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Abstract: Developing high-performance and low-cost protein purification materials is of great impor-
tance to meet the demands for highly purified proteins in biotechnological industries. Herein, a facile
strategy was developed to design and construct high-efficiency protein absorption and separation
media by combining aerogels’ molding techniques and impregnation processes. Poly (ethylene-co-
vinyl alcohol) (EVOH) nanofibrous aerogels (NFAs) were modified by grafting butane tetracarboxylic
acid (BTCA) over them in situ. This modification was carried out using polyphosphoric acid as a
catalyst. The resulting EVOH/BTCA NFAs exhibited favorable comprehensive properties. Benefiting
from the highly interconnected porous structure, good underwater compressive properties, and
abundant absorption ligands, the obtained EVOH/BTCA NFAs possessed a high static absorption
capacity of 1082.13 mg/g to lysozyme and a short absorption equilibrium time of about 6 h. A
high saturated dynamic absorption capacity for lysozyme (716.85 mg/g) was also realized solely by
gravity. Furthermore, EVOH/BTCA NFAs displayed excellent reusability, good acid and alkaline
resistance, and unique absorption selectivity performance. The successful synthesis of such aerogels
can provide a potential candidate for next-generation protein absorbents for bio-separation and
purification engineering.

Keywords: protein purification; absorption and separation; impregnation processes; nanofibrous
aerogels; abundant absorption ligands

1. Introduction

The purified protein is crucial for advancing life science technologies and has found
extensive use in immunotherapy, medicinal therapy, food industry, and health detection [1–3].
Protein absorption and separation has been demonstrated to be one of the most efficient
methods for obtaining highly purified proteins due to its high precision and convenient
operation [4–6]. Currently, the conventional absorption and separation process is proceeded
by microparticle media-packed chromatography columns. However, those chromatography
columns are generally limited by a relatively long retention time and low processing rate,
which are caused by the tiny pores inside of the microparticle media [7,8]. In addition, the
gradual accumulation of microparticle media under the rapid flow of liquid would cause
significant pressure drop and energy consumption, restricting the further development of
microparticle media in large-scale protein purification [9,10]. Alternatively, fibers have been
developed that show potential in the construction of high-performance absorption media
with a fast processing rate and low flow resistance [11]. Although several fibrous-based
media have been successfully fabricated for protein purification, those materials normally
exhibited poor absorption capacity caused by their big fiber diameters and insufficient
absorption sites [12].
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As a newly important material, nanofibers with features of super small diameter,
high aspect ratio and big specific surface area serve as promising building blocks to fab-
ricate absorption media [13,14]. To date, a series of nanofibers has been assembled into
membranes for protein absorption. Amaly [15] chelated copper ions with carboxylated
nylon 6 nanofibrous membranes (NFMs) to generate protein absorbents, and the obtained
absorbents exhibited an adsorption capability of 220.00 mg/g with good selectivity and
reusability. Chang [16] functionalized polyacrylonitrile NFMs with ethylene diamine
and bromoacetic acid to form polyacid IEX NFMs with a lysozyme binding capacity
of 305.33 mg/g. Zhou [17] modified silk fibroin/cellulose blend NFMs with sodium-
3-sulfobenzoate under mild conditions for the adsorption of lysozyme (636.00 mg/g).
However, some intrinsic limitations of two-dimensional (2D) membranes, such as small
pore size, narrow pore channels, and difficulty in assembling large-sized chromatogra-
phy columns, can cause unsatisfactory protein capture performance [18,19]. Alternatively,
nanofibers also can be presented to construct aerogels with three-dimensional (3D) porous
skeletal structures [20–22]. Nanofibrous aerogels (NFAs) possess high porosity, an inter-
connected pore structure, a tunable shape, and good size, which means that they have
great promise for fabricating high-efficiency absorption media [23]. However, several
bottlenecks still existed in aerogel media, that is, poor nanofiber preparation efficiency and
a complicated media fabrication process. Therefore, the design and creation of NFA-based
absorption media with favorable integrated properties is highly desired.

