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Abstract: The accidental initiation of explosives under mechanical loads has caused numerous
catastrophic events. Therefore, the dynamic damage behavior of confined polymer-bonded explosives
(PBXs) must be assessed to improve their practical applicability. In this study, polymer-bonded sugar
(PBS) materials were prepared using a novel agglomerate to develop a PBX substitute material with
enhanced experimental safety. The mechanical properties of the PBS shell were evaluated using a
dynamic compression test, which revealed that the compression response of the shell was affected
by the strain rate. A low-velocity impact experiment was performed to investigate the dynamic
damage and load transfer characteristics of the PBX substitute. A constitutive model was developed
to characterize the mechanical response of PBS subjected to high strain rates, and implementing
this model in ABAQUS ensured successful prediction of the damage evolution process associated
with PBS. Simulation results indicated that the PBS specimen was primarily damaged around its
center while sliding friction was dominant near the center during pressure application. Notably,
different stress states result in distinct crack growth velocity histories along the axial direction, with
the damage ratio progressively decreasing toward regions closer to the impact surface.

Keywords: polymer-bonded sugar; shelled charge; Visco-SCRAM model; crack; VUMAT

1. Introduction

Polymer-bonded explosives (PBXs) are particulate composites containing energetic
materials (such as HMX and RDX) embedded in a polymer binder, which have been widely
used in the modern military, aerospace industry, and other fields [1,2]. During production,
storage, transportation, etc., minor impacts (dropping, collision, friction) on PBX can cause
microcracks, micro-holes, and additional damage [3,4], which can lead to accidental ignition
and result in economic losses [5,6]. Therefore, understanding the damage behavior of PBX
under mild-impact loading is crucial for ensuring its safe utilization.

Numerous attempts have been undertaken to investigate the mechanical behavior
and failure mechanisms of energetic substances through experimental approaches [7–10].
Rae et al. [11,12] investigated the deformation and failure behaviors of PBX9501 through
the Brazilian test and optical microscopy. Their findings revealed that failure paths tend
to circumvent regions with fine fillers and binders, thereby preferentially propagating
along the elongated straight edges of the explosive filler. The microstructural damage
progression involves detachment of large particles from the matrix, splitting of grains,
cracking in binders, and initiation and growth of voids. Chen et al. [13] investigated the
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damage behavior of sectional PBX charges during penetration; their findings revealed that
the most pronounced microcrack damage occurred at the head and tail of the projectile. Ad-
ditionally, the charge’s impact sensitivity substantially increased. Gao et al. [14] tested the
penetration strength of the ground-drilling projectile for a target to investigate the impact
of the charge structure and buffer material on the charge stability. Subsequent examination
of the retrieved charge structure revealed the presence of cracks within the charge, and
a detached ring was observed in the contact region between the charge and shell casing
at the rear end. Chen et al. [15] developed a substitute PBX material by combining sugar
and a novel agglomerant to produce polymer-bonded sugar (PBS) materials. The dynamic
test was conducted using the split Hopkinson pressure bar (SHPB) technique at varying
impact velocities, while micromechanics was used to analyze the nucleation of cracks in
PBS. Results suggest that the microstructure of this material can be altered by inducing
microcracks via dynamic tensile stress on surface defects. Li et al. [16] investigated the
dynamic damage mechanisms and non-shock initiation of PBX1314 during penetration
through a combination of experiments and simulations. The experimental approach in-
volved launching steel projectiles filled with PBX1314 to penetrate concrete targets. The
obtained results revealed occurrences of non-shock initiations at the tail surface of PBX1314,
which was accompanied by mechanical damage observed in both the tail and middle
sections of the material. At present, the mechanical damage characteristics of charges are
primarily investigated through Hopkinson and penetration experiments. The macroscopic
fragmentation of shells observed in penetration experiments reveals vulnerable areas of
ammunition during penetration; however, it cannot be used to accurately depict the actual
stress state of the charge.

