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Abstract: With the ever-growing emphasis on global decarbonization and rapid increases in the
power densities of electronics equipment in recent years, new methods and lightweight materials
have been developed to manage heat load as well as interfacial stresses associated with coefficient of
thermal expansion (CTE) mismatches between components. The Al–Si system provides an attractive
combination of CTE performance and high thermal conductivity whilst being a very lightweight
option. Such materials are of interest to industries where thermal management is a key design
criterion, such as the aerospace, automotive, consumer electronics, defense, EV, and space sectors.
This paper will describe the development and manufacture of a family of high-performance hyper-
eutectic Al–Si alloys (AyontEX™) by a powder metallurgy method. These alloys are of particular
interest for structural heat sink applications that require high reliability under thermal cycling (CTE
of 17 µm/(m·◦C)), as well as reflective optics and instrument assemblies that require good thermal
and mechanical stability (CTE of 13 µm/(m·◦C)). Critical performance relationships are presented,
coupled with the microstructural, physical, and mechanical properties of these Al–Si alloys.

Keywords: CTE; heatsink; HIP; hypereutectic; mechanical alloying; metal matrix composite; MMC;
powder metallurgy; reflective optics; thermal stability

1. Introduction

With the ever-growing emphasis on global decarbonization and rapid increases in
the power densities of electronics equipment in recent years, thermal management has
become an escalating engineering challenge. Thus, emphasis on designing systems that
allow heat to be transported, stored, or expelled in a manner that enables key system
elements to operate with high reliability within a specific temperature range is essential [1].
This raises a need for new methods and lightweight materials to manage heat load as well
as interfacial stresses associated with coefficient of thermal expansion (CTE) mismatches
between components. Example materials include metal matrix composites (MMCs), such
as aluminium–silicon carbide (Al–SiC) and beryllium-beryllium oxide (Be–BeO). However,
metallic systems, such as aluminum–beryllium (Al–Be) and aluminum–silicon (Al–Si)
alloys, can also be applicable. Each of these material systems presents a unique set of
performance properties and manufacturing challenges.

The Al–Si system provides an attractive combination of tailorable CTE and high
thermal conductivity, while supporting a lightweight design. Al–Si alloys are of interest for
structural heat sink applications that require high reliability under thermal cycling, where a
CTE of 17 µm/(m·◦C) is desirable to minimize strain due to CTE mismatch between mating
copper components. Reflective optics and instrument assemblies are also application areas,
in which a CTE close to 13 µm/(m·◦C) is necessary to match the nickel plating typically
applied to such components whilst providing good thermal stability over broad operating
temperature ranges [2–5].
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The production of high Si Al-based alloys via traditional liquid-state processing
routes can be problematic due to the challenges posed in achieving good control of the
size and morphology of the primary Si phase [6]. Often this can mean that complex
alloying additions or unique solidification processing methods are necessary to achieve
the properties required for high-performance applications [7,8]. In contrast, manufacturing
via a powder metallurgy route enables a wider range of compositions and can provide
greater strength and homogeneous-microstructure-associated mechanical integrity [9,10].
Furthermore, powder metallurgy can provide near-net shape capability, which has been
proven to lead to reduced waste generation and lower energy consumption per unit
mass in comparison to traditional forming methods [11]. By processing in the solid-state,
any possible detrimental diffusional or chemical reactions between constituent phases
can be minimized. Avoiding molten processing allows the creation of non-equilibrium
phase structures. This enables extensive opportunities for novel and interesting material
combinations to enhance performance beyond traditional engineering materials.

Mechanical alloying is a solid-state mixing process in which MMC materials and
metallic alloys are combined using powder metallurgy methods. As no melting is required,
the reinforcement volume fraction and particle size are controlled by raw material selection.
Thereby, this process enables precise control of reinforcement particle sizes with higher
reinforcement volume fractions, both of which are critical in maximizing and optimizing
the property benefits that can be achieved with MMC systems relative to the monolithic
material [12]. Mechanical alloying was first developed in the 1960s with the aim of fabri-
cating a nickel-based superalloy with homogeneous distribution of oxide reinforcements
for gas turbine applications [13]. Since then, many material combinations have been ex-
plored [14–26]. The basic principle is the cyclical welding and fracture of ductile and
brittle powders via repetitive impact, resulting in a distribution of reinforcement within the
metallic matrix particles [27]. However, the optimization of key parameters is necessary to
achieve a homogeneous and stable process [24–26,28,29]. This composite powder then acts
as an input into downstream consolidation processes, such as hot isostatic pressing (HIP)
or extrusion.