In this study, EVOH nanofibers obtained using the significant process exhibited melt-
extrusion phase separation were taken to prepare 3D highly interconnected porous aerogels,
then BTCA was introduced onto aerogels to form EVOH/BTCA NFAs under the catalysis
of polyphosphoric acid. The morphologies, surface wettability, zeta potential, underwater
compressive properties, and protein absorption performance were controlled by BTCA
contents. Attributed to the abundant absorption ligands, EVOH/BTCA NFAs exhibited
outstanding static (1082.13 mg/g) and dynamic (716.85 mg/g) protein absorption capacity.
The effects of pH values, ionic strength and species, and protein species on the absorption
properties of EVOH/BTCA NFAs were also investigated. We expect that the successful
preparation of EVOH/BTCA NFAs could provide a promising strategy for developing
protein absorption media with favorable comprehensive properties.

2. Materials and Methods
2.1. Materials

The Model 381-20 of cellulose acetate butyrate ester (CAB) was purchased from East-
man Chemical Company(Kingsport, TN, USA). We bought the EVOH Model ET3803
masterbatch from Nippon Synthetic Chemical Industry Co., Ltd.(Osaka, Japan). Glutaralde-
hyde aqueous solution (GA, 25 wt%), tert-butanol (>98%), acetic acid, polyphosphoric
acid (PPA, phosphorus pentoxide content >85 wt%), butane tetracarboxylic acid (BTCA),
acetone, phosphate buffer saline (PBS), phosphoric acid (H3PO4), NaOH, LiCl, KCl, MgCl2,
NaCl, and NaSO4 were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai,
China). Papain, lysozyme, ovalbumin, bromelain, bovine serum albumin, and pepsin were
bought from Sangon Biotech Co., Ltd. (Shanghai, China).

2.2. Preparation of EVOH Nanofibrous Aerogels (NFAs)

EVOH nanofibers were prepared using the melt-extrusion phase separation method,
and these nanofibers were subsequently utilized as the fundamental components for the
fabrication of aerogels [24–26]. In brief, a 1 gm sample of EVOH nanofiber was evenly
dispersed in a 100 mL dispersion of tert-butanol and water. This was achieved by homog-
enizing the mixture at 13,000 rpm, resulting in uniform EVOH nanofibrous dispersions.
Glutaraldehyde aqueous solutions with different mass fractions were added into obtained
nanofibrous dispersions with magnetic stirring. Dispersions were mixed with acetic acid
solution to adjust the pH to 3–4. The composite nanofibrous dispersions were then freeze-
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dried to form frameworks. Ultimately, 75 ◦C was applied to the frameworks to prepare
EVOH NFAs.

2.3. Fabrication of EVOH/BTCA NFAs

The impregnation method was applied to fabricated EVOH/BTCA NFAs. BTCA was
selected as a modifying agent and dissolved into water to generate modified solutions
(mass fraction: 0, 2, 4, 6, 8, 10, 12, 14 and 16 wt%). PPA was added into modified solutions
as a catalyst. EVOH NFAs were soaked into modified solutions for 30 min, then removed
and placed in a lyophilizer to be freeze-dried. EVOH/BTCA NFAs were obtained through
the grafting polymerization process at 100 ◦C.

2.4. Instruments and Characterization

Utilizing a scanning electron microscope (Hitachi S-4800, SEM), the structure was stud-
ied. Attenuated total reflection–Fourier transform infrared (Nicolet 6700, ATR-FTIR) was
employed to determine the chemical composition of the surface. The thermogravimetric
analyzer (TA Q5000IR, TGA) was used for evaluating the thermal characteristics. A Nano
Zetasizer (ZS 90) was used to characterize the zeta potential. The surface wettability was
investigated by employing a contact angle meter (AM4111T). The mechanical properties
were measured by employing a universal testing machine (Instron 3365). The cylindrical
EVOH/BTCA NFAs had a diameter of around 20 mm and a height of approximately 20 mm.
Using an ultraviolet-visible (UV-vis) spectrophotometer (UV-1700), the concentration of
protein solutions was determined.