In addition to conducting experimental research, numerous theoretical studies have
elucidated the mechanical behavior and damage mechanism of PBXs [17–21]. Dienes [22,23]
initially formulated the statistical crack mechanical model (SCRAM) to account for various
characteristics (such as crack opening and shearing) in the growth and coalescence of
multiple penny-shaped cracks; the primary objective was to explore the impact sensitivity
in PBX composites. Based on SCRAM, Bennett et al. [24,25] used statistical crack mechanics
to develop a general Maxwell element by taking into account five Maxwell elements and
a constant spring; this model has been widely used to simulate the dynamic damage
behavior of different types of PBXs [26–28]. The predictive capabilities of the model were
demonstrated by using it to forecast the occurrence of hot spots in PBX9501 during dynamic
impacts. Remarkably, the simulated outcomes align well with experimental findings on
non-shock ignition conducted by Asay et al. [29,30]. Recently, crack damage has been
modeled using the dominant crack algorithm (DCA), which effectively captures both
open and closed cracks. Open cracks can either occur via mode-I opening or through a
combination of shear and opening modes. Meanwhile, closed cracks include friction-locked
cracks and pure shear cracks. Yang et al. [31,32] examined the formation of hotspots in PBX
under various impact conditions by integrating DCA, viscoelasticity, and plastic elements,
and the damage distribution of PBX9501 in the experiment was accurately predicted.
Labarbera et al. [33] studied crack nucleation, propagation, and hot spot formation of
RDX/Estane energy aggregates under dynamic loads. Dai et al. [34] elucidated the damage
mechanism observed in PBX substitute materials when subjected to compressive loads,
and the primary cause of damage was attributed to the initial formation of pores and
cracks resulting from granule fragmentation. Under strain, both granule size and porosity
decrease while damage levels increase. Liu et al. [35] investigated the development of
microcracks under tension and compression and elucidated the formation mechanism
of friction-based hotspots by using a dynamic damage viscoelastic model. The study
successfully captured the occurrence of cracking in both tension and compression scenarios
while accurately simulating the damage morphology. However, the accurate prediction
of the failure of PBXs under complex mechanical stress necessitates a constitutive model
accounting for the dominant damage.
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Theoretical models provide valuable insights into the damage mechanisms of PBX
under impact loadings. The corresponding calculations accurately predict the mechanical
characteristics of PBXs in experimental scenarios. However, only simple impact loads, such
as uniaxial compression at constant strain rates, have been considered in the aforementioned
studies. In real-world engineering scenarios, PBX structures are subjected to complex loads.
Moreover, the aforementioned studies have focused on the pressed energetic material
PBX9501. Furthermore, few studies have reported on dynamic damage and load transfer in
the context of PBXs, which are extensively used in military weapons.

In this study, a PBS shell was employed as a PBX substitute material to investigate its
mechanical response and damage evolution mechanisms under impact loading conditions.
The load transfer experiment was designed by utilizing a first-stage light gas gun to
explore the dynamic damage propagation and axial load transfer of PBS. We investigated
the propagation behavior of the PBS shell charge under impact loading conditions and
analyzed the experimental findings. The damage constitutive relationship of PBS was
studied, and the numerical simulations supported the applicability of the established
constitutive model. Based on the outcomes of the numerical simulation, the evolution of
PBS charge damage under low-velocity impact was examined.

2. Experiment
2.1. Materials and Specimen

PBS comprised sugar granules and a polymer binder, with a weight ratio of 90 parts
sugar to 10 parts binder [27]. Additionally, it exhibited a density of 1.49 g/cm3. The PBS
composition is shown in Table 1. The dual-carbon white sugar particles were used as a
substitute for the energetic HMX particles in PBX. Figure 1 illustrates the microstructure of
both the white sugar particles and HMX particles, which are predominantly polyhedral in
shape, with well-defined edges and corners closely resembling those of HMX particles.

Table 1. PBS composition.

Sugar (wt.%) HTPB (wt.%) DOS (wt.%) TDI (wt.%)

90 7.2 1.593 1.207
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Figure 1. SEM micrographs of (a) sugar granule and (b) HMX granule.

The mechanical properties and damage mode of PBXs are notably influenced by the
size distribution of energetic particles, thereby rendering the particle size distribution of
substitute materials for PBXs crucial. The mechanical properties and damage mode of PBXs
are considerably affected by the energetic particle size distribution, making the particle size
distribution of PBX substitute materials another critical factor. However, the particle size
distribution of white sugar is broad and spans from a few micrometers to several hundred
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micrometers. Processed sugar particles were sequentially sieved through screens with mesh
sizes of 60, 100, 200, and 325. The selected particles were weighed using an electronic scale,
and their mass ratio was determined and compared with the PBX component ratio depicted
in Figure 2. As indicated by the results, the particle size distribution of the substitute
material exhibited a high degree of consistency with that of PBX.
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Figure 2. Histogram depicting the distribution of particle diameters.

