curie-temperature (~−10 ◦C) positive temperature coefficient (PTC)
thermistors are increasing in advanced precision integrated circuits and other industries. In this paper,
the Nb-doped Ba0.55Sr0.45TiO3(BST)-based PTC resistivity materials are reported. The effects of the
sintering process, especially the cooling rate on the PTC properties of the material, are investigated.
The results indicate that the Ba0.55Sr0.45Ti0.9985Nb0.0015O3 composition of the prepared PTC ceramics
demonstrates promising PTC characteristics. These include a Curie temperature as low as −13 ◦C,
a high temperature coefficient of 0.296 at −3.4 ◦C, a large enough resistivity change of 3.1 over a
narrow phase transition temperature range of approximately 38 ◦C, and moderate resistivity below
the Curie temperature. Such properties suggest that the Ba0.55Sr0.45Ti0.9985Nb0.0015O3 ceramics are
likely suitable for use in thermal management systems designed for low-temperature control.
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1. Introduction

Materials that exhibit a positive temperature coefficient (PTC) of resistivity are com-
monly used in applications such as thermistors, temperature-regulated heaters, and ther-
mostat components. Their resistivity can increase dramatically, often by several orders
of magnitude, either at a specific temperature or within a particular temperature range,
attributed to the material’s phase transition. In practical applications, this specific tempera-
ture or temperature range is often referred to as the switch temperature, because the PTC
component functions as a temperature switch.

Up to now, most of the reported PTC resistivity materials focus on applications in
which the switch temperatures are higher than room temperature (>50 ◦C, normally).
However, the demands for temperature control at low temperatures have been increasing.
For instance, it is well known that the performance degradation of Li-ion batteries is a great
challenge for electric vehicles in winter and low-temperature environments (<10 ◦C) [1,2].
Various thermal preheating and management systems for Li-ion batteries are proposed to
support the batteries’ functionality in low-temperature environment [3–6]. In the above
systems, proper PTC thermistors (Tc ~ −10 ◦C) are required to manage the work of heaters.
In addition, PTC thermistors with low switch temperatures (~−10 ◦C) are also demanded
in aerospace and precision integrated circuits and other industries.

Currently, PTC resistivity materials with low switch temperatures, especially lower
than −0 ◦C, have been paid increasing attention. As a traditional inorganic PTC ceramic,
BaTiO3 (BT) has a large PTC intensity. The PTC effect of BT ceramics arises from the
phase transition from the ferroelectric phase to paraelectric phase. When the temperature
exceeds the Curie temperature of the BT ceramics, the phase structures will change from
ferroelectric into paraelectric and their resistivities will show exponential growth around
Tc. The Tc of pure BT ceramics is around 120 ◦C. Its Tc could be modulated to higher
or lower temperatures by proper element doping. So far, the switch temperatures of BT-
based PTC ceramics are almost higher than 50 ◦C. Even though the Curie temperature
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could be shifted to a lower temperature (<0 ◦C) by heavy doping on the A-site or B-
site [7,8], there are few reports of BT-based PTC materials with a low temperature (<0 ◦C).
A significant challenge is that heavy doping often results in an inhomogeneous composition,
which can cause a relaxation phase transition that would weaken the PTC performance
of BT-based PTC ceramics, such as reduced PTC intensity, and a wide phase transition
temperature span [9–11]. For instance, when the Curie temperature moves to below 25 ◦C,
the temperature range of the phase transition, ∆T, tends to widen, and there is a significant
reduction in the magnitude of the resistivity jump.

The previous work indicates that the resistivity anomaly increase is related to the
barrier layer of the BT ceramic grain boundary. Hasegawa et al. [12–14] reported that the
PTC performance of BT ceramics could be enhanced by increasing the height of the ceramic
grain boundary barrier φ0, and the height of the barrier φ0 is directly proportional to the
square of the interface state density at the grain boundary of BT ceramics [12]. According
to the above knowledge, one of the possible approaches could be to increase the adsorbed
oxygen on the grain boundaries by the proper reoxidation process or proper elements
dropping combined with the proper sintering process in which the adsorbed oxygen would
be increased on the grain boundaries and form the interface states.