2.5. Testing Protein Absorption Performance

PBS was added into water to generate the PBS solutions with stirring. The protein
solutions with various properties were formed through adding model proteins into PBS
solutions. Then, 10 mg EVOH/BTCA NFAs were immersed in protein solutions to absorb
protein for a period of time, then the EVOH/BTCA NFAs were moved out and cleaned to
avoid non-specific absorption. The change in protein solutions was detected by employing
a UV-vis spectrophotometer. The following formula calculated the absorption capacity of
the EVOH/BTCA NFAs:

Q =
(C0 − C)V

m
(1)

where Q is the absorption capacity (mg/g), C0 and C is the concentration of protein solution
before and after absorption (mg/mL), respectively, V is the volume of protein solutions
(mL), m is the weight of EVOH/BTCA NFAs (mg).

3. Results and Discussion
3.1. EVOH/BTCA NFA Preparation and Design

In order to design and prepare protein absorption materials with excellent perfor-
mance, the aerogels were optimized on the basis of three requirements: (1) aerogels that are
surface wettable should have high hydrophilicity to prevent non-specific binding; (2) the
mechanical structure of EVOH/BTCA NFAs should be stable for long-term applications;
(3) a large number of absorption ligands should be displayed on aerogels to achieve effec-
tive absorption. By employing EVOH nanofibers as building blocks, the first criterion was
fulfilled. In order to satisfy the second requirement, glutaraldehyde was taken to bond
nanofibers to improve the mechanical properties. As shown in Figure S1, the bonding
among EVOH nanofibers was obviously observed, which was generated via polymeriza-
tion between glutaraldehyde and EVOH nanofibers. The last requirement was satisfied by
selecting BTCA as a modifier, giving aerogels with abundant absorption ligands [27,28].

The creation of EVOH NFAs, grafting of carboxyl groups, and dispersion of EVOH
nanofibers are the three primary steps in the fabrication of EVOH/BTCA NFAs, as shown
in Figure 1a. First, EVOH nanofibers were homogenized into a mixture of substances
to create a nanofibrous dispersion. After that, EVOH nanofibers were chemically cross-
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linked and freeze-dried to create EVOH NFAs, which were then attached [25]. To achieve
carboxylic grafting, the resulting EVOH NFAs were soaked into the modified solutions,
dried, and heated. Water washing was used to remove the unreacted BTCA and PPA,
and EVOH/BTCA NFAs were obtained through drying. The chemical compositions
were confirmed via analysis of the ATR-FTIR spectra. As presented in Figure 1b, the
peak at 1090 cm−1 was attributed to ether bonds generated from the reaction of EVOH
with glutaraldehyde, indicating the successful cross-linking [29]. After modification, an
absorption peak at 1713 cm−1 was attributed to C=O and the peak intensity at 3320 cm−1

(corresponding to -OH) decreased sharply, suggesting a reaction between EVOH nanofibers
and BTCA. Both ester and carboxyl groups contain C=O, and NaOH solution treatment
was used to identify them [30]. The new peak located at about 1575 cm−1 is the stretching
vibration of carboxyl, demonstrating the carboxyl grafting on EVOH NFAs. The nanofiber
surface grafting is shown in Figure S2. BTCA with abundant carboxyl groups were grafted
onto nanofibers via esterification [31].
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Figure 1. This figure shows the following: (a) a schematic explanation of the EVOH/BTCA NFA prepa-
ration method; (b) EVOH NFA ATR-FTIR spectra; (c) TGA curves of EVOH NFAs and EVOH/BTCA
NFAs; (d) EVOH/BTCA NFAs standing on top of green bristlegrass.