To ensure that the PBS sample was prepared properly, the following steps were taken.
Firstly, granulated sugar was subjected to ultrasonic treatment in ethanol without water.
Subsequently, processed sugar was filtered using a suction filtration apparatus and then
placed in a vacuum freeze dryer at −10 ◦C. This procedure was performed to improve
the flowability of the sugar, thus better simulating energetic particles. Figure 3 shows the
shape and size of the mold. Secondly, hydroxyl-terminated polybutadiene (HTPB) and
a plasticizer (dioctyl sebacate, DOS) were mixed in a stirrer and stirred for 20 min. After
adding the curing agent (tolylene-2,4-diisocyanate, TDI), stirring was performed for 10 min
more. Upon completion of the stirring process, the mixture was cured for 24 h at 70 ◦C.
Finally, a portion of the cured mixture was cold pressed at 340 MPa in a pre-designed
mold to fabricate the required experimental specimens. The resulting samples are shown
in Figure 4.
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Figure 4. Samples after demolding.

The morphology of PBS and PBX, as well as the microstructure of sugar and HMX
particles, is depicted in Figure 5. Notably, a majority of the sugar and HMX particles exhibit
polyhedral shapes with distinct edges and corners. The particle content is relatively high,
while the initial non-uniform microcracks and micro-pores are distributed throughout both
the particles and binder.
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2.2. Dynamic Test of PBS Samples

Compression experiments were conducted on the PBS specimen using a modified
SHPB setup (Figure 6). The SHPB system comprises a gas gun that propels the striker bar
toward the incident bar, which generates an elastic compression wave that travels through
the incident bar and reaches the specimen. In cases where the wave impedance of the
specimen is lower than that of the bars, an elastic tensile wave reflects back into the incident
bar and an elastic compression wave passes through to the transmission bar. The diameter
and length of both the striker and transmission bars are 12 mm and 1500 mm, respectively.
Furthermore, aluminum bars with a density of 2700 kg/m3 and Young’s modulus of 73 GPa
were used in this study. A layer of high-purity petroleum jelly was applied between the
sample and rod surfaces to minimize frictional effects during testing. The PBS specimen
has a diameter and thickness of 8 mm and 4 mm, respectively.

The duration of the loaded waveform was increased using a circular lead sheet to
ensure that multiple internal reflections occurred within the specimen to achieve stress
equilibrium. The bars were supported by well-lubricated tripods, which allowed free
movement with negligible friction effects. Both the incident and transmitted bars were
equipped with a pair of strain gauges that were mounted in pairs at four specific locations
to form a half-bridge circuit, thereby enabling the measurement of axial strain caused by
the propagation of uniaxial elastic stress waves at each location. The incident wave (εi),
reflected wave (εr), and transmitted wave (εt) measurements were obtained by utilizing
resistance strain gauges that were symmetrically positioned on the cylindrical surfaces of
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both the incident and transmitted bars. The specimens’ stress (σ), strain (ε), and strain rate
(

.
ε) are provided below [36,37]:

ε =
2C0

Ls

∫ t

0
εrdτ (1)

.
ε =

2C0

Ls
εr(t) (2)

σ =
A0

As
E0εt(t) (3)

where C0 denotes the velocity of longitudinal waves in the bars, Ls represents the initial
length of specimens, E0 signifies Young’s modulus of the bars, and A0 and AS denote the
cross-sectional areas of the bars and specimens, respectively.
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2.3. Load Transfer Test

Figure 7a shows that the experimental setup primarily consists of a light gas gun,
bullet, and velocity measurement chamber. The high-pressure nitrogen gas chamber within
the light gas gun propels the bullet at high speeds through the gun barrel. The laser velocity
measurement chamber quantifies the projectile’s velocity as it enters the target chamber
and collides with the specimen, producing a stress wave that diminishes in the propagation
direction. The polyvinylidene fluoride (PVDF) pressure sensor affixed to the specimen
captures and records this pulse signal.
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sensors, and A, B, C, D represent their respective positions.
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The test specimen and PVDF stress sensor are depicted in Figure 7b. The PBS sample
had a diameter and length of 50 mm and 200 mm, respectively. Meanwhile, the casing
(made of 4340 steel) was 60 mm in diameter and 210 mm in length. The projectile was a
cylindrical piece made from the same material (4340 steel), with a diameter and length
of 20 mm and 100 mm, respectively. Polyvinylidene fluoride (PVDF) sensors were used
to measure the impact pressure on the samples. Four holes with a diameter of 7 mm
were drilled on the outer side of the shell at intervals of 50 mm to extract wires from the
PVDF pressure sensor. The PVDF pressure sensor and the charge amplification circuit were
connected to the KEYSIGHT DSOX3012T series oscilloscope for real-time monitoring of
internal pressure within the PBS specimen.