The Nb-doped BaTiO3 ceramics were demonstrated to show a pronounced PTCR
effect [15–17]. In this work, Nb-doped Ba0.55Sr0.45TiO3(BST) and Ba0.55Sr0.45Ti(1−x)NbxO3
ceramics were fabricated and the PTC properties of the prepared ceramics were investigated.
Different ceramic sintering processes with five different cooling rates were investigated
to promote the PTC performance. The influence of the cooling rate on the ceramic grain
boundary barrier φ0 and interface states of the grain boundary were analyzed, respectively.

2. Materials and Methods

Ceramic powders composed of Ba0.55Sr0.45Ti(1−x)NbxO3 (x = 0.001, 0.0015, 0.002, 0.0025,
0.003) were synthesized using the sol-gel method. The precursor materials Ba(CH3COOH)2
(Aladdin, Shanghai, China, 99%), Sr(CH3COOH)2 (Aladdin, Shanghai, China, 99%), Ti(OC4H9)4
(Chron, Chengdu, China, 98.5%), and Nb(OC2H5)5 (Acmec, Shanghai, China, 99%), were
weighed to match the intended stoichiometric proportions. As solvents in the process,
diethanol methyl ether, ethanol acetic acid, and deionized water were utilized. First,
Ba(CH3COO)2 and Sr(CH3COO)2 were dissolved in water. Second, Ti(OC4H9)4 and
Nb(OC2H5)5 were then dissolved in a mixture of ethanol and acetic acid with a volume
ratio of 1:1. The two sets of solutions were blended and stirred for 60 min until a clear and
transparent sol formed at 60 ◦C. This solution gradually transitioned into a gel. The gel
was then air-dried at 80 ◦C. The resulting xerogel underwent carbonization at 350 ◦C and
was calcined at 950 ◦C for 3 h in air. The resulting fine powder was then granulated and
compressed into discs measuring 1.0 cm in diameter and 1.0 mm in thickness at a pressure
of 10 MPa, using polyvinyl alcohol (PVA) as a binder. These discs were subsequently
calcined at 550 ◦C to remove the PVA binder. Following this, the pellets were sintered at
1400 ◦C in the air for 3 h and then quenched to room temperature. To explore the effect of
the cooling rate, the specimen with the composition of Ba0.55Sr0.45Ti0.9985Nb0.0015O3 was
sintered in air at 1400 ◦C for 3 h and then cooled to 900 ◦C with cooling rates of 250 ◦C/h,
210 ◦C/h, 180 ◦C/h, 150 ◦C/h, and 90 ◦C/h, respectively.

The phase structure of the specimens was examined using X-ray diffraction (DX-2700,
Dandong, China) with Cu Kα radiation This analysis was conducted at 40 kV and 30 mA,
using a step size of 0.02 and a duration of 1 s per step. Additionally, the microscopic
morphology of the specimens was investigated through a Cold Field Emission Scanning
Electron Microscope (JSM-7500F, Tokyo, Japan).

The resistance-temperature (R-T) characteristics of the ceramic specimens were eval-
uated from −40 to 100 ◦C using an Electrometer (Keithley 6517B, Cleveland, OH, USA)
at an operating voltage of 2 V, within a temperature-controlled chamber equipped with a
programmable controller. The R-T performance was assessed through continuous heating
and cooling cycles.
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The temperature characteristics of the capacitors were measured using LCR meters
(Tonghui TH2827C, Changzhou, China). The capacitance temperature tests were conducted
at a frequency of 100 kHz, within a temperature span of −60 to 120 ◦C. For impedance data,
the tests were carried out at a voltage of 2 V, across a frequency range from 20 Hz to 1 MHz.

3. Results and Discussion
3.1. The Temperature Dependence of the Electrical Resistivity of Nb-Doping BST Ceramics

The resistivity-temperature (ρ-T) curves for specimens with varying Nb doping con-
centrations are displayed in Figure 1a. To clearly assess the resistivity-temperature response,
ρmin is designated as the resistivity at −40 ◦C, since the resistivities exhibit a monotonic
increase before the phase transition within the examined temperature range, as illustrated
in Figure 1a. Additionally, the Curie temperature Tc of the ceramics is established by
analyzing the dielectric constant–temperature curves presented in the Figure 1b inset. The
temperature coefficient of resistivity (αT) was calculated as follows:

