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Abstract: Spring barley (Hordeum vulgare L.) is an increasingly important cash crop in the province of
Quebec (Canada). Soil–crop models are powerful tools for analyzing and supporting sustainable crop
production. STICS model has not yet been tested for spring barley grown over several decades. This
study was conducted to calibrate and evaluate the STICS model, without annual reinitialization, for
predicting aboveground biomass and N nutrition attributes at harvest during 31 years of successive
cropping of spring barley grown in soil (silty clay, Humic Gleysol) from the Saguenay–Lac-Saint-Jean
region (northeastern Quebec, Canada). There is a good agreement between observed and predicted
variables during the 31 successive barley cropping years. STICS predicted well biomass accumulation
and plant N content with a low relative bias (|normalized mean error| = 0–13%) and small prediction
error (normalized root mean square error = 6–25%). Overall, the STICS outputs reproduced the same
trends as the field-observed data with various tillage systems and N sources. Predictions of crop
attributes were more accurate in years with rainfall close to the long-term average. These ‘newly
calibrated’ parameters in STICS for spring barley cropped under continental cold and humid climates
require validation using independent observation datasets from other sites.

Keywords: STICS; soil–crop model; gleysol; spring barley; long term; cold and humid continental climate

1. Introduction

Spring barley (Hordeum vulgare L.) is used as cattle feed and for malting but grain barley
production remains insufficient to meet the demand in the province of Quebec (Canada) [1].
Even with the use of high-performance cultivars and improved crop management over
the last decades, grain barley yields remain lower than in western Europe [2,3]. Average
annual barley grain yields in Canada were 2.0 Mg DM ha−1 between 1960 and 1989, and
2.7 Mg DM ha−1 between 1990 and 2021 [4] compared to about 4.4 Mg DM ha−1 for western
Europe [5].

The cold and humid continental climate of eastern regions of Canada, including the
province of Quebec, poses significant constraints for crop production [6]. About 52% of the
barley acreage in the province of Quebec is located in areas with limiting soil and climate
conditions such as the Bas-Saint-Laurent, Gaspésie, Îles-de-la-Madeleine and Saguenay–
Lac-Saint-Jean [1]. In these areas, the mean annual temperature ranges from 1 to 3 ◦C,
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and the last spring frost occurs late, up to the end of May. The sum of growing degree
days (GDD, basis 0 ◦C) between April and October ranges from 1800 to 2200 ◦C d, which
corresponds to severe to moderate limitations for spring-sown small grains according to
climatic suitability ratings [7]. Moreover, soils with excess water and poor fertility also
limit crop production in these areas [8]. For barley, waterlogging can reduce yields by 20 to
85% depending on the duration and intensity of the waterlogging at different stages of the
plant’s development and the cultivar tolerance [9].

The short growing season in several regions of northeastern Quebec dictates the choice
of cultivars that can be grown successfully. Cultivars are known to differ in their phyl-
lochron, which is positively correlated with temperature and daylength [10]. Phenological
traits were also shown to vary with locations [11]. For instance, the time needed to reach
anthesis from sowing is about 55 days (860–940 ◦C d) for two spring barley cultivars,
Cadette (a semidwarf lodging-resistant type) and Leger (a standard lodging-susceptible
type) grown under climatic conditions of Montreal region (province of Quebec) [12], but
10–20 days longer (up to 1200 ◦C d) in western Europe [12,13]. Differences in cultivars and
length of the growing season between western Europe and northeastern Quebec should
therefore be taken into account in process-based models of barley growth and development.
Understanding the growth and development of barley cultivars adapted to the cold and
humid conditions of northeastern Quebec, which has a short growing season is crucial for
improving cultivars and crop management practices.

Soil–crop models are valuable and powerful tools for understanding many complex
processes in agroecosystems [14]. They can be used to predict and analyze crop growth
attributes [15] and the use of nitrogen (N) [16,17] and water [18,19]; to assess the envi-
ronmental impacts of agriculture by taking into account crop management, soils, and
climate [20–22]; and to test longer-term scenarios in the context of global warming [23,24].
Several soil–crop models have been developed that differ in their structure, simulated pro-
cess and approach [25], scales (plant, field, watershed, or regional) [26], and objectives [27].
A number of process-based soil–crop models (e.g., DAISY, DSSAT-CERES, HERMES, MON-
ICA, and WOFOST) are available for spring barley crops grown in Europe [17,28]. In
western Canada, Jame et al. [29] developed a crop model using DSSAT for wheat and
barley grown on the Great Plains of the Canadian province of Alberta. STICS (Simulateur
mulTIdisciplinaire pour les Cultures Standard) is a generic soil–crop model initially developed
in France for wheat (Triticum turgidum L. subsp. durum) and maize (Zea mays L.) and then
for other annual and perennial crops in Europe [30,31]. STICS simulates crop growth and
development along with soil water, C, and N processes [23,32]. It has been tested in a large
number of soil–plant agroecosystems and was designed to adapt easily to various crops
and diverse climatic conditions [33–35]. STICS was tested and validated for spring barley
cultivars cropped in the temperate climate of western Europe [32,36].

In Canada, STICS was calibrated and validated for soybean (Glycine max L. Merr) and
spring wheat (Triticum aestivum L.) cultivars cropped in several sites distributed between
southwestern Quebec province and southern Ontario province, which highlighted the
opportunities for using STICS in areas with a short growing season [37]. The integration
of a snow-cover module has extended the possibility of using STICS for cold and humid
continental regions [38]. STICS has also been calibrated and evaluated for non-consecutive
simulations with annual resetting under these conditions for maize [39], potato (Solanum
tuberosum L.) [40], and timothy (Phleum pratense L.) [41].

No crop growth model has been yet calibrated and evaluated over long-term cropping
periods without annual resetting for spring barley in the soil and climate conditions of
the Saguenay–Lac-Saint-Jean region (northeastern Quebec, Canada). This region occupies
an immense territory (106.5 million km2) relatively far from the rest of the province of
Quebec [42] and constitutes the northern limit of the practice of agriculture in Quebec. Its
149,204 hectares of soil with agricultural potential [43] and the combination of the cool
climate and isolated geographic location provide the region with a unique place in the
agricultural industry due to its geographical position within the boreal zone. The objectives
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of this study were (i) to statistically analyze a dataset of dry matter aboveground biomass,
grain yield, grain and shoot N concentration and N uptake at harvest over 31 successive
cropping years of spring barley cultivars selected for the pedoclimatic conditions of the
Saguenay–Lac-Saint-Jean region; (ii) to calibrate and evaluate the ability of STICS to predict
the above-mentioned variables over several decades without annual reinitialization; and
(iii) to compare the two approaches: Are STICS predictions for the experimental site and
the associated database better or not than a statistical model?

2. Materials and Methods
2.1. Experimental Site and Field Database

The study was conducted using a long-term experiment that was initiated in the fall
of 1989, at the Agriculture and Agri-Food Canada’s Normandin Experimental Farm, at
Normandin city, located in the regional county municipality of Maria-Chapdelaine, in
the Saguenay–Lac-Saint-Jean region of the Canadian province of Quebec (lat. 48◦50′ N;
long. 72◦33′ W; alt. 137 m). Since 1936, research conducted there has significantly helped
to improve farming practices in Quebec’s Saguenay—Lac-Saint-Jean region [44]. The
region has a cold and humid continental climate. For the 31 years considered in this study,
cumulative rainfall from 10 days before seeding date to grain harvest ranged from 176 to
498 mm with an average of 317 mm. The average temperature was 16.0 ◦C (14.3–18.4 ◦C),
the sum of GDD above 0 ◦C ranged from 1431 to 1775 ◦C d, and the cumulative global
radiation ranged from 1543 to 2259 MJ m−2. Values for each of the 31 years are presented
in Table S1 for the growing season and the entire year. The soil is a Labarre series silty clay
(Humic Gleysol). Soil characteristics are presented in Table 1. The site had been cultivated
under a spring barley–alfalfa (Medicago sativa L.) rotation for about 10 years prior to 1990.