Under impact loads, the discharging capacity of the PVDF sensor was obtained by
integrating the current flowing through the resistance R [38,39]:

q(t) =
∫ t

0

U(τ)

R
d(τ) (4)

The relationship between stress pulses and discharge charge is as follows:

σ(t) =
q(t)

S × d33
(5)

where d33 is the piezoelectric constant and S is the effective area of the PVDF stress
sensor. The relationship between stress and test voltage can be derived by combining
Equations (4) and (5). The piezoelectric constant of the PVDF stress sensor is 43.94 pC/N.

3. Experimental Analysis and Discussion
3.1. Compressive Properties of PBS at High Strain Rate

The dynamic compression stress-strain curves of PBS (Figure 8) indicate a prominent
strain rate effect, wherein the compressive strength and modulus of PBS increase substan-
tially with increasing strain rates. These findings further corroborate that the properties of
PBS closely resemble those of PBX under specific conditions.
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3.2. Load Transfer Behavior of PBS Shell

The time-pressure signals measured using PVDF at impact velocities of 50 m/s,
87.5 m/s, 101.8 m/s, and 146.7 m/s are presented in Figure 9. The initial intervals of
the pressure history curves remain relatively consistent across different positions (~60 µs),
thereby indicating a consistent propagation of stress waves within the medium and a
stable wave velocity. The ascending segment of individual curves exhibits minor ampli-
tude oscillations, which may be attributed to the wave impedance mismatch between the
PVDF pressure sensor and PBS material employed for measurement purposes. Despite
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the occurrence of reflections at interfaces, these phenomena exert negligible influence on
peak pressures.
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The axial propagation of stress wave is illustrated in Figure 9 and demonstrates a
distinct characteristic of exponential decay. The stress wave is initiated at the leading edge
of the projectile and undergoes significant attenuation within the first 50 mm, which is
followed by gradual stabilization beyond 150 mm. Although an increase in impact velocity
results in a higher pressure on the projectile head, the peak value at 150 mm diminishes
substantially with reference to its initial magnitude. Moreover, the peak plateau becomes
more pronounced with increasing propagation distance. Figure 10 illustrates the PBS
projectile sample after it impacted at a velocity of 146.7 m/s.
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The penetration depths at impact velocities of 50 m/s, 87.5 m/s, 101.8 m/s, and
146.7 m/s are illustrated in Figure 11., with the penetration depth increasing in proportion
to the impact velocity.
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4. Theoretical Analysis
4.1. Constitutive Model Formulations

The model formulation presented in this study is based on the research conducted
by Addessio and Johnson [40], which incorporates a generalized Maxwell model (GMM).
In this study, we utilized an isotropic constitutive relationship to describe the damage
response of PBS. Throughout the deformation process, it is assumed that the distribution of
cracks remains stochastic and follows an exponential size distribution.

The rate of deviatoric stress in the Visco-SCRAM model is calculated as follows:

.
Sij =
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where Gtotal =
N
∑

n=1
G(n), c is the average crack radius, a is the initial flaw size,

.
eij is the

deviatoric strain rate, and S(n)
ij is the deviatoric stress of the nth Maxwell component.

The deviatoric stress rate in each Maxwell element is determined as follows:
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eij −
S(n)

ij

τ(n)
− G(n)

Gtotal

[( c
a

)3 .
Sij + 3

1
a

( c
a

)3 .
cSij

]
(7)

Typically, Equation (7) is written as follows:
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∑
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∑
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Dienes [22] reported that the propagation rate of cracks in the Visco-SCRAM model
was influenced by stress intensity. However, stress intensity alone does not adequately
represent actual microcrack growth characteristics. To address this limitation, Zuo et al. [23]
and Dienes et al. [41] developed a DCA that accounts for the critical energy-release rate as
a driving force for microcrack growth.