Materion’s mechanical alloying and powder metallurgy technologies have been
used for decades to produce commercially available particle reinforced aluminium–SiC
SupremEX® MMCs [30–32]. It should be noted that the industrial scale of this technol-
ogy is highly unique. The total capacity of Materion UK’s mechanical alloying facility
is 300 MT per annum. It is understood that light alloy mechanical alloying capability
at this scale does not exist anywhere else in the world. A schematic summarizing this
powder metallurgy route is given by Figure 1. These MMCs have been shown to display
a very fine and homogeneous microstructure, with precise control of particle sizes [33].
The resultant composite materials are known to be isotropic with high modulus, strength,
wear, and fatigue performance [30,34], but maintain the machining, fabrication, coating,
and processing characteristics of conventional aluminium alloys.
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Figure 1. Schematic summarizing Materion’s mechanical alloying powder metallurgy routes.

This paper will describe manufacturing of hypereutectic Al–Si alloys via a powder
metallurgy route utilizing Materion’s novel mechanical alloying process. Due to the
flexibility of the manufacturing route, this lightweight material system has been finely
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tuned to achieve the specific and desirable CTE values referenced above. A detailed
understanding of the relationship between chemistry and CTE has been developed. Critical
performance relationships such as this will be presented, coupled with the microstructure
and physical and mechanical properties of these Al–Si alloys.

2. Materials and Methods

The powder metallurgy processing described by Figure 1 and [30,31] was leveraged
to combine elemental Si with Al alloy powders. The powder mixtures were mechanically
alloyed until the Si was distributed within the Al matrix, with an overall refined and
homogeneous microstructure. To achieve an optimal balance of mechanical and thermal
properties, a 6063-alloy composition was selected, along with high-purity silicon powders.
A series of samples with chemistry ranging from 15–55 wt% Si were processed. Initially the
mechanically alloyed powder was loaded in a vibratory manner into an aluminium can,
before degassing at an elevated temperature under vacuum conditions to eliminate air and
any absorbed water vapor. Following this, the HIP process was applied to form fully dense
cylindrical billets of material, approximately Ø100 mm × 170 mm in size. This compaction
method is summarized by Figure 2.
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Figure 2. Major steps to HIP consolidate Al–Si powders made by the mechanical alloying process.

Samples for CTE evaluation were extracted from these billets and tested per ASTM
E228-17 in order to understand the relationship between composition and this critical
property. The samples were heat treated to a T6 condition prior to CTE measurement
using the following method: solution treatment at 535 ◦C for 1 h, followed by a cold water
(<30 ◦C) quench (CWQ), and finally, artificial aging at 175 ◦C for 2 h. All test samples were
heat treated with a maximum section thickness less than or equal to 25 mm.

This initial CTE evaluation enabled derivation of the necessary compositions to achieve
a CTE close to the target values of 17 µm/(m·◦C) and 13 µm/(m·◦C) at 28% and 42% Si,
respectively. This is depicted graphically by Figure 3. Larger scale cylindrical billets (approx.
Ø150 mm × 600 mm) and cuboid billets (approx. 180 mm × 180 mm × 300 mm) were
subsequently manufactured at the derived compositions using the same manufacturing
conditions to confirm the scalability of the process. These materials were then tested in
detail to confirm their microstructure, room temperature tensile properties, density, and
electrical conductivity. Tensile testing was carried out using an Instron 3369 loading frame
with a 50 kN capacity. Multiple heat treatments were assessed, including the T6 CWQ
heat treatment condition defined above, but also the same heat treatment using a 25%
polymer-glycol quench (PGQ) medium, as well as the T1 (air-cooled from HIP) condition.
Cylindrical specimens were used, with a 5 mm diameter and 25 mm gauge length. Test
control was by a constant strain rate of 1.4 × 10−4 mm/mm/s, until failure. Microstructural
analysis was completed using a Zeiss AxioLab5 optical microscope equipped with ZEN
core imaging software. CTE was again evaluated per ASTM E228-17 but over a broader
temperature range of −100 ◦C to 200 ◦C, whilst room temperature thermal diffusivity and
specific heat capacity were measured per ASTM E1461-13 and ASTM E1269-11, respectively.
This thermal testing was carried out for both the T6 PGQ and T1 heat treatment conditions
described above, to assess sensitivity of these properties to heat treatment. Thermal
conductivity was calculated as the product of thermal diffusivity, specific heat capacity,
and density, per Equation (1) of ASTM E1461-13 [35]. Finally, a series of components
representing example applications for each of the alloy components were produced, to
assess manufacturability.
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3. Results
3.1. Microstructure