Table 1. Properties of the soil layers at the initiation of Normandin experimental setup.

Soil Characteristics Values

Soil texture Silty clay
Soil classification (Food and Agriculture Organization, 2014) Humic gleysol
Clay < 2 µm (g kg−1) at 0–20 cm 490
Silt (2–50 µm) (g kg−1) 430
Sand (50–2000 µm) (g kg−1) 80
Organic N (g kg−1) 1.7
CaCO3 (%) <1
pHwater at 0–20 cm 5.6
Field capacity (% dry-mass soil):
0–20 cm 29.0
20–40 cm 26.7
40–100 cm 25.6
Wilting point (% dry-mass soil):
0–20 cm 20.0
20–40 cm 19.2
40–100 cm 18.6
Bulk density (gsoil cm−3 soil):
0–20 cm 1.36
20–40 cm 1.50
40–100 cm 1.60

The experimental design was a factorial split-split-plot replicated four times with two
types of crop rotation randomized into main plots (a continuous barley in monoculture
and a 3-year cereal-perennial forage rotation), two tillage systems randomly assigned
to subplots and two N sources randomly assigned to sub-subplots [45]. Only the plots
cropped with continuous barley in monoculture (16 plot units 10 m × 5 m in size) were
considered in this study. Six-row spring barley cultivars Chapais (1990–2014) and Alyssa
(2015–2020) [46], both having similar ecophysiological parameters, were sown between
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9 and 31 May at a rate of 360 grains m−2 using a conventional cereal seeder. Details of the
N application along with dates of seeding, harvest, and tillage for each year are provided in
Table S2. The two tillage systems consisted of a moldboard plow operated to a 20 cm depth
(MP) and a chisel plow to a 15 cm depth (CP), with tillage performed yearly in the fall
after harvest. The two N sources were ammonium nitrate (MIN) and N-based liquid dairy
manure (LDM), applied according to local recommendations. The LDM were analyzed
annually, and N concentrations were determined using a LECO CNS-1000 analyzer (LECO
Corp., St. Joseph, MI, USA). Before seeding, plots under the MIN treatment received
70 kg N ha−1yr−1 as ammonium nitrate, 17.5 kg P ha−1yr−1 as triple superphosphate, and
58 kg K ha−1yr−1 as potassium chloride. For the LDM plots, about 50 m3 ha−1yr−1 of
liquid dairy manure obtained from a local farm was applied in early spring, providing
an average of 107 ± 24 kg total N ha−1yr−1, 17 ± 4 kg total P ha−1yr−1, and 119 ± 29 kg
total K ha−1yr−1. Annual amounts of N applied as LDM from 1990 to 2020 are reported in
Table S2.

2.2. Plant Analysis

Grain yield (GY) and straw yield were determined every year from 1990 to 2020 in
the 16 experimental plots. Grain and straw yields were measured in an 8.2 m × 1.62 m
area at grain maturity between mid-August and mid-September depending on the year
(Table S2), using a Wintersteiger plot harvester (Salt Lake City, UT, USA). Dry matter
content of grain and straw was determined on a fresh 500 g subsample after drying in a
forced draft oven at 55 ◦C to constant weight. Straw residues were returned to the soil
after harvest. Nitrogen concentrations in grain (NCG) and straw were measured only from
1997 to 2020. Dried and ground (to pass through a 1 mm screen) subsamples of grain
and straw were digested using a mixture of sulfuric and selenious acids, as described
by Isaac and Johnson [47]. The N concentration in digested solutions was measured by
automated colorimetry using a Lachat QuikChem 8000 autoanalyzer (QuikChem Method
13-107-06-2-E; Lachat Instruments, Milwaukee, WI, USA). Dry matter aboveground biomass
(grain + straw) (AGB), N concentration in AGB (NCAGB), and N accumulation in AGB
(NU) and grain (NAG) were then calculated.

2.3. STICS Soil–Crop Model Overview

STICS is a generic soil–crop model applicable to a wide variety of agroecosystems
which has been in development since 1996 [30,31,48]. Based on general ecophysiological
concepts and soil processes that describe the functioning of soil–plant systems, STICS
simulates the dynamic of soil–crop systems on a daily time step as a function of climatic
conditions, crop and soil characteristics, and management practices (Figure 1). It calcu-
lates agricultural (e.g., crop yield and grain N content) and environmental (e.g., soil water
and mineral N contents, N leaching, and soil organic carbon dynamic) variables simulta-
neously [23]. STICS has several interdependent modules and sub-modules which were
built by assembling and synthesizing parts or formalisms of existing models [48,49]. Each
module or sub-module deals with a particular physical or ecophysiological process, and
variables are exchanged between modules and sub-modules. The description of these
processes mostly relies on a unique set of general parameters. In STICS, two types of plant
parameters are defined: cultivar parameters and generic parameters that are assumed
to be the same for all cultivars of the same species. An in-depth description of STICS
concepts, mathematical equations, general parameterization, and uses can be found in
Brisson et al. [49] and Beaudoin et al. [48].
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biomass accumulated in the GY from the beginning of grain filling until maturity is an 
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NNI below 1 will reduce potential crop growth. For spring barley, the Ncmax and Nc were 
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namic N harvest index, i.e., the amount of N accumulated in grains from the beginning of 
grain filling until maturity is an increasing proportion of the amount of N in the AGB. 

In STICS, the soil is described as a succession of up to five horizontal layers with their 
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Figure 1. STICS soil–crop model: inputs, outputs, the different modules/processes, and their
respective influences.

Briefly, the phenological development stages of a given crop cultivar, are expressed
in development units that are mainly governed by thermal (degree day), photothermal,
or vernal-photothermal indices (according to the species) but are also affected by limiting
factors such as soil water and N content. Shoot biomass accumulation is calculated from the
leaf area index (LAI) by converting intercepted radiation into biomass using the radiation
use efficiency (RUE) concept. These processes are closely influenced by the phenological
development stage, temperature, and plant density along with water stress and N stress.
The grain C content is derived from the retranslocation of vegetative C as well as from
the continued assimilation of C during grain filling. The GY is calculated by applying a
progressive “harvest index” to the AGB dry weight of the plant [48], i.e., the ratio of the
biomass accumulated in the GY from the beginning of grain filling until maturity is an
increasing proportion of the AGB.

Plant N accumulation depends on soil mineral N availability in the soil–root system
(and symbiotic fixation for legumes) and on crop N requirements. Crop N requirements
were calculated using the concept of maximum (Ncmax) and critical N (Nc) dilution curves.
The Ncmax curve represents the plant’s maximum capacity to accumulate N in its shoot
biomass and is used in STICS to calculate potential crop N uptake. The Nc curve represents
the N concentration in shoots required to produce the maximum AGB at a given time [50].
It can be used to calculate the N nutrition index (NNI), which is the ratio of the actual N
concentration to Nc. The NNI is used to determine if the plant is under N stress or not.
An NNI below 1 will reduce potential crop growth. For spring barley, the Ncmax and Nc
were calculated using the following equations: Ncmax = 6.66 × (Shoot Biomass)−0.39 and
Nc = 4.76 × (Shoot Biomass)−0.39, respectively [51]. As with C, NAG is calculated as a
function of a dynamic N harvest index, i.e., the amount of N accumulated in grains from
the beginning of grain filling until maturity is an increasing proportion of the amount of N
in the AGB.