αT =
1

RT

dRT
dT

× 100% (1)
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Figure 1. (a) The ρ-T curves of the specimens with varying Nb concentrations, (b) the Curie Temper-
ature Tc vs. Nb concentration at different temperatures, (c) the αT-T curves of the specimens with
varying Nb concentrations at different temperatures, (d) the lg(ρmax/ρTc ) and ∆T curves vs. the Nb
concentration, respectively.
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RT means the resistivity corresponding to the temperature T. The resistivity jumping
of the ceramics is defined as lg(ρmax/ρTc). The maximum resistivity ρmax is defined as the
resistivity values that αT values drop to 0.025 after phase transition. As shown in Figure 1a,
the resistivities increase monotonically even after the phase transition, except the one with
x = 0.001 in our case. The temperature range of the phase transition, denoted as ∆T, is
defined as ∆T = Tρmax − Tc. A narrow ∆T means a rapid phase transition.

The curves in Figure 1a show that all the ceramics with different Nb content possess an
obvious PTC effect, and the resistivity jumps are around two to three orders of magnitude
for all specimens. There is a mild negative temperature coefficient phenomenon that
appeared after the phase transition in the tested temperature range for the specimens
with x = 0.001, attributed to a decrease in the barrier height [14]. For the specimen with
x = 0.0015, a nearly flat plateau is noted in the temperature range from 40 ◦C to 130 ◦C. For
the other specimens, the resistivities show a slight increase with the increase in temperature
from 40 ◦C to 130 ◦C. In the region of the Nb5+ doping concentration, the ρmin shows the
smallest value of 7.2 × 103 Ω·cm at an Nb content of 0.002. For the other ceramics, the ρmin
values are approximately 104 Ω·cm.

The fluctuation of Tc with the Nb5+ concentration is shown in the Figure 1b inset.
The Tc of the specimens with x = 0.001, 0.0015, and 0.002 are −12.8 ◦C, −13.1 ◦C, and
−14.3 ◦C, respectively. With the further increase in the Nb5+ concentration, the Tc reduced
to lower than −20 ◦C. Figure 1c shows the temperature dependences of the temperature
coefficient of resistivity αT of the specimens. Among them, the specimens with x = 0.001
give the highest value of ~17.5%, and the αT decreases with the increase in the doping
Nb5+ concentration. Because the dielectric constant -temperature peaks tend to widen with
the increase in the Nb5+ concentration (see Figure 1b), the results reveal that the phase
transition of Ba0.55Sr0.45Ti(1−x)NbxO3 ceramics tends to be relaxed due to the increasing
Nb5+ entering into the BST lattice. The broadening of the phase transition temperature
range is a result of the relaxation phase transition. Additionally, a notable broader ∆T when
the Nb5+ content exceeds 0.0015 also confirms this (see Figure 1d).

Figure 2 shows the XRD patterns of all specimens. Figure 2a is conducted at 0 ◦C, and
Figure 2b is 20 ◦C, respectively. Compared with the PDF cards #074-9859 and #005-7689,
all the specimens show a pure perovskite phase, and no second phase was detected in the
tested range. The diffraction peaks of all the specimens show slight left-shifting with the
increase in the Nb5+ concentration, which indicates the enlarged lattice due to the Nb5+

entered into the BST lattice. Clear asymmetrical (200) peaks can be observed at around
46 degrees in Figure 2a,b. These peaks’ shapes can be fitted as the overlapping of the cubic
(200) peaks and the tetragonal (002) and (200) peaks (see Figure 2c). The results suggest
that the specimens were undergoing the phase transition from the tetragonal to the cubic
phase at the temperatures. The phase compositions of the specimens were calculated by
the RIR method according to the XRD data (see Figure 2d). The results show that the
tetragonal phase was still the main phase component at 0 ◦C for all the specimens, even
though the phase transition started at a Tc far below 0 ◦C. As the temperature rose to 20 ◦C,
the situation changed. The main phase component turned to be a cubic phase, especially
for the specimens with 0.001, 0.0015, and 0.002 Nb5+ contents. Anyway, the phase transition
is not finished at this stage. The results are consistent with the results in Figure 1a.