The thermal degradation of EVOH/BTCA NFA components was studied through TGA.
The TGA curves of EVOH NFAs (Figure 1c) revealed two distinct and easily identifiable
degradation phases. The initial degradation phase, occurring between about 296 ◦C and
385 ◦C, involved the decomposition of vinyl alcohol. The second stage of degradation
occurred between temperatures of approximately 421 ◦C and 485 ◦C and involved the
fragmentation of the ethylene component [32,33]. After the grafting of BTCA, the weight of
the first degradation stage decreased, which was due to the consumption of vinyl alcohol by
the esterification. The zeta potential of NFAs reduced from −0.24 to −9.50 mV (Figure S3),
indicating that the modification would enhance the electronegativity of NFAs. As shown
in Figure 1d, the EVOH/BTCA NFAs could freely stand on the top of green bristlegrass,
demonstrating the lightweight properties of EVOH/BTCA NFAs.

3.2. Mechanical and Morphologies Properties of EVOH/BTCA NFAs

As presented in Figure 2a, the EVOH NFAs exhibited a highly interconnected network
of fibrous structure. After introducing BTCA contents of 4 wt% into the modification
solutions, EVOH/BTCA NFAs presented a slight compact bonding structure among EVOH
nanofibers (Figure 2b), which was due to the esterification under PPA, which served as a cat-
alyst. When the BTCA contents increased to 10 wt%, although the pore size decreased, NFAs
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still maintained the characteristics of a connected porous network structure (Figure 2c).
However, after we further increased the BTCA contents to 16 wt%, a cross-linked dense
fibrous layer was generated in NFAs (Figure 2d). The total volume of EVOH/BTCA NFAs
decreased as the BTCA content increased. EVOH/BTCA NFAs with a BTCA concentration
of 16 wt% displayed deformation and lost their regular shape (Figure S4). Therefore, the
BTCA loading content would affect the morphologies of NFAs.
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Figure 2. SEM images of (a) EVOH NFAs; EVOH/BTCA NFAs with BTCA contents of (b) 4, (c) 10,
and (d) 16 wt%; (e) the initial WCAs of EVOH/BTCA NFAs; and (f) photographs displaying the
dynamic permeation process of water on EVOH and EVOH/BTCA NFAs.

The absorption characteristics of aerogels are considerably affected by the surface
wettability. The water contact angle (WCA) was used to assess the surface wettability
of EVOH/BTCA NFAs. Figure 2e shows that the initial WCA of the EVOH NFAs is
115.9◦. After modification with BTCA, the initial WCA decreased to 106.4◦, indicating the
improvement in hydrophilicity. This is due to the augmentation of hydrophilic groups
(-OOH) on the surface by introducing BTCA [34]. With increasing BTCA contents, the
WCA decreased gradually until it reached 86.6◦ at the BTCA contents of 12 wt%. However,
the WCA increased instead with a further increase in BTCA contents, which was ascribed
to the fact that the dense fibrous layers that formed at high BTCA contents prevent water
droplets from penetrating NFAs. As displayed in Figure 2f, the water droplet was absorbed
in 3.5 s, confirming that aerogels possess good water wetting surfaces. After grafting BTCA,
the water droplet was absorbed by EVOH/BTCA NFAs in less than 1 s. The results are
consistent with those of the previous literature [27,35].