In STICS, the soil is described as a succession of up to five horizontal layers with
their hydrodynamic and pedological characteristics. Soil-dependent modules calculate
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water, C, and N balances and, consequently, the effects of water stress and N stress on
crops. Humus mineralization depends on soil characteristics (clay and CaCO3 content), soil
organic N content, temperature, and soil water content. Mineralization of organic residues
is calculated as a function of the C/N ratio based on the model of Nicolardot et al. [52].
Interactions between soil and crops occur through the roots, which operate exclusively
as mineral N and water absorbers. Root growth is derived from root density, which is
calculated separately from AGB growth in the model, unless the “trophic-link root length
expansion” option is selected. STICS simulates crop water stress due to excess or lack of
water, based on soil water content available to roots and crop requirements, which are
directly linked to climatic conditions (rainfall) or crop management (absence/presence of
irrigation). In case of water excess, a waterlogging index (exofac), which is the proportion
of root length that is under anoxic conditions during the growing season, is calculated
and used in the model to calculate three anoxic stress indices that affect root growth, LAI
growth, and RUE.

STICS considers commonly used farming practices such as soil tillage, irrigation,
and the use of mineral or organic fertilizers. The model includes eight types of mineral
N fertilizers which differ in terms of ammonium fraction, microbial immobilization, and
volatilization. There are 10 categories of organic fertilizers, each with specific decomposition
parameters [48].

2.4. Model Inputs and Simulation Options

The V10 version of STICS was used [48]. The model was initialized only once, in the
spring of 1990, and used without resetting to simulate successive cropping cycles of spring
barley over 31 years (1990–2020) continuously.

Soil input parameters (clay and CaCO3 contents, pH, organic N, and bulk density)
were obtained from soil analyses carried out at the beginning of the experiment (Table 1).
Gravimetric soil water content at field capacity and wilting point was calculated or derived
from analyses using a pedo-transfer function [53]. In STICS, mineralization is assumed
to occur up to a maximum depth (profhum) and to be negligible below this depth. This
‘profhum’ was assumed to be 20 cm. Soil depth and maximum rooting depth were set to
1 m. Initial soil water content was set to field capacity, which is representative of the soil
moisture status in early spring when soils are recharged with moisture from snowmelt. We
assumed that the mineral N amounts were 30, 35, and 20 kg N ha−1 for the 0–20, 20–40, and
40–100 cm soil layers, respectively. These values are consistent with soil mineral N contents
measured in spring after an alfalfa stand termination [54]. In keeping with the finding of
Martel and Lasalle [55] reported for a gleysolic Ap horizon, sampled on the experimental
farm of Agriculture Canada at La Pocatière, Quebec (lat. 47◦ 20′00′′ N; long. 70◦ 2′00′′ W),
the proportion of inactive soil organic matter (finert) was set to 55% rather than 65%, which
is used as default value in STICS.

Climate inputs include minimum and maximum air temperatures, global radiation,
precipitations, wind velocity, and relative humidity. Daily weather data from 1990 to 2020
(Table S1) were obtained from Environment Canada’s Normandin weather station (lat.
48◦50′30′′ N; long. 72◦32′49′′ W, alt. 137 m). Missing values (about 2% of the total) were
inputted by using data obtained from the Saint-Prime weather station (lat. 48◦37′00′′ N;
long. 72◦25′00′′W, alt. 121 m), located approximately 20 km from Normandin. Management
practices such as dates and rates of sowing and N fertilization as well as harvesting dates
were carefully recorded (Table S2).

2.5. Calibration of Crop Parameters for New Cultivars and STICS Performance Evaluation

Although default values of parameters for several crop species and cultivars are
provided in STICS, these values can be adapted or modified for new cultivars. Two
datasets, designated the “calibration dataset” and the “evaluation dataset”, were used to
calibrate these parameters and evaluate the performance of STICS. The calibration dataset
included data with 28 predicted/observed data pairs (7 years × 4 treatments) from 1997
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to 2003. AGB, GY, NCAGB, NCG, NU, and NAG data were available for those seven
years and cumulative rainfall during the growing season was near the 31-year average.
STICS was statistically evaluated using the calibrated crop parameters and the remaining
cropping years (from 1990 to 1996 and 2004 to 2020 for AGB and GY, and from 2004 to 2020
for NCAGB, NCG, NU, and NAG).

Calibration, which consists of adjusting the values of the parameters used in specific
equations to fit the output to a set of measured state variables, was performed using a
method proposed by the STICS development team [37,56]. Among the cultivars already
available in STICS, we selected the European spring barley cultivar Scarlett as a refer-
ence, as it gave better evaluation results with our dataset. Scarlett is a modern European
two-row spring barley cultivar [57]. We reviewed the literature to identify key parameters
of barley cultivars cropped in the province of Quebec that could be directly integrated into
STICS. Then, we took values directly from the literature or our experimental dataset for
six parameters: maximum number of grains per surface area (nbgrmax); maximum grain
weight (pgrainmaxi); maximum crop height (hautmax); sum of degree days between emer-
gence and beginning of grain filling (stlevdrp); and sum of degree days between beginning
of grain filling and maturity (stdrpmat). Finally, parameter optimization was carried out
in successive steps following the structure of the model, with each step corresponding
to a key process in the simulation of the variables of interest. Priority was given to the
cultivar-related parameters in order to preserve the genericity of the model as much as
possible. Parameter optimization was performed with the Javastics application using the
simplex method, which involves minimizing the mean square error for a given target
variable [58].

2.6. Statistical Analysis and Model Evaluation

Linear mixed model using the “lme” function in the R package “nlme” [59] was
performed with field-observed data considering replicates as a random factor and both
years, N source type, tillage system, and their interactions as fixed factors. The year factor
was used to fit a first-order autoregressive covariance structure to consider the repeated
measurements across 31 years. Residuals were analyzed for normality using the Shapiro–
Wilks and Levene’s test for homogeneity of variances. Where treatment or interaction effects
were significant at the 0.05 probability level, means were compared using LSMEANS. We
evaluated the predictive ability of the fitted mixed model using 5-fold cross-validation with
the “cvFit” function in the R package “cvTools” [60].

To calibrate and evaluate the ability of STICS to predict AGB, GY, NCAGB, NCG,
NU, and NAG of spring barley, we calculated various complementary statistical criteria
based on the comparison of predicted and observed data [33]. A revisited linear regression
procedure was used to test model performance [61].

The mean absolute error (MAE) (Equation (1)) quantifies the average magnitude of
the errors between the observed value and the predicted value. The normalized mean error
(NME) (Equation (2)) estimates the model’s relative bias. An |NME| < 10% is considered a
low bias [40,62]. The normalized root mean square error (NRMSE) (Equation (3)) is used to
determine the error of prediction of the model by giving more weight to larger errors and it
represents the relative mean deviation of the predicted values to the observed values. The
NRMSE is particularly useful when comparing results from different studies. According
to Jamieson et al. [63], a model is considered excellent when NRMSE ≤ 10%, good when
10% < NRMSE ≤ 20%, fair when 20% < NRMSE ≤ 30%, and poor when NRMSE > 30%.
For the STICS calibration, the best sets of parameters were identified by minimizing the
NRMSE.