Given that smaller values of both ρmin and ∆T are desirable for practical applications,
it is important to note that a smaller ρmin lowers the power consumption of PTC thermistors,
while a narrower ∆T enhances the temperature control. The specimen with 0.0015 Nb5+ con-
tent was chosen for further exploration, as it showed both low resistivity (1.4 × 104 Ω·cm)
and a narrow temperature span (~78 ◦C) comprehensively. The possibility of improving the
PTC performance of the Ba0.55Sr0.45Ti0.9985Nb0.0015O3ceramics by optimizing the cooling
rate of the ceramic sintering process is explored in this work.
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tetragonal and cubic phases at 0 ◦C and 20 ◦C.

3.2. Influences of the Cooling Rate on Nb-BST Ceramics

Previous research demonstrates that the PTC properties of BaTiO3 ceramics are highly
sensitive to the specimens’ microstructure and defect chemistry. These factors are in turn
greatly influenced by the processing parameters like the sintering condition [18,19] and
heat treatment [20,21], etc. The Ba0.55Sr0.45Ti0.9985Nb0.0015O3 ceramics were sintered by
different cooling rates, and the influence of the cooling rate on the microstructure and the
PTC properties were investigated.

Figure 3a shows the ρ-T curves of the Ba0.55Sr0.45Ti0.9985Nb0.0015O3 ceramic specimens
with different cooling rates. Compared with the specimen quenched, the PTC intensities of
the others were enhanced significantly. Some of the resistivity jumps exceed three orders of
magnitude. All the curves show almost plateau shapes after the phase transition. Within
the entire testing temperature range, the resistivity and the temperature are positively
correlated. Figure 3b shows the influence of the cooling rates on ρmin and ρmax. Both
the ρmin and ρmax values increased with a decrease in the cooling rate. They show dif-
ferent changing characteristics. The ρmin values increased slightly from 1.4 × 104 Ω·cm
to 1.8 × 104 Ω·cm when the cooling rate was higher than 180 ◦C/h and then increased
sharply with the decrease in the cooling rate, while the ρmax values increased sharply at
first from 5.9 × 106 Ω·cm to 1.6 × 108 Ω·cm when the cooling rate reduced to 210 ◦C /h
from 250 ◦C/h and tended to become milder at the cooling rates of 210 ◦C/h, 180 ◦C/h,
and 150 ◦C/h and then increase largely at 90 ◦C/h. The results indicate that the specimens
with cooling rates of 180 ◦C/h and 210 ◦C/h could produce a large resistivity jump during
the phase transition. The fluctuation of the temperature coefficient αT with temperature is
shown in Figure 3c. Compared with the quenched specimen, all αT values of the specimens
with different cooling rates were improved. Among them, the specimen with the cooling
rate of 180 ◦C /h shows the largest increase, from 0.10 to 0.296, and the sharpest α vs. T
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curve, which reveals the narrowest phase transition temperature span. Figure 3d gives the
cooling rate dependence of lg(ρ max/ρTc ) and ∆T. The magnitude of the resistivity change
is higher than 3 for specimens with a cooling rate of 210 ◦C/h to 180 ◦C/h, reaching 3.3 and
3.1, respectively. The values of ∆T reduced significantly with the decrease in the cooling
rate. Among them, the specimen with a 180 ◦C/h cooling rate shows the smallest value,
~38 ◦C.
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Figure 4 illustrates the XRD patterns of the specimens with different cooling rates. The
tests were carried out at around 0 ◦C and 20 ◦C, respectively. Compared with the results
of Figure 2, no second phase was detected. Similar asymmetrical (200) peaks can also be
observed at around 46 degrees in Figure 4a,b, which indicates the coexistence of the cubic
phase and tetragonal phase in the specimens. The phase compositions at 0 ◦C and 20 ◦C
were determined using RIR methods, based on the XRD data presented in Figure 4a,b. As
shown in Figure 4d, different from the results in Figure 2d, the results reveal that the main
phase component turned to be the cubic phase for all specimens, and the transition from
the ferroelectric to the paraelectric phase is almost complete at 20 ◦C for those specimens
with the cooling rates of 90 ◦C/h, 150 ◦C/h, and 180 ◦C/h. The results are consistent with
the results in Figure 3a.
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The cooling rate influenced the resistivity and its change during the phased transition
significantly; in turn, the PTC properties of the ceramics were enhanced markedly.