An ultra-fine and homogeneous distribution of Si particles within the Al alloy was
achieved for all Si contents tested, as Figure 4 shows. It can also be observed that the
mechanically alloyed powder was generally blocky and irregular in shape across all com-
positions. This was consistent with past Al–SiC materials mechanically alloyed by the same
process [30,31]. In the consolidated (post-HIP) form, the microstructure was seen to be
consistent in all tested directions, indicating isotropic properties as expected. Typical optical
micrographs of the 6063 + 42% Si alloy are presented Figure 5. Here, the ultrafine and
homogeneous microstructure is again evident. The primary silicon size was observed to be
an average of 3–4 µm in diameter, with almost all silicon particles within the 1–7 µm range.Crystals 2024, 14, x FOR PEER REVIEW 5 of 14 
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magnification.

3.2. Coefficient of Thermal Expansion

The achieved CTE matches to commercially pure copper and nickel are summarized
by Figure 6 via comparison to reference data from the literature [36–39]. This shows an
exact mean CTE match to copper for the 20–50 ◦C temperature range. The 28% Si alloy was
determined to have a marginally lower CTE for temperatures below room temperature
and a marginally higher CTE at temperatures greater than 50 ◦C. The mean CTE value
at all temperatures, as well as the rate of change of CTE with respect to temperature
for the Al–Si alloy, was significantly lower than that of unreinforced aluminium alloys
(~23 µm/(m·◦C)), thus providing a relatively excellent CTE match to copper. The prior
heat-treatment condition of this Al–Si alloy was seen to have negligible influence over the
temperature range tested.
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A close CTE match was observed to nickel, with the 42% Al–Si alloy displaying a
marginally higher CTE for the temperatures tested. The rate of change of CTE with respect
to temperature for this Al–Si alloy and nickel was similar over the temperature range tested.
Again, no influence of the prior heat treatment condition was observed.

3.3. Additional Physical and Mechanical Properties

Beyond CTE, the additional key material properties of the tested Al–Si alloys are
presented in Table 1. A good balance of strength and conductivity for thermal management
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applications was displayed by these alloys. Given the large ranges in strength for AyontEX
17 quoted in Table 1, typical engineering stress–strain curves for this alloy are provided ii
Figure 7 and true stress–strain equivalents can be seen in Figure 8.

Table 1. Summary of achieved typical properties. Ranges indicate dependence on heat treatment.

Property Unit AyontEX 17 AyontEX 13

Composition - 6063 + 28% Si 6063 + 42% Si

Density g/cm3 2.60 2.54

Elastic Modulus GPa 87 103
Specific Stiffness Gpa/g/cm3 33 41

Mean CTE

(−100–20 ◦C)

µm/(m·◦C)

15.6 12.1
(20–50 ◦C) 16.8 13.2
(20–100 ◦C) 17.2 13.7
(20–200 ◦C) 18.4 14.6

Thermal Conductivity W/mK 160–170 134
Specific Heat Capacity J/g/K 0.88 0.85

0.2% Proof Strength Mpa 170–300 300–340
Ultimate Tensile Strength Mpa 240–355 325–345

Specific Strength Mpa/g/cm3 92–137 128–136
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4. Discussion

The simple rule of mixtures calculation model provided a close approximation to the
measured relationship between CTE and Si content, as shown by Figure 3. The measured
values were consistently slightly lower than predicted and trended away from the model at
lower and higher Si content values. A possible explanation for this deviation between the
model and the measured values is that the rule of mixtures calculation does not account for
phases other than the constituent elements (e.g., Mg2Si precipitates), or the different elastic
properties of the matrix, reinforcement, and associated thermal strains [40]. Particularly at
the more extreme values of Si reinforcement (≥50%), the so-called percolation threshold
may have been passed, meaning it would be inappropriate to consider the Si phase and the
elastic region surrounding it to be individual particles, but more likely a continuous path
of reinforcement [41]. This could explain the increased deviation from the model observed
at the highest Si contents tested. The negligible effect of heat treatment condition on the
CTE of these alloys can be explained by the high Si content necessary to achieve such low
CTEs. This thereby limits the ability to influence properties via heat treatment.