The efficiency of the model (EF) (Equation (4)) measures the level of agreement be-
tween predicted and observed values. If the model is perfect, predicted values are equal
to observed values, and EF = 1. Negative EF values mean that the model is not a better
predictor than the average of all the observations. Positive EF values greater than 0.40 are
considered satisfactory [32].
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The coefficient of determination (R2) (Equation (5)) was calculated for the linear re-
gression between predicted and observed values in order to assess the strength (R2 < 0.25:
very weak; 0.25 ≤ R2 < 0.50: weak; 0.50 ≤ R2 < 0.75: moderate: R2 ≥ 0.75: substantial) of
the linear model by using the standardized major axis (SMA) regression. This approach
proposed by Correndo et al. [61] overcomes the axis orientation problem of the traditional
ordinary least squares method (y vs. x or x vs. y) [64] and provides a single line regres-
sion (symmetric) defining the relationship regardless of which variable is x or y. Thus,
the bivariate regression SMA model is likely to provide a more reliable regression line
and error decomposition. The mean square error was also decomposed into percentage
lack of precision (PLP) (Equation (6)), which refers to the percentage of dispersion, and
percentage lack of accuracy (PLA) (Equation (7)), which refers to the systematic error. These
criteria estimate the dominant type of model error (either dispersion or systematic error).
Statistical criteria were computed using the “STICSevalR” library and R-Code provided by
Correndo et al. [65]. Plots were created with the R library “ggplot2”.
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∣∣∣)
1
n ∑n

i=1(Predi −Obsi)
2 (6)

PLA (%) = 100
1
n ∑n

i=1

(
Obsi − P̂redi

)2

1
n ∑n

i=1(Predi −Obsi)
2 (7)

Predi: predicted values; Pred: mean of predicted values; Obsi: observed values; Obs:
mean of observed values; P̂redι: value given by the linear regression of predicted vs.
observed values; Ôbsι: value is given by the linear regression of observed vs. predicted
values; n: number of predicted/observed pairs.

Prediction performance was also evaluated based on the waterlogging index (exofac)
calculated by STICS which is the proportion of root length that is under anoxic conditions
during the growing season (exofac = 0; 0 < exofac < 0.06; 0.06 ≤ exofac < 0.14). A value of 1
means that all roots are under anoxic conditions.

3. Results
3.1. Statistical Analysis of Field-Observed Data

The analyses of variance and the means of treatments or interactions are presented in
Table 2. All crop production attributes (AGB, GY, NCAGB, NCG, NU, and NAG) at harvest
differed significantly among years and N source types in this study. The differences between
years are likely to be related to climatic conditions rather than treatment effects since the
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lowest AGB and GY were generally associated with unfavorable rainfall conditions (1991,
1993, 1994, 1995, 2003, 2014, 2018, and 2020). For these years, the amount of rainfall in
June or during the growing season was either too low or too high when compared with
the norm of 78 mm and 317 mm, respectively (Table S1). The MIN treatment performed
better than the LDM treatment in terms of AGB and GY (4.7 vs. 3.9 Mg DM ha−1 yr−1

and 3.0 vs. 2.4 Mg DM ha−1 yr−1, respectively). The NU and NAG were greater, while
NCAGB and NCG were lower for the MIN treatment than for the LDM treatment (Table 2).
The tillage system had a low but significant impact on GY, NCAGB, and NAG. The GY,
NCAGB, and NAG were slightly greater for the MP treatment than for the CP treatment. In
addition, significant interactions between years and N source type, year and tillage system,
and N source type and tillage system were observed except for NCG (Table 2; Figure S1).
However, there was no significant effect of the interactions between year, N source type,
and tillage system for all the variables. Although we have excluded the data from the first
3 years following initiation (1990, 1991, 1992), probably influenced by the preceding alfalfa
crop rotation, a slight drop in yield was observed over time for the 2 N sources and the
2 tillage systems (Figure S2).

Table 2. Analysis of variance of the effects of year, N source type, and tillage system on the field-
observed aboveground biomass (AGB), grain yield (GY), N concentration in aboveground biomass
(NCAGB), and grain (NCG), N uptake by plant (NU), and N amount in grain (NAG), and mean of
field-observed values. LDM: liquid dairy manure; MIN: ammonium nitrate; MP: moldboard plow;
CP: chisel plow. Different letters (a, b, c, d) indicate significant differences among treatment according
to a Lsmeans post hoc test (p < 0.05).

Source
AGB

(Mg DM ha−1)
GY

(Mg DM ha−1)
NCAGB

(g kg−1 DM)
NCG

(g kg−1 DM)
NU

(kg N ha−1)
NAG

(kg N ha−1)

p-Value

Year (Y) <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
N source type (N) <0.0001 <0.0001 <0.0001 0.0008 <0.0001 <0.0001
Tillage system (T) 0.9464 <0.0001 <0.0001 0.1857 0.3647 0.0007
Y × N <0.0001 <0.0001 <0.0001 0.0535 <0.0001 <0.0001
Y × T <0.0001 <0.0001 0.0002 0.1805 0.0003 0.0002
N × T 0.0002 0.0007 0.0328 0.4104 0.0332 0.0199
Y × N × T 0.6422 0.4050 0.9160 0.9316 0.3748 0.6536

Mean of field-observed values
N source type
MIN 4.7 a 3.0 a 16.1 b 19.8 b 73.2 a 57.1 a
LDM 3.9 b 2.4 b 16.6 a 20.2 a 62.0 b 45.7 b
Tillage system
MP 4.3 a 2.8 a 16.6 a 20.1 a 67.2 a 52.2 a
CP 4.3 a 2.6 b 16.2 b 20.0 a 68.0 a 50.6 b
N source type ∗ Tillage system
MIN-MP 4.8 a 3.1 a 16.2 b 19.8 b 74.1 a 58.8 a
MIN-CP 4.6 b 2.9 b 16.0 b 19.8 b 72.3 a 55.4 b
LDM-MP 4.0 c 2.4 c 17.0 a 20.3 a 60.3 c 45.6 c
LDM-CP 3.8 d 2.4 c 16.3 b 20.1 ab 63.7 b 45.7 c

The evaluation of the ability of the mixed model considered in this study to predict
the AGB, GY, NCAGB, NCG, NU, and NAG is presented in Table 3. For each variable, the
model had low MAE and RMSE from 5-fold cross-validation. For NCAGB and NCG, the
model predictions were excellent with NRMSE of 8% and 7%, respectively. For AGB, GY,
NU, and NAG, the model prediction was good with NRMSE of 17% or 18%.
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Table 3. Linear mixed model evaluation metrics from 5-fold cross-validation. Independent variables
were aboveground biomass (AGB), grain yield (GY), N concentration in aboveground biomass
(NCAGB) and in grain (NCG), N uptake by plant (NU), and N amount in grain (NAG).

Independent Variable MAE RMSE NRMSE (%)

AGB (Mg DM ha−1) 0.6 0.7 17
GY (Mg DM ha−1) 0.4 0.5 17

NCAGB (g kg−1 DM) 1.0 1.3 8
NCG (g kg−1 DM) 0.9 1.3 7

NU (kg N ha−1) 8.7 11.3 17
NAG (kg N ha−1) 7.1 9.3 18

MAE: mean absolute error; RMSE: root mean square error; NRMSE: normalized root mean square error.

3.2. Calibration to Add New Cultivar Adapted to Northeastern Quebec Conditions in STICS

Default parameter values for the European reference cultivar (Scarlett) defined in
STICS and newly calibrated parameter values for the Chapais spring barley cultivar adapted
to the short growing season area are presented in Table 4. Based on the literature and our
experimental data, the sum of GDD from emergence to the beginning of grain filling
(stlevdrp) was reduced to 800 ◦C d and the duration of grain filling (stdrpmat) was reduced
to 565 ◦C d (Table 4). Thus, the sum of GDD between emergence and physiological maturity
(stlevdrp + stdrpmat) decreased from 1555 ◦C d for the Scarlett cultivar to 1365 ◦C d for the
Chapais cultivar.

Table 4. Default values of parameters of the Scarlett cultivar of spring barley in the standard version
of STICS and the newly calibrated values for the Chapais cultivar adapted for short-growing season
area (specific cultivar parameters are shown in italics).