The surface morphology of the specimens with different cooling rates is shown in
Figure 5. The SEM images indicate that there are little differences in grain morphology, as
all the specimens were sintered at the same temperature. The grains are fully developed
with sharp polyhedral edges, and the cleavage plane is distinct. The granular structures
exhibit similar characteristics across all samples, with approximately 90% of theoretical
density, grain sizes of about 2–3 µm, and a consistent size distribution, regardless of the
cooling conditions. Figure 5 shows that, in our work, the morphology of the specimens is
not significantly affected by variations in the cooling rate. The uniformity in morphology
across all samples indicates that changes in electrical properties likely stem from the impact
of defect restoration and/or adsorbed oxygen on the grain boundaries in the specimens by
different cooling rate sintering processing.

Figure 6a shows the change in the dielectric constant as a function of temperature for
all specimens in Figure 3a. The grain boundary barrier φ0 and interface state density Ns of
the specimens in Figure 3a were calculated from the data in Figures 6b and 6c, respectively,
and are shown in Figure 6d.
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The height of the potential barrier (φ0) can be determined using the formula below [22]:

ρs = αρv·exp
( eφ0

kT

)
(2)

where ρs is the resistivity of the grain boundary, and ρv means the grain bulk resistivity. The
resistivity of ceramics ρ = ρs + ρv. When the temperature is much higher than Tc, the value
of ρs will far exceed the value of ρv, so ρ ≈ ρs [22]. Then, Equation (2) can be rewritten as

lnρs = ln(αρv) + eφ0/kT (3)

The φ0 can be calculated from the slope of lnρs vs. 1/T. The potential barrier φ0
results from a two-dimensional electron trap at the grain boundary, where interface states
attract electrons from the bulk and can be expressed as [23]

φ0(T > Tc) =
eNS

2

8ε0εr Nd
=

eNsr
16ε0εa

(4)
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Here, NS means the ceramic grain boundary interface state density and Nd is the
charged carrier density, ε0 is the vacuum absolute dielectric constant, εr is the dielectric
constant of the grain boundary, e is the constant of elementary charge, r is the grain size,
and εa is the apparent dielectric constant. Similarly, Equation (3) can be rewritten as

lnρs = ln(αρv) + e2rNs/16kε0εaT (5)

It is clear that the value of NS is related to the slope of ln(ρ) vs. 1/εaT. Compared
with the quenched specimen, the φ0 and NS values of other specimens increased obviously.
Among them, the specimens with 180 ◦C /h and 210 ◦C /h show a high increase in both φ0
and NS. The results show that the concentration of the interface state density NS varies with
the cooling rate and the larger interface state density NS results in a higher potential barrier.

4. Conclusions

In this work, low-Curie-temperature (<−10 ◦C) PTCR Ba0.55Sr0.45Ti(1−x)NbxO3 ceram-
ics were prepared and their PTCR properties were investigated experimentally. Proper
Nb doping could cause the TC of Ba0.55Sr0.45TiO3 ceramics to lower around −10 ◦C and
exhibit a satisfactory PTCR performance. The effect of the cooling rate on the PTC effect of
ceramics was investigated. The results indicate that a proper cooling rate would be helpful
in increasing the absorption of oxygen located at the grain boundaries during the sintering.
The absorbed oxygen at the ceramic boundaries could act as the surface states to increase
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the grain boundary potential barrier. As a result, the PTC property of the ceramics could be
improved. The Ba0.55Sr0.45Ti0.9985Nb0.0015O3 ceramics with a 180 ◦C /h cooling rate showed
a resistivity jump of 3.1 in a narrow ∆T of 38 ◦C and a very high temperature coefficient
of 0.296 at −3.4 ◦C. The Tc is ~13 ◦C. Compared with the reported low-Curie-temperature
PTCR materials [9–11,24,25], Ba0.55Sr0.45Ti0.9985Nb0.0015O3 ceramics exhibit outstanding
comprehensive PTCR performance. In particular, the proper Tc (~−13 ◦C), the acceptable
narrow temperature span (∆T, 38 ◦C), and the sufficiently large resistivity jump value (~3.1)
make them potential candidates in the application of the internal heating control systems
of lithium–ion batteries.
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