When the stress intensity is below a critical value, the crack velocity
.
c can be deter-

mined as follows:
.
c = vR

(
g(σ, n, c)

g1

)m
g(σ, n, c) < g0 (9)

where g(σ, n, c) denotes the rate at which energy is released, c signifies the dimensions of
the crack, n indicates the orientation of the microcrack surface, VR represents the highest
velocity attained by the crack, and m corresponds to a model parameter typically ranging
from 5 to 10.

When the stress intensity is high, the crack velocity
.
c is determined as follows:

.
c = vR

[
1 − gc

g(σ, n, c)

]
g(σ, n, c) ≥ g0 (10)

where gc = 2γ represents the critical energy-release rate. The constant parameters g0 and
g1 can be written as follows:

g0 =

(
1 +

1
m

)
gc (11)

g1 = (1 + m)
1
m

(
1 +

1
m

)
gc (12)

Intrinsically, Equations (9) and (10) reflect a transition from slow to fast crack growth.
The transition point is continuous:

g(σ, n, c) =
4(1 − v)
π(2 − v)

f (σ, n)c
G

(13)

where ν represents Poisson’s ratio. The stress function f (σ, n) varies depending on the
types of microcrack evolution. Five different cracks are observed in the σ1 − σ3 plane:
pure tension cracks −(1 − v) ≤ r ≤ 1, mixed tensile and shear cracks −1 ≤ r < −(1 − v),
pure shear cracks −(

√
µ2

s + 1 + µs)
2 ≤ r ≤ −1, cracks formed due to shear and friction

(
√

µ2
s + 1 + µs)

4
< r2 < +∞, and friction-locked cracks 1 ≤ r ≤ (

√
µ2

s + 1 + µs)
2

(where
r = σ3/σ1).

Hence, it is preferable to characterize the propagation of cracks using the energy-
release rate g(σ, n, c), which allows for computational determination of crack growth
velocities irrespective of whether the crack is open or closed.

The specimen undergoes deterioration due to the growth of microcracks. As the radius
of these microcracks expands, the damage level increases. This damage can be evaluated
on a scale from 0 to 1 using the following expression: D = c3/

(
a3 + c3) [42].

4.2. Numerical Algorithm and Model Verification

The proposed model was implemented using the user material subroutine (VUMAT)
within the commercially available software package ABAQUS 2016. The numerical algo-
rithms employed for this purpose can be summarized as follows:

(I) The system of equations in Equation (8) consists of n differential equations, which
were solved using the single-step fourth-order Runge-Kutta method. The algorithm is
strain driven. The solutions of stress and internal variables are required based on a known
state of stress (Sold

ij ) and internal variables (cold and
.
cold). Finally, the trial stress state (Snew

ij )

can be calculated as follows: Snew
ij = Sold

ij + ∆Sij.
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(II) Based on the stress functions f (σ, n) under various conditions, Equations (9) and
(10) were employed to calculate the crack growth velocity under different stress conditions.

(II) The average crack radius c at time t + ∆t was calculated by determining the
stress Sij at time t By solving Equation (8), this algorithm enables the acquisition of stress
components at time t + ∆t.

Based on the experimental findings, ABAQUS software was employed to develop a
finite element model (FEM) to validate both the damage constitutive model and numerical
algorithm for PBS. Figure 12 depicts the FEM utilized during the dynamic compression
test. All components were meshed using reduced integration 3D elements, specifically
the C3D8R element from the ABAQUS element library. The grid convergence of the
PBS specimens was evaluated using three different mesh sizes: 0.2, 0.5, and 1 mm. The
peak stress obtained with the 0.5-mm mesh was only 1.7% higher than the peak value
achieved with the 0.2-mm mesh, indicating that a mesh size of 0.5 mm is adequate for
reliable predictions. Therefore, the PBS specimen was discretized with a mesh size of
0.5 mm, whereas the mesh size implemented for both the incident bar and transmission bar
was 3 mm. The parameter values for PBS are presented in Tables 2 and 3 [43]. Figure 13
illustrates the stress-strain curves obtained from both testing and simulation. The numerical
results exhibit excellent agreement with the experimental findings, thereby confirming the
validity of the constitutive model.
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Table 3. Cracking parameters for PBS.