Parameter Name and Definition Default Values in
STICS

Newly Calibrated
Values Source

Phenological stages
stlevamf: sum of degree days between the beginning of growth and
maximum acceleration of leaf growth (◦C d)

400 480 Optimization

stamflax: sum of degree days between the maximum acceleration of leaf
growth and the maximum LAI (◦C d)

340 420 Optimization

stlevdrp: sum of degree days between the beginning of growth and the
beginning of the reproductive stage (◦C d)

940 800 [66–68]/
Calculation

stdrpmat: sum of degree days between the beginning of grain filling and the
maturity (◦C d)

615 565 Calculation

Leaves
dlaimaxbrut: maximum rate of daily increase in LAI (m2 plant−1 ◦C d−1) 0.00077 0.00028 Optimization
durvief: maximal lifespan of an adult leaf (Q10) 200 180 Optimization
hautmax: maximum height of crop (m) 1.00 0.85 [66–68]
Innsen: N stress function active on senescence −0.17 −0.18 Optimization
Innturgmin: N stress function active on leaf expansion −0.65 −0.73 Optimization
Shoot biomass growth
teopt: beginning of the thermal optimum plateau for net photosynthesis (◦C) 12 16 Optimization
efcroijuv: maximum radiation use efficiency during the juvenile phase
(g DM MJ−1)

2.25 1.75 Optimization

efcroiveg: maximum radiation use efficiency during the vegetative phase
(g DM MJ−1)

4.5 2.2 Optimization

efcoirepro: maximum radiation use efficiency during the reproductive phase
(g DM MJ−1)

4.5 4.1 Optimization

Nitrogen
INNimin: instantaneous NNI corresponding to INNmin −0.5 −0.77 Optimization
Yield formation
nbgrmax: maximum number of grains per surface area (grain m−2) 26,000 17,500 [69]
pgrainmaxi: maximum weight of one grain (g) 0.044 0.046 [66–68]
nbjgrain: number of days used to compute viable grains number (d) 20 30 Optimization
cgrain: slope of relationship between grain number and growth rate 0.028 0.132 Optimization
vitircarb: rate of increase in the C harvested index vs. time (g g−1d−1) 0.0192 0.031 Optimization
vitirazo: rate of increase in the N harvest index vs. time (g g−1d−1) 0.0308 0.038 Optimization
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Predictions of LAI dynamics were not assessed because measured LAI data were
not available. To improve the overestimated AGB predictions obtained with the default
parameters, we set out to optimize the parameters controlling LAI dynamics (dlaimaxbrut,
stlevamf, stamflax, durvief, and innsen) (Table 4). The maximum rate of leaf growth during
LAI development (dlaimaxbrut) decreased. The sum of GDD between emergence and the
end of the juvenile stage (stlevamf ) and between the end of the juvenile stage and the
maximum LAI (stamflax) both increased by 80 ◦C d relative to the default values after the
optimization procedure. Therefore, the maximum LAI occurred at about 900 ◦C d after
emergence. The parameters describing potential RUE (efcroijuv, efcroiveg, and efcroirepro),
which is used for the calculation of shoot biomass, were also reduced (Table 4).

When the default parameters of the Scarlett cultivar were used, AGB was poorly
predicted and largely overestimated with NME = −42% (Table S3). Differences in AGB
accumulation and crop cycle duration between the Scarlett and the Chapais cultivars
(Figure 2) reflect the overall effects of differences in the cultivars’ phenological parameters.
For the same seeding date, the Chapais cultivar reached maturity on average 18 days earlier
than the Scarlett cultivar under the conditions of northeastern Canada. On average for the
seven years and the four management units, the predicted AGB was 4.4 ± 0.3 Mg DM ha−1

for the Chapais cultivar and 6.4 ± 1.0 Mg DM ha−1 for the Scarlett cultivars, respectively.
This reduction in AGB for the northeastern Canada cultivar resulted from the decrease in
the parameters relative to the maximum rate of daily increase in LAI and the potential RUE.
In addition, the vitircarb and vitirazo values were adjusted (Table 4) to increase the annual
GY and NCG values, respectively, which were underestimated with the Scarlett parameters
(NME = 16% and 38%, respectively).
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3.3. Comparison between Observed and Predicted Values
3.3.1. Aboveground Biomass and Grain Yield at Harvest

The observed AGB values for all treatments over 31 years of the cropping experiment
ranged from 2.2 to 7.8 Mg DM ha−1yr−1 with a mean of 4.3 ± 1.2 Mg DM ha−1yr−1,
whereas the predicted AGB values ranged from 2.8 to 6.4 Mg DM ha−1yr−1 with a mean
of 4.3 ± 0.6 Mg DM ha−1yr−1 (Figure 3a). The mean of observed GY values was 2.7 ± 0.8
and the mean of predicted GY values was 2.8 ± 0.4 Mg DM ha−1 yr−1 (Figure 3b), with a
narrower range for predicted values (1.8–4.0) than for the observed values (0.9–5.2).
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After the calibration, STICS performed well in predicting AGB and GY with a low 
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moderate R2 (0.44 and 0.69, respectively) (Figure 4a,c). The STICS evaluation with the 24 
remaining cropping years gave a similar performance for AGB and GY with a low bias 
(NME = 0% and −3%, respectively), a small NRMSE (21% and 23%, respectively), a mod-
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Figure 3. Annual mean of observed (dots) and predicted (grey bars) (a) spring barley aboveground
biomass [AGB] and (b) grain yield [GY] from 1990 to 2020 for soil tillage and N fertilization source
treatments. Bars on dots are standard deviations (n = 4). LDM: liquid dairy manure; MIN: ammonium
nitrate; MP: moldboard plow; CP: chisel plow.

After the calibration, STICS performed well in predicting AGB and GY with a low bias
(NME = 3% and 0%, respectively), good NRMSE (14% and 16%, respectively), and moderate
R2 (0.44 and 0.69, respectively) (Figure 4a,c). The STICS evaluation with the 24 remaining
cropping years gave a similar performance for AGB and GY with a low bias (NME = 0%
and −3%, respectively), a small NRMSE (21% and 23%, respectively), a moderate R2 and a
satisfactory EF (Figure 4b,d).

The error decomposition indicated that, for the evaluation dataset, the model errors
for AGB and GY are due to dispersion error rather than systematic error (PLP > PLA);
however, the opposite was true for the calibration dataset (Figure 4).
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however, the opposite was true for the calibration dataset (Figure 4). 

3.3.2. Nitrogen Concentration in Aboveground Biomass and in Grain at Harvest 
Annual values of observed NCAGB at harvest over 24 years of measurement for the 

four treatments ranged from 12 to 20 g kg−1 DM with a mean of 16 ± 2 g kg−1 DM (Figure 
5a). The mean (17 ± 2 g kg−1 DM) and the range (13–20 g kg−1 DM) of predicted NCAGB 
values were very close to the observed values. For NCG, the annual observed values 

Figure 4. Predicted versus observed spring barley aboveground biomass (AGB) and grain yield (GY)
for ‘calibration’ (a,c) and ‘evaluation’ (b,d) dataset. Each point is the mean of four replicates. Mean
Obs: mean of observed values; Mean Pred: mean of predicted values; n: number of simulation units;
MAE: mean absolute error; NME: normalized mean error; NRMSE: normalized root mean square
error; EF: model efficiency; R2: coefficient of determination; PLP: percentage lack of precision; PLA:
percentage lack of accuracy; LDM: liquid dairy manure; MIN: ammonium nitrate; MP: moldboard
plow; CP: chisel plow.