The compositions of the two now-commercially-available alloys, AyontEX 17 (with
a CTE of 17 µm/(m·◦C)) at 28% Si and AyontEX 13 (with a CTE of 13 µm/(m·◦C)) at
42% Si, were derived from the measured CTE curve in Figure 3 as described in Section 3.
The fine and homogeneous microstructures achieved (Figures 4 and 5) are important in
enabling the application of high-throughput and available downstream machining and
finishing processes to these alloys. Ease of machinability relative to equivalent liquid-state
processed Al–Si alloys or other lightweight, low-CTE materials (e.g., MMCs) can provide a
significant benefit in overall part cost by increasing throughput and decreasing tooling costs.
Such benefits can be clearly realized in the manufacture of complex, high-performance
components, where fine surface finish and high tolerance is required. Several common
machining processes, including milling, turning, drilling, tapping, and electrical discharge
machining (EDM), have been successfully performed on this material, many of which are
highlighted by Figure 9. Here, the thin wall sections at the top of the part are 0.8 mm thick,
and the EDM-processed slot at bottom is 0.5 mm thick and 32 mm deep. These features
were achieved with standard, high-throughput methods using no special parameters.
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machine thin-wall structures and tap holes (top-right) and EDM-processed 0.5 mm slot (left).

Example components representing typical applications for each of the alloys are presented
by Figure 10. The miniature structural heatsink in Figure 10a is 58 mm × 40 mm × 5 mm in
size, highlighting the ability to carry out precise milling, drilling, and tapping operations
with the AyontEX 17 material. The AyontEX 13 mirror substrate presented by Figure 10b
was approx. 150 mm in diameter. This was produced via rough machining using standard
carbide tooling and completed with poly-crystalline diamond tooling. Given the low-
density (2.54 g/cm3) and complex lightweighting geometry, this mirror had a mass of
0.2 kg. Such lightweight mirror design is highly beneficial for airborne applications. More
detailed demonstration of lightweight mirror manufacture in this material and associated
application-specific testing has been covered elsewhere [42,43].
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17. (b) Optical mirror substrate manufactured in AyontEX 13.

An emerging topic in lightweight optical mirror design is additive manufacturing to
enable complex structures for material and load optimization [44–46]. It is then an interest-
ing topic for future exploration to develop and apply additive manufacturing techniques
to the AyontEX 13 material, given this alloy already exists in a powder form, as per the
powder metallurgy route presented here. Such development would combine the material
property benefits discussed here with the design freedom of additive manufacturing for
high-performance applications.

Close CTE matches with mating materials are important in the applications discussed
above. The results presented in Figure 6 confirm that precise CTE matches to the reference
data for copper and nickel materials were achieved with the manufactured alloys over the
full −100–200 ◦C test range. Particularly, for AyontEX 13, the rate of change of CTE with
respect to temperature was very consistent with that of commercially pure nickel. This
is important for reflective optical and instrument systems, where precise CTE matches
to nickel plating layers are critical for both dimensional and thermal stability over broad
operating conditions [2–5,42,43]. It should be noted that in the case of electroless plating,
the nickel material will contain some level of phosphorus. The CTE curve for NiP [3,4,47],
is very similar to the commercially pure nickel CTE data used for comparison in Figure 6.
It can therefore be said the AyontEX 13 material provides an excellent CTE match to both
electrolytic and electroless Ni plating for application in high-precision optical mirrors. Of
course, the ability to Ni plate the material is critical for such applications. An example of
successful application of electrolytic nickel plating to AyontEX 13 is given by Figure 11.
Electroless NiP plating solutions are also compatible [43], should this be preferred for
the application.
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The prior heat treatment condition of the material (T1 v. T6) was seen to have negligible
impact on CTE for all compositions tested. It can therefore be understood that controlling
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the thermal expansion of these hypereutectic Al–Si alloys is best achieved through adjusting
the Si content, as opposed to via heat treatment optimization.

As expected, increasing the Si content resulted in a linear decrease in density and a
linear increase in elastic modulus. Increasing Si content was seen to result in a decrease in
thermal conductivity, but also a decrease in the dependence of heat treatment condition on
the thermal conductivity. For AyontEX 17 (6063 + 28% Si), the mean thermal conductivity
was determined to be 160 W/mK in the T6 condition, but 170 W/mK in the T1 (air-cooled
from HIP) condition, a difference of ~6%. In contrast, for AyontEX 13 (6063 + 42% Si), the
heat treatment condition was found to have a negligible impact on the thermal conductivity.