Protein absorption and purification processes are conducted in aqueous environments;
thus, underwater compression tests were used to assess their practical application perfor-
mances. Figure 3a displays the stress–strain graphs of EVOH/BTCA NFAs. The observed
deformation may be divided into two separate regions: a linear elastic deformation zone for
stresses below 20% and a densification region for strains beyond 20% [36]. The underwater
compressive strength increased, with increasing BTCA contents, indicating that grafting is
beneficial for improving the stiffness of NFAs. The absorption and separation media are
usually subjected to cyclic compression and decompression during actual applications. The
underwater compressive fatigue resistance of EVOH/BTCA NFAs was further measured
through a cyclic compression test. As displayed in Figure 3b, EVOH/BTCA NFAs (BTCA
content is 10 wt%) were compressed repeatedly. The hysteresis loops have been identified
throughout 50 compressive cycles, resulting from the energy dissipation of EVOH/BTCA
NFAs under cyclic compression. A slight reduction in compressive strength and almost 0%
plastic deformation were shown after multicycle compression (Figure 3c), demonstrating
the good underwater compressive fatigue resistance of EVOH/BTCA NFAs. Attributed to
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the good underwater compressive properties, EVOH/BTCA NFAs also exhibited shape-
memory features. As presented in Figure 3d, squeezed EVOH/BTCA NFAs were thrown
into water and then recovered rapidly to their initial shape within 1.8 s. However, it takes
six seconds for squeezed EVOH NFAs to return to their original shape (Figure S5). The
results clarified that grafting can enhance the underwater shape-memory properties of
NFAs. Their superior underwater compressive properties guarantee the long-term utility
of EVOH/BTCA NFAs for protein absorption and separation.
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Figure 3. (a) Underwater compressive stress–strain curves (ε = 60%), (b) underwater cyclic
stress–strain curves of EVOH/BTCA (BTCA content is 10 wt%) NFAs at a strain of 60%, (c) compres-
sive strength and plastic deformation of EVOH/BTCA NFAs during the cyclic compression process,
and (d) photographs of the underwater shape-memory properties of EVOH/BTCA NFAs.

3.3. Optimizing Protein Absorption on EVOH/BTCA NFAs

As displayed in Figure 4a, the highly interconnected porous network structures of
EVOH/BTCA NFAs can facilitate the rapid penetration of proteins into EVOH/BTCA NFAs
and contact with the absorption ligands. The positively charged proteins in the solution
are immobilized on the surfaces of aerogels through electrostatic interaction, which can
realize protein absorption and separation. The component of protein that was absorbed
was lysozyme. The absorption of lysozyme resulted in two distinct peaks corresponding to
amide groups, particularly at 1536 and 1646 cm−1, as evidenced in the absorption spectra
(Figure 4b). The ATR-FTIR results proved that EVOH/BTCA NFAs possessed lysozyme
capture performance. The absorption capability of EVOH/BTCA NFAs is illustrated in
Figure 4c. There was a linear relationship between the concentration of BTCA and the
absorption capacity. The EVOH/BTCA NFAs exhibited a maximum absorption capacity
of 1082.13 mg/g when the BTCA concentration was 10 wt%. This value was roughly
20 times greater than that of commercially available membranes [37]. The remarkable
protein absorption capability of EVOH/BTCA NFAs can be due to their highly linked
network and plentiful absorption ligands. The absorption effectiveness of EVOH/BTCA
NFAs decreased as the BTCA concentration increased, mainly because the thick fibrous
networks reduced the effective contact area [27].
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(c) the capacity of EVOH/BTCA NFAs to absorb substances, (d) the capacity of EVOH/BTCA
NFAs to absorb substances at different contact times, (e) a comparison of the absorbent’s ability to
adsorb proteins and the time it takes to reach equilibrium absorption, and (f) graphs showing the
breakthrough curves of protein absorption for EVOH/BTCA NFAs.

The influence of absorption time on the absorption capacity was investigated to eval-
uate their kinetic absorption performance. As displayed in Figure 4d, the absorption
capacity increased rapidly first and then reached an equilibrium value of 1010.53 mg/g
within 6 h. The absorption kinetics have been investigated using the pseudo-first-order and
pseudo-second-order theories. According to the results shown in Table 1, the correlation
coefficients (R2) for the pseudo-first-order and pseudo-second-order models were 0.98804
and 0.99108, respectively. Therefore, the procedure for the absorption of lysozyme was
accurately described by the pseudo-second-order model. Furthermore, the calculated
theoretical pseudo-second-order absorption capacity could be as high as 1255.86 mg/g,
demonstrating that the absorption capacity could continuously increase by optimizing the
structural properties of EVOH/BTCA NFAs. In comparison to most reported carboxylated
nanofiber-based protein absorbents, EVOH/BTCA NFAs possessed a superior integrated
protein absorption performance [6,38,39] (Figure 4e). The dynamic absorption properties
are essential evaluation factors for practical applications. EVOH/BTCA NFAs (10 mm
thickness) were assembled into chromatography columns, and then the lysozyme solu-
tion penetrated the aerogels via gravity. The typical absorption breakthrough curves are
shown in Figure 4d, and the outlet concentration increased to the original concentration
of lysozyme solution with the increase in the elution volume. The determined dynamic
absorption capacity achieved a maximum of 716.85 mg/g, representing about 66% of the
maximal static equilibrium absorption capacity. The excellent dynamic protein absorp-
tion properties of EVOH/BTCA NFAs were mainly attributed to their stable and highly
carboxylated three-dimensional porous structures [19,40].