3.3.2. Nitrogen Concentration in Aboveground Biomass and in Grain at Harvest

Annual values of observed NCAGB at harvest over 24 years of measurement for
the four treatments ranged from 12 to 20 g kg−1 DM with a mean of 16 ± 2 g kg−1 DM
(Figure 5a). The mean (17 ± 2 g kg−1 DM) and the range (13–20 g kg−1 DM) of predicted
NCAGB values were very close to the observed values. For NCG, the annual observed
values ranged from 14 to 24 g kg−1 DM with a mean of 20 ± 2 g kg−1 DM. The range
(17–25 g kg−1 DM) and the mean (20 ± 2 g kg−1 DM) of the annual predicted NCG values
were also quite similar to the observed values (Figure 5b).
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Calibration led to good prediction of NCAGB and NCG with a low relative bias, ex-
cellent NRMSE, and satisfactory EF; however, R2 was moderate for NCAGB and substan-
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the NRMSE were low (NME = −1% and NRMSE ≤ 16%) but the EF was negative and R2 
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Figure 5. Annual mean of observed (dots) and predicted (grey bars) (a) N concentration in spring
barley aboveground biomass and (b) grain from 1997 to 2020 for soil tillage and N fertilization source
treatments. Bars on dots are standard deviations (n = 4). LDM: liquid dairy manure; MIN: ammonium
nitrate; MP: moldboard plow; CP: chisel plow.

Calibration led to good prediction of NCAGB and NCG with a low relative bias, excel-
lent NRMSE, and satisfactory EF; however, R2 was moderate for NCAGB and substantial
for NCG, respectively (Figure 6a,c). For the evaluation dataset, the relative bias and the
NRMSE were low (NME = −1% and NRMSE ≤ 16%) but the EF was negative and R2 was
very weak for both variables (Figure 6b,d). The error decomposition showed that most
of the error for NCAGB and NCG was due to dispersion (PLP > PLA), for both datasets
(Figure 6).
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3.3.3. Plant N Uptake and Amount of N in Grain 
The mean observed NU value for the 24 years of cropping and four treatments was 

67.4 ± 11.9 kg N ha−1yr−1 with values ranging from 41.2 to 89.3 kg ha−1yr−1. In comparison, 
the predicted NU ranged from 55.1 to 92.8 kg ha−1yr−1 with a mean of 70.9 ± 7.0 kg ha−1yr−1 
(Figure 7a). The mean observed NAG value was 51.4 ± 11.2 kg N ha−1yr−1 with values rang-
ing from 25.3 to 74.7 kg N ha−1yr−1 (Figure 7b). For the predicted NAG, there was a nar-
rower range of values (43.9–74.4 kg N ha−1yr−1) but the mean (56.5 ± 5.6 kg N ha−1yr−1) was 
similar compared to observed values. 
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Figure 6. Predicted versus observed N concentration in aboveground biomass (NCAGB) and in
grain (NCG) for the ‘calibration’ (a,c) and ‘evaluation’ (b,d) dataset. Each point is the mean of four
replicates. Mean Obs: mean of observed values; Mean Pred: mean of predicted values; n: number of
simulation units; MAE: mean absolute error; NME: normalized mean error; NRMSE: normalized root
mean square error; EF: model efficiency; R2: coefficient of determination; PLP: percentage lack of
precision; PLA: percentage lack of accuracy; LDM: liquid dairy manure; MIN: ammonium nitrate;
MP: moldboard plow; CP: chisel plow.

3.3.3. Plant N Uptake and Amount of N in Grain

The mean observed NU value for the 24 years of cropping and four treatments was
67.4 ± 11.9 kg N ha−1yr−1 with values ranging from 41.2 to 89.3 kg ha−1yr−1. In comparison,
the predicted NU ranged from 55.1 to 92.8 kg ha−1yr−1 with a mean of 70.9 ± 7.0 kg ha−1yr−1

(Figure 7a). The mean observed NAG value was 51.4 ± 11.2 kg N ha−1yr−1 with values
ranging from 25.3 to 74.7 kg N ha−1yr−1 (Figure 7b). For the predicted NAG, there was a nar-
rower range of values (43.9–74.4 kg N ha−1yr−1) but the mean (56.5 ± 5.6 kg N ha−1yr−1)
was similar compared to observed values.
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source treatments. Bars on dots are standard deviations (n = 4). LDM: liquid dairy manure; MIN:
ammonium nitrate; MP: moldboard plow; CP: chisel plow.
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According to the statistical criteria, NU predictions were satisfactory for the calibration
and the evaluation dataset, with a small NRMSE (13% and 19%, respectively) and low
bias (NME = 2% and −8%, respectively) but relatively low EF and R2 (Figure 8a,b). The
NAG predictions were satisfactory for the calibration dataset, with a good NRMSE and
a low bias, but a negative EF (−0.1) (Figure 8c). For the evaluation dataset, the NRMSE
was fair (25%), and the EF and R2 were weak (Figure 8d). The relative contributions to the
model error for NU and NAG indicate that most of the error was due to dispersion, for
both datasets (PLP ≥ 57%) (Figure 8).
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3.4. STICS Performance in Relation to Climatic Conditions

STICS identified a slight degree of anoxia stress in the majority of cropping years in this
study. This may be due to the soil texture (silty clay), which has a low infiltration capacity,
and the high-intensity rainfall events in the region. Five of the 24 years in the evaluation
dataset were not subject to anoxic conditions (exofac = 0), but they were subject to water
deficit stress. The other years had waterlogged conditions which varied in intensity and
duration depending on the amount and distribution of rainfall over the growing season.
Situations with 0 < exofac < 0.06 were observed for 9 of the 24 years and situations with
0.06 ≤ exofac < 0.14 for 10 of the 24 years. Conditions with 0 < exofac < 0.06 correspond
approximately to years with evenly distributed rainfall throughout the growing season and
close to the average level of rainfall over 31 years of experimentation (317 mm) (Table S1).

Predictions of the variables of interest were better for years with a low waterlogging
index (0 < exofac < 0.06), giving small biases (|NME| < 7%), NRMSE values ranging
from 10% to 22%, and high EF, except for NAG (Table 5). Under water deficit conditions,
relatively higher NME values (|NME| ≥ 8%) were obtained for biomass accumulation
variables and lower values for the amount of N in plant shoots and grain. The opposite
was true for conditions with a significant waterlogging index. EF values were negative for
all variables simulated under water deficit conditions. The NRMSE values were greater
when the waterlogging index was high (exofac ≥ 0.06). The other climate variables such as
temperature, GDD, and global radiation varied from year to year but appear not to have
affected the performance of STICS in predicting AGB, GY, NCAGB, NCG, NU, and NAG.

Table 5. Performance evaluation of STICS by waterlogging stress level to predict spring barley
aboveground biomass (AGB), grain yield (GY), N concentration in AGB (NCAGB) and grain (NCG),
plant shoot N uptake (NU), and N amount in grain (NAG). Waterlogging stress was estimated in
STICS by the waterlogging index, denoted exofac, i.e., the fraction of root length that is under anoxic
conditions during the growing season.