Parameter Value Parameter Value

c (mm) 0.03 VR (m/s) 300.0
a (mm) 1.0 m 6.0

ν 0.48 Γ 5.0 × 10−5

ρ (g/cm3) 1.49 µs 660.5

4.3. Analysis of Damage Behavior and Load Transfer of Shell PBS
4.3.1. Load Transfer Simulation of Shell PBS

The proposed constitutive model was used to simulate the load transfer experiment
under various velocities. The computational model schematic is illustrated in Figure 14.
Specifically, the shell meshes are characterized by dimensions of 1 mm. For impact bar
meshes, elements possess edges measuring 2 mm in both axial and radial directions. The
PBS specimen was discretized with a mesh size of 1 mm. Table 4 provides the Johnson-Cook
parameters for steel, with both the material model and its parameters being adopted from
a previous study [43].
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arrow indicates the direction of impact for the impact bar.

The experimental and simulation results were compared by integrating the constitutive
model into ABAQUS (Figure 15). The excellent agreement between the results validates the
proposed constitutive model. Furthermore, Figure 16 illustrates the displacement curve
at the midpoint of the impacted surface, which exhibits a close correspondence with the
experimental penetration depth; this observation further confirms the accuracy of our
constitutive model and subroutine.
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(b) 87.5 m/s, (c) 101.8 m/s, and (d) 146.7 m/s. The symbol “#” represents the numerical value
of PVDF.
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Table 4. Johnson-Cook parameters for 4340 steel.

Parameter Value Parameter Value Parameter Value Parameter Value

ρ (g/cm3) 7.85 ν 0.3 B (MPa) 510.0 c 0.014
E (GPa) 210.0 A (MPa) 792.0 n 0.26 m 1.03

4.3.2. Pressure and von Mises Stress of PBS

Upon impact with the PBS target, the incident wave diverges and propagates through
the PBS sample, resulting in a complex array of stress states. Regions A and B within the
PBS were selected for the analysis (Figure 17) to fully capture the stress distribution. The
contours of pressure and von Mises stress are shown in Figure 17 for t = 70 µs and 140 µs
at an impact velocity of 87.5 m/s. The results depicted in Figure 17a,b demonstrate the
propagation of a quasi-semicircular compressive wave through the sample after the initial
impact, with the maximum pressure being 57 MPa at 70 µs. Subsequently, rarefaction
waves emerge at the sample boundary and propagate into the compressive region, thus
reducing the pressure amplitude that exhibits a maximum value of 25 MPa at 140 µs. The
triangular-shaped zone beneath the rod exhibits high von Mises stress (~400 MPa) at 70 µs
(Figure 17c,d). At 140 µs, this zone diminished and converged toward the axis line of
the sample due to rarefaction effects. To further investigate wave propagation in the PBS
sample, Figure 18a,b depict the pressure and von Mises stress histories at regions A and B,



Polymers 2024, 16, 1235 14 of 19

corresponding to impact velocities of 87.5 m/s and 146.7 m/s, respectively. The pressure
curves depicted in Figure 18a demonstrate the emergence of a zone in regions A and B
that experiences tension at 126 µs and 110 µs, respectively. This observation suggests the
occurrence of rarefaction waves.

The results depicted in Figure 18a demonstrate that at an impact velocity of 87.5 m/s,
the pressure ratio in regions A and B remains at approximately 1.35, indicating a greater
influence of pressure in region A compared to region B. Moreover, Figure 18b illustrates
that the von Mises stress ratio for the same region and velocity is ~2.5, thus suggesting
a significant concentration of stress in region A. Interestingly, similar conclusions are
achieved at a velocity of 146.7 m/s; that is, an even higher ratio of von Mises stresses is
observed between the two regions. This discrepancy can be attributed to the significantly
higher level of stress on the shell and its propagation speed compared to the PBS material,
resulting in transverse rarefaction waves entering the PBS and causing increased internal
stresses within it. This analysis reveals that regions A and B exhibit typical stress states
within our sample material under impact loading conditions. Therefore, these two regions
are of particular interest when evaluating the impact sensitivity of PBS.
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Figure 17. Pressure distribution of 87.5 m/s at (a) 70 µs, and (b) 140 µs; Von Mises stress distribution 
of 87.5 at m/s (c) 70 µs, and (d) 140 µs. The A and B denote the locations of compression within the specimen. Figure 17. Pressure distribution of 87.5 m/s at (a) 70 µs, and (b) 140 µs; Von Mises stress distribution
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the specimen.
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4.3.3. Analysis of Damage Evolution in PBS