Table 1. Pseudo-first- and pseudo-second-order kinetic parameters.

Kinetic Models qe (mg/g) K (min−1) R2

Pseudo-first-order model 936.61 0.02 0.98804
Pseudo-second-order model 1255.86 2.20 0.99108

Besides the physicochemical properties of EVOH/BTCA NFAs, the parameters of
protein solution have an influence on the protein absorption properties in actual applica-
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tions. The optimal parameters of protein solution were explored for actual applications
of EVOH/BTCA NFAs. As illustrated in Figure 5a, the absorption capacity was relatively
low at a pH of about 3, then increased largely to a maximum of about 980.41 mg/g with
the increase in the pH value to about 7.0. This is due to the fact that more hydronium ions
would be ionized from carboxyl groups on EVOH/BTCA NFAs to form more adsorption
ligands [41]. However, the absorption capacity decreased when continuously increasing
the pH value, which might be attributed to the reduction in positive charges on lysozyme
at a high pH value [28]. Therefore, when the charges of EVOH/BTCA NFAs and lysozyme
reached an optimal synergistic effect, the maximum absorption capacity would be achieved.
The pH value of about 7.0 was used for the following experiments. The lysozyme solutions
with various NaCl contents were taken to study the effects of ionic strength on absorption
properties. The absorption capacity in different ionic strengths was shown in Figure 5b.
With increasing NaCl concentrations, the absorption capacity decreased largely. When
the NaCl concentration increased to 1.0 mol/L, EVOH/BTCA NFAs could not absorb
lysozyme. The decrease in electrostatic contact force between aerogels and lysozyme may
be attributed to the presence of more salt ions [42].
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Figure 5. This figure illustrates the impact of several factors on the absorption capacity for
EVOH/BTCA NFAs, like (a) pH value, (b) ionic strength, (c) cationic species, and (d) anionic species.
Additionally, in (e), we can see the ATR-FTIR spectra of EVOH/BTCA NFAs after absorbing various
proteins, and (f) shows the absorption capacities of EVOH/BTCA NFAs for different proteins.

The ionic species also have significant effects on the absorption performance. EVOH/
BTCA NFAs were soaked in the lysozyme solution with the same concentration and
different ionic species. As presented in Figure 5c, the absorption capacity in the presence
of KCl was much lower than that of in the presence of LiCl and NaCl, suggesting that
ions with larger radii would have more substantial shielding effects on absorption. The
absorption capacity in the presence of MgCl2 was the lowest, indicating that ions with
higher charges have greater effects on the absorption performance. Besides cationic species,
the absorption performance of EVOH/BTCA NFAs was also inhibited by the anionic
species (Figure 5d).

Proteins with different isoelectric points and surface charges were selected to study
selective absorption. As presented in Figure 5e, the amide groups’ peaks (at 1545 and
1650 cm−1, respectively) were observed on NFAs after the absorption of positively charged
proteins (lysozyme, papain, and bromelain) [43]. Nevertheless, the NFAs did not exhibit
any peaks corresponding to amide groups following the absorption of negatively charged
proteins such as ovalbumin, pepsin, and bull serum albumin. The results indicated that
EVOH/BTCA NFAs can be used to extract and separate positively charged proteins from
complex biological substrates. EVOH/BTCA NFAs possessed good absorption perfor-
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mances with positively charged proteins, including lysozyme, bromelain, and papain, with
capacities of 1082.13, 728.59, and 784.7 mg/g, respectively (Figure 5f). The variation in
absorption capacity can be mainly attributed to differences in protein molecule size and
surface charges. The smaller molecule size and higher surface charges would lead to a
greater absorption capacity [35,44]. The negatively charged proteins would not be absorbed
by EVOH/BTCA NFAs.