Variables n Mean Obs Mean Pred NME NRMSE EF

0.06 ≤ exofac < 0.14
AGB (Mg DM ha−1) 36 4.4(1.4) * 4.2(0.8) 5 23 0.4
GY (Mg DM ha−1) 36 2.7(1.0) 2.7(0.5) −1 26 0.5

NCAGB (g kg−1 DM) 20 15(2) 17(2) −14 21 −1.7
NCG (g kg−1 DM) 20 19(2) 21(2) −10 15 −2.5

NU (kg N ha−1) 20 62.5(13.9) 74.3(7.8) −19 25 −0.3
NAG (kg N ha−1) 20 47.0(14.9) 59.1(6.2) −26 34 −0.2

0 < exofac < 0.06
AGB (Mg DM ha−1) 40 4.4(1.3) 4.4(0.7) −1 18 0.6
GY (Mg DM ha−1) 40 2.8(0.9) 2.9(0.4) −3 22 0.6

NCAGB (g kg−1 DM) 36 17(2) 17(1) −1 11 −0.4
NCG (g kg−1 DM) 36 20(2) 21(2) −4 10 −0.6

NU (kg N ha−1) 36 67.3(12.0) 71.8(7.3) −7 16 0.1
NAG (kg N ha−1) 36 51.0(10.6) 57.2(5.9) −12 23 −0.3

exofac = 0
AGB (Mg DM ha−1) 20 3.7(0.6) 4.0(0.6) −9 20 −0.5
GY (Mg DM ha−1) 20 2.4(0.4) 2.6(0.4) −8 19 −0.5

NCAGB (g kg−1 DM) 12 17(1) 15(1) 17 18 −11.5
NCG (g kg−1 DM) 12 22(1) 18(1) 17 19 −12.3

NU (kg N ha−1) 12 65.7(10.9) 63.9(5.1) 3 18 −0.2
NAG (kg N ha−1) 12 53.1(9.2) 50.9(4.0) 4 18 −0.2

* Mean with SD in parentheses. n: number of simulation units; Mean Obs: mean of observed values; Mean Pred:
mean of predicted values; NME; normalized mean error; NRMSE: normalized root mean square error; EF: model
efficiency.
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4. Discussion
4.1. STICS Calibration for Spring Barley Cultivars Adapted to Climatic Conditions of
Northeastern Quebec

The biomass and plant N uptake of a spring barley cultivar adapted to pedoclimatic
conditions of the Saguenay–Lac-Saint-Jean region (northeastern Quebec) had never been
simulated with STICS. Our results for spring barley confirm that the model can be success-
fully calibrated for a new cultivar and new pedoclimatic conditions such as those found in
northeastern Quebec. This is consistent with the results previously reported for soybean
and spring wheat cultivars [37] as well as for maize cultivars [39].

Although the calibration was based on a limited set of target variables, all of them
measured at the end of the growing season, it significantly improved the simulation of
biomass accumulation and N nutrition for spring barley cultivars grown in silty clay soil at
Normandin. This is consistent with the findings of Guillaume et al. [56] that STICS can be
calibrated without integrating additional observed data from sequential sampling during
the growing season to improve the prediction of crop variables at harvest (e.g., AGB and
GY). However, this is not always the case for other crop models where restricted calibration
can create substantial uncertainty in crop growth predictions [25,28].

Although the calibration procedure should give priority to adjusting parameters by
using direct measurements and data from the literature, this is not always possible, for
many reasons [62]. In this study, crop height and yield component traits were adjusted
according to data found in the literature, and other parameter values were derived from the
sequential optimization performed using observed values. This underscores the importance
of ensuring that the values of the parameters calibrated by optimization are plausible. The
sum of GDD between emergence and physiological maturity obtained during calibration
falls in the range of GDD values (1268 to 1702 ◦C d) reported for spring barley grown at
three locations in the northern Great Plains of the Canadian province of Alberta (Botha, La-
combe, and Olds) from 1993 to 1996 [11] as well as in the range of values (1250 to 1850 ◦C d)
reported for barley grown in agricultural area of the western Canadian province of Man-
itoba [70]. The reduction of stlevdrp and stdrpmat is consistent with the shorter growing
season characterizing the study location in northeastern Quebec. In addition, the sum of
GDD required to reach maximum LAI is in line with results from Alberta, where reported
values ranged from 756 to 1109 ◦C d, depending on site location, year, and cultivar [11].
Furthermore, it is generally expected that post-anthesis RUE (efcroirepro) will be equal to
or lower than pre-anthesis RUE (efcroiveg) since no new leaves are produced after heading
and the photosynthetic activity of existing leaves decreases with age [71,72]. However, Raj
Singh et al. [73] found that RUE for spring barley is not constant throughout the growing
season. It has also been reported that post-anthesis RUE values can be high for six-row
barley under short-growing season conditions: 1.6 to 3.0 g DM MJ−1 for pre-anthesis RUE
vs. 2.1 to 3.8 g DM MJ−1 for post-anthesis RUE [74,75]. This higher post-anthesis RUE value
can be attributed to the significant contribution of the cereal spike to photosynthetically ac-
tive radiation interception (PAR) and to grain yield [76–78]. Furthermore, Zhang et al. [78]
suggested that RUE for cereal spike (spike light interception) should be included in crop
models in addition to the RUE derived from leaf light interception in order to capture
the contribution of spike photosynthesis to grain yield and to improve simulation results,
notably in the high yield range. For STICS, the interception of PAR by cereal spikes has not
been explicitly documented.

4.2. STICS Performance

After the calibration using 28 predicted/observed data pairs (7 years × 4 treatments)
of the dataset, the ability of STICS to predict AGB, GY, NCAGB, NCG, NU, and NAG
(Figures 4, 6 and 8) was tested with the remaining 96 predicted/observed data pairs
(24 years × 4 treatments) by regressing field-observed vs. STICS-predicted values using
the standard major axis procedure proposed recently by Correndo et al. [61].



Agronomy 2023, 13, 2540 19 of 26

The NRMSE values for AGB (Figure 4a,b) were low compared to those reported in
previous studies where STICS was used for European spring barley cultivars (NRMSE of
about 25–35%) [23,36]. For GY (Figure 4c,d), the NRMSE values were in the same range as
those obtained by Rötter et al. (2012) (NRMSE = 24%) in northern and central Europe and
by Salo et al. [17] (NRMSE = 10–26%) in southern Finland. For NCG, the NRMSE values of
9% and 14% for calibration and evaluation, respectively, were low compared to the values
obtained by Salo et al. [17] (NRMSE = 13–27%) and Yin et al. [25] (NRMSE > 30%) for spring
barley. Our results for NU prediction were comparable to those reported for spring wheat
grown at three locations in the Mixedwood Plains Ecozone of eastern Canada (Quebec and
Ontario) (NRMSE = 14–20%) [79]. In general, plant N attribute variables are more difficult
to model than plant biomass. The simulation of these variables is closely dependent at the
same time on the simulation of biomass as well as the dynamic of mineral N in the soil,
which is itself the result of multiple simultaneous biotransformation processes that interact
with several other parameters.

With respect to error decomposition, it has been reported that complex models with a
large number of parameters generally tend to have a low systematic error but a large dis-
persion error [80]. In their overall performance evaluation, Coucheney et al. [33] concluded
that STICS errors are mostly related to dispersion error rather than systematic error, and
this is also what we observed in our study.

The annual variability of biomass and N accumulation in plant parts was generally
well captured, with predicted values being close to observed values, even several years after
the start of the simulation. This indicates that STICS performed well in predicting spring
barley production over 31 years in a continuous simulation mode without simulations
being reset each year, which is consistent with the results of previous studies [25,32]. This
was tested for the first time with STICS under northern climatic conditions with a heavy
snow cover every winter. The model’s continuous simulation mode is especially useful
for predicting the effects of climate change, which requires long-term simulations. In
addition, the STICS evaluation showed that all the output variables were well predicted
for the Alyssa cultivar, which has been used since 2015 in the long-term field experiment
(Figures 3, 5 and 7). After a validation step using independent observations from other
sites, the new set of calibrated parameters could be used for other cultivars in northeastern
Quebec with characteristics similar to those of the Chapais and Alyssa cultivars. This
aspect is important, especially since these cultivars are well adapted to the environmental
conditions found in Canada, in both the eastern and western regions [46,81].