Crack propagation on the σ1–σ3 plane is affected by different stress conditions, which
can be classified into five groups: [I] pure tension; [II] a combination of tensile and shear
stresses; [III] pure shear; [IV] a combination of shear and friction forces; and [V] friction
locked. Figure 19 illustrates the historical crack growth velocities in regions A and B and
elucidates the temporal changes in stress conditions. Following the initial impact, region
A in the PBS exhibits a type I stress state (Figure 19a,b). Subsequently, opening cracks
are formed, and their sizes increase substantially because of tensile effects. In contrast to
region A, the cracks in region B remain stable during the initial 0–5 µs period at an impact
velocity of 87.5 m/s (Figure 19a). This stability is attributed to the stress state being closely
aligned with hydrostatic compression, which is characterized by the following conditions

during this period: σ3 ≤ σ1 ≤ 0 and 1 ≤ σ3
σ1

≤
(√

µ2
s + 1 + µs

)2
. The interfacial friction

consistently exceeds the applied shear force at the crack surface, resulting in the closure
and stabilization of cracks in region B; this process is known as friction-locking. However,
after 5 µs, the applied shear force becomes substantial enough to overcome this interfacial
friction. Owing to the high stress concentration in region B, the applied load leads to
crack instability and a rapid increase in average crack size. Figure 19a demonstrates that
an impact velocity of 87.5 m/s causes a type V-to-type IV stress state transition at 5 µs.
Conversely, Figure 19b illustrates that an impact velocity of 146.7 m/s consistently results
in a type IV stress state owing to the incident stress wave.
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To evaluate the macroscopic damage evolution of PBS, Figure 20a–d illustrates the
contours of damage fraction at an impact velocity of 87.5 m/s at t = 70 µs, 140 µs, 262 µs,
and 350 µs. The damage fraction (D) can be categorized into four levels [44]: level 1
(0.3 ≤ D ≤ 0.5), level 2 (0.5 < D ≤ 0.75), level 3 (0.75 < D ≤ 0.9), and level 4 (0.9 < D ≤ 1.0)
represent slightly damaged, moderately damaged, severely damaged, and completely
fractured PBS samples, respectively. During the initial loading stage, region A undergoes
severe damage. As loading increases, a hemispherical region beneath the impact surface
predominantly exhibits damage at t = 140 µs.
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Because stress waves propagate through the sample, both damaged and fractured areas
tend to expand, eventually encompassing nearly all parts of the sample. This expansion
enlarges the opening cracks. When incident stress waves reach the bottom of the PBS shell
interface under different wave impedances, rarefaction waves are generated due to the
reflection at this interface, resulting in stress concentration, as shown in Figure 20e,f. Owing
to these rarefaction wave effects, the bottom part of PBS is damaged (Figure 20c,d). The
stress level inside PBS decreases with decreasing external loads, as depicted in Figure 20f,h.
This pattern aligns well with the experimental findings, thus validating the reliability of
both the subroutine and computational process.

5. Conclusions

This paper proposed PBS as a viable alternative to PBX. A constitutive model incorpo-
rating multiple stress-state-motivated evolution modes of microcracks was developed to
examine the overall damage characteristics of PBS.

When the PBS shell was loaded with a first-stage light gas gun, the stress peak in-
creased with increasing impact velocity, while the attenuation characteristics exhibited an
upward trend over greater distances. After penetration, a cone-shaped pit was formed in
the PBS shell, and the penetration depth was proportional to impact velocity. SEM analysis
revealed that damage levels gradually decreased along the axial direction; however, severe
damage and macro cracks were evident near the impact surface.
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The viscoelastic damage constitutive model and the developed VUMAT subroutine
were employed to analyze the damage behavior of the PBS. The damage was primarily
concentrated in an annular pattern at both the center and edge of the direct impact surface.
Moreover, the high compression region (specifically near the sample’s center) exhibited
considerable damage under shear sliding, while rapid microcrack propagation led to severe
damage near the impact surface. As incident stress waves propagated through PBS toward
the bottom, rarefaction waves were generated after reflection at the interface because of
differences in wave impedance between PBS and shell materials. Consequently, these
rarefaction waves induced additional damage at the bottom of PBS. Future studies must
evaluate the mechanical properties of PBS, including micro-void collapse/distortion, crack
statistics, including mean size and number density, and specific surface energy to improve
the predictive accuracy of our model.
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