This high thermal conductivity of AyontEX 17 in the T1 condition, coupled with the
precise CTE match to Cu over the 0–100 ◦C temperature range (see Figure 6), highlights the
materials’ applicability for use in lightweight structural heatsink assemblies. As a direct
replacement for 6061 Al, for example, AyontEX 17 provides an increased modulus and
decreased CTE and density, whilst maintaining thermal conductivity. This is critical in
enabling high power density devices, where heat load must be efficiently managed, as well
as interfacial stresses driven by CTE mismatches to mating Cu components.

Similar trends with respect to Si loading were observed regarding the mechanical
properties, and in particular the yield strength. The 0.2% proof strength of AyontEX 17 was
seen to almost double from 170 MPa in T1 to 300 MPa in T6, with significant differences
in ultimate tensile strength and strain to failure. These differences are depicted by the
stress–strain curves given by Figures 7 and 8. This data was generated on billet material
directly following the HIP process. The application of secondary forming processes, such
as forging and extrusion, will enhance the ductility of the finished product. This remains
an interesting topic for further exploration to allow close to shape forming operations. By
comparison, the mechanical properties in the higher Si vol% materials had a much lower
dependence on the heat treatment condition, as outlined by Figures 12 and 13. These effects
can be explained by simply considering that as the Si vol% was increased, the vol% of
the 6063-alloy decreased. This in turn meant that less Mg was available within the alloy
for Mg2Si precipitation strengthening effects through heat treatment. Additionally, as the
quantity of the primary Si phase particles was increased, the relative distance between
adjacent Si particles was decreased, and thus strengthening because of the primary Si phase
became a more dominant mechanism relative to the Mg2Si precipitation phases.
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The increasing influence of the Si phase as the Si vol% was increased to more extreme
values (≥50%) led the ensuing material to become more brittle. This resulted in an asso-
ciated decrease in both 0.2% proof strength and ultimate tensile strength, as captured by
Figures 12 and 13. For such compositions, the proportion of the primary Si phase is so sig-
nificant that fracture can occur at the alloy–Si particle interface, due to Si particle clustering
or the percolation effects described above. The severity of such effects within particulate
MMC materials is well understood [48]. In contrast, at a more modest Si vol%, such as
those used for the AyontEX 17 and AyontEX 13 materials, fracture occurs predominantly
through the ductile 6063 alloy matrix phase.

Deeper exploration of the microstructural effects and phases at play in these hypereu-
tectic Al–Si alloys provides an interesting avenue for future study. Investigating the impacts
of using recycled Al alloy as an input raw material, and an associated high Fe content, could
prove interesting. Previous studies have identified effective Si to have a significant impact
on the performance of 6000-series aluminium alloys with high Fe content [49]. Exploration
of how this effect translates to the more extreme Si levels in these hypereutectic alloys
would be an interesting topic, particularly so with a view towards possible incorporation
of recycled or secondary aluminium sources in the AyontEX alloys or SupremEX MMCs to
increase the circularity of these high-performance materials.

5. Conclusions

A family of now commercially available high-performance hypereutectic Al–Si alloys
(AyontEX™) have been developed with precise CTE matches to copper and nickel. Core
material properties for the intended applications have been characterized, along with the
key manufacturability considerations. The fine and homogeneous microstructure provides
enhanced performance and manufacturability relative to equivalent liquid-state processed
alloys. Further development work for these Al–Si alloys should be directed towards the
use of mechanical alloying technology for lower CTE values, as well as testing the CTE of
existing alloys over a broader temperature range. The development of additional fabricated
forms via forging and extrusion for increased ductility and product form flexibility is also
under investigation. Exploration of the incorporation of secondary or recycled aluminium
sources as a raw material in this manufacturing process, and subsequent understanding of
the effects of associated impurity elements, is an area for possible future study also.

Another potential application for Materion’s mechanical alloying technology and
these alloys moving forward is additive manufacturing. Particularly for lightweight, high-
precision optical mirror manufacture, the AyontEX 13 composition is interesting. More
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broadly, however, the mechanical alloying process employed in this study allows for
compositions to be tailored to suit the requirements for additive methods in terms of
alloy and reinforcement composition and microstructures. The process also has sufficient
scalability to provide an industrial solution. Due to this ability to mix a wide range
of materials to produce light metal composite powders, it may be possible to produce
new and novel powders as an input for additive processes. This could lead to additive
manufacturing material and property options that do not exist today.

These research areas provide exciting opportunities for further exploitations of me-
chanical alloying technology, and powder metallurgy in general, towards developing new
products to meet the needs of customers in global markets such as within the aerospace,
high-performance automotive, space, and defense sectors.
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