The reusability of absorbents is an extremely important index for actual applications.
As displayed in Figure 6a, EVOH/BTCA NFAs could show a relatively stable net ab-
sorption capacity of about the same as the initial net absorption capacity after 10 cycles,
demonstrating the good reusability of EVOH/BTCA NFAs. Generally speaking, absorbents
would bear acid and alkaline conditions during protein absorption and elution processes;
therefore, protein absorbents should be required to possess acid and alkaline resistance [45].
EVOH/BTCA NFAs were immersed into alkaline and acid buffer solutions to test their acid
and alkaline resistance. As presented in Figure 6b,c, the absorption performance almost
did not change even after being treated with acid and alkaline buffer solutions for 72 h,
indicating that EVOH/BTCA NFAs possess good acid and alkaline resistance. The results
could be ascribed to the stable physicochemical structures of NFAs and robust ester bonds
between EVOH and BTCA.
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Figure 6. (a) The recycling protein adsorption capabilities of EVOH/BTCA NFAs, the absorption
performances after treatment with (b) acid and (c) alkaline buffer, (d) the schematic of lysozyme
extraction process, and (e) the UV absorbance curves of lysozyme and eluent.

Furthermore, the obtained EVOH/BTCA NFAs were taken to extract lysozyme from
egg white to evaluate their actual application performance. The egg white solutions were
prepared through mixing egg white with PBS, which then were centrifuged for 30 min
to form pellucid egg white solutions. The extraction process of lysozyme is shown in
Figure 6d. The eluant was collected through the desorption of absorbed EVOH/BTCA
NFAs with NaCl solutions and characterized using a UV-vis spectrophotometer. The UV
absorbance curve of eluent is basically consistent with that of lysozyme (Figure 6e), proving
the extraction and separation of EVOH/BTCA NFAs.

4. Conclusions

In conclusion, a facile and universal approach is developed to design and construct
highly interconnected three-dimensional protein absorbents. BTCA-functionalized EVOH
nanofibrous aerogels (EVOH/BTCA NFAs) were obtained through combining freeze-
drying and impregnation processes. The functionalization of BTCA was demonstrated
by ATR-FTIR, TGA, and zeta potential results. The BTCA contents significantly affect the
physicochemical properties of EVOH/BTCA NFAs, including microstructure, surface wet-
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tability, mechanical properties, and absorption performance. The obtained EVOH/BTCA
NFAs displayed good underwater elasticity, compressive fatigue resistance, and shape-
memory properties. The EVOH/BTCA NFAs functionalized with 10 wt% possessed an out-
standing static protein adsorption capability of 1082.13 mg/g within 6 h and a high dynamic
adsorption capacity of 716.85 mg/g, which were better than those of most nanofibrous-
based protein absorbents. Furthermore, EVOH/BTCA NFAs presented unique selectivity
performance, good reversibility, and acid and alkali resistance. The EVOH/BTCA NFAs
could extract lysozyme from egg white solution, indicating their potential actual applica-
tion. Taking in account the low cost of the preparation process and the high performance of
protein absorption, we expect that the protein absorbents presented in this study provide a
new choice for the design of media in the fields of biological purification.

Supplementary Materials: The following supporting information can be downloaded via this link:
https://www.mdpi.com/article/10.3390/polym16091270/s1, Figure S1: FE-SEM images of EVOH
NFAs; Figure S2: Schematic of carboxyl grafting process; Figure S3: The zeta potential of EVOH
NFAs and EVOH/BTCA NFAs; Figure S4: Photographs of EVOH/BTCA NFAs with various BTCA
contents (the BTCA content from left to right is 0, 4, 10 and 16 wt%); Figure S5: Photographs of the
underwater shape-memory properties of EVOH/BTCA NFAs.
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