Overall, the STICS outputs reproduced the same trends as the observed data for the
various treatments (Table S4). Concerning N sources, higher yields observed for the MIN
than for the LDM treatment in this study contradict some observations that dairy manure
can increase long-term soil fertility. Lafond et al. [45] found that LDM and MIN treatments
can affect barley grain yields differently depending on the cropping system (rotation or
monoculture). The mean predicted AGB and GY values were lower for the LDM treatment
than for the MIN treatment. However, the model overestimated NU and NAG for the LDM
treatment (Figure 7). Although the model predictions of AGB, GY, NCAGB, and NCG for
the LDM treatment in 2011, 2013, and 2014 were poor, the predicted values were close to
the observed values for all the other years (Figures 3 and 5). For the tillage systems, the
predicted values for the MP and CP treatments were comparable (Table S4). As is the case
for most currently available models, the variables and processes simulated by STICS are
still limited to the incorporation and redistribution of residues and nutrients in the soil
down to the tillage depth. Yet, tillage affects soil functioning and, ultimately, crop yield
through multiple processes such as microbial activity and biomass, weed seeds and soil
texture redistribution, as well as soil hydraulic properties [82]. In addition, the differences
in the observed values of some variables such as GY due to the tillage treatments were low
(7%), even if statistically significant (Table 2). The two tillage treatments did not differ in
the observed AGB values.
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4.3. STICS Process-Based Model vs. Statistical Model

Given that the performance metrics from the cross-validation method are equal to the
average of the performance metrics calculated for each of the 5 iterations (5 folds), we can
state that the overall predictive performance of STICS obtained with the 2 datasets was
comparable to that of the mixed model approach for all production attributes variables
(Table 2, Figures 4, 6 and 8). The 2 models, which represent the two extremes of a spectrum
of modeling approaches gave similar good performances although the process-based model
STICS integrates both soil and plant processes as well as agri-environmental conditions.
This is not surprising, since we only used the database from one experimental site. As
well as the great flexibility in the type of input that can be used, the main advantage of the
statistical model is that it relies solely on the data for its parameterization, by minimizing
the difference between observed and predicted values of the training datasets. However,
their results can not be extrapolated to new contexts. On the other hand, process-based
approaches require a significant amount of input data to run, some processes are better
understood than others, and calibration often requires a lot of time before achieving
satisfactory performance predictions. Therefore, the sources of error in a process-based
model can be multiple (model structure, model parameters, uncertainty in model inputs,
uncertainty in evaluation/validation data) [83]. To be applied to broader conditions,
although process-based models are theoretically universal in scope, as they are based on
ecophysiological and biological laws, validation steps with independent data are needed to
see how the model behaves outside the conditions under which it has been calibrated.

4.4. Suggestions to Improve Model Performance

The STICS evaluation indicated that predictions of plant variables were less accurate
when the waterlogging index level was high (Table 5). For example, the large underes-
timation of AGB and GY that occurred in 1996 (Figure 3a,b) was partly due to the large
amount of rainfall in July (200 mm), which induced transitory stress from waterlogging
(exofac = 0.09 during the reproductive stage) that the model captured too intensely in
the AGB growth and GY predictions. This suggests that some plant parameters related
to root, LAI, or biomass growth are sensitive to excess water and, should be adjusted to
improve the simulations under excessive water conditions. The assessment of the soil
water content (at 0–20 cm depth) was carried out with the measured data collected on
the adjacent plots belonging to the experimental set-up under spring barley and forage in
2011, a year characterized by above-average rainfall most of the growing season (402 mm),
showed a very satisfactory soil water content prediction with an excellent NRMSE (9.8%), a
satisfactory EF, and a moderate R2 (data not shown). In general, soil water content is one
of the variables that is best predicted by the STICS model [33], and this is also true under
eastern Canadian (Ontario and Quebec provinces) climatic conditions [19,84].

The predicted values of AGB and GY were much greater than the observed values for
the LDM treatment in 2011, 2013, and 2014, but not for the MIN treatment (Figure 3). In
contrast to the other years, STICS failed to reproduce the low observed values of AGB and
GY in the LDM for these three cropping years. The observed AGB and GY values were
the lowest, and the yield gap compared to the MIN treatment was particularly large. It
has been reported that cereal GY in monoculture systems using organic fertilizers is lower
than with a mineral fertilizer due to low N use efficiency [45,85]. Significant differences in
observed AGB and GY values between the MIN and LDM treatments (Table 2, Figure S1)
can also be explained by the proportion of mineral N, the mineralization rate of organic
N in LDM, or poor synchronization of the availability of organic N in the soil for the
critical phases of crop growth [86]. The amount of N applied as organic fertilizer in 2011,
2013 and 2014 was large compared with other years (103, 138, and 123 kg total N ha−1,
respectively, with at least 30% in mineral form), and STICS output showed that predicted
soil mineral N content down to the 100 cm depth was comparable between LDM and
MIN in 2013 and 2014 (Figure S3). It is therefore likely that grain yields were affected and
exacerbated by factors related to biotic pressures, which are not accounted for by STICS.
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The slight NCAGB and NCG underestimations can be explained in part by a dilution
effect due to the strong overestimation of AGB and GY (Figure 3a,b), even though NU
and NAG were overestimated for these years (Figure 7a,b). It would be interesting in
the future to evaluate the model’s performance in simulating spring barley yield and N
plant status in response to contrasting N application rates of a given fertilizer. In this
study, the MIN (70 kg N ha−1 yr−1) and LDM (107 kg N ha−1 yr−1 corresponding to about
40 kg N ha−1 yr−1 of mineral N) treatments provided an amount of available N to the
crop that differed slightly, taking into account immobilization of mineral N from mineral
fertilizer (on average 15 kg N ha−1 yr−1) and net mineralization for the LDM treatment (on
average 9 kg N ha−1 yr−1), as predicted by STICS.

To further refine consideration of the effect between MIN and LDM treatment, STICS
could be further improved by taking better account of N supply. In this study, all the
parameters of the model equations used to simulate soil N transformation processes are
model default values adopted for temperate regions. In the absence of measured field data,
the accuracy with which STICS simulates N transformation processes in the soil could not
be assessed. These processes influence the dynamics of soil mineral N and its availability
to plants [21,22]. Previous studies conducted on a sandy loam field near Quebec City
(QC, Canada) cultivated with perennial timothy (Phleum pratense L.) showed that total soil
mineral N was reasonably well simulated, although soil nitrate content was overestimated
during a certain period of the crop cycle [84]. Assessing the ability of STICS to simulate N
transformation processes under spring barley cropping systems in soils from northeastern
Quebec province should be included in future studies. This lack of soil measurement data
and the absence of observations from a different (independent) site constitute the main
limitation of this study.

In 2005 and 2010, predicted NCAGB and NCG values were lower than the observed
values for all treatments (Figure 5). Rainfall was significantly below the 31-year average
for these two years, with only 176 and 179 mm of cumulative rainfall during the cropping
period, respectively (Table S1). The crop was under water stress and STICS predicted low
NU values (Figure 7a). Drought is known to affect the acquisition of nutrients by roots
and their transport to shoots, resulting in reduced N uptake and plant N in barley [87,88].
STICS thus exaggerates the depressive effect of water stress on N nutrition. A study of
spring wheat at three sites in the Mixedwood Plains Ecozone of eastern Canada showed
that the model’s performance was sensitive to the amount of rainfall during the growing
season [79]. It showed that the model’s performance was better when rainfall was close to
normal in the early growing season.

Field data during the growing season (e.g., AGB and NCAGB) that could be used
in the calibration procedure would help to further improve the prediction of AGB, GY,
NCAGB, NGY, NU, and NAG. This would also make it possible to assess and adjust the
prediction of NU during the crop vegetative stage and N remobilization/uptake during the
grain filling period, as well as the effects of possible N stress. Kherif et al. [89] stated that the
performance of soil–crop models refers not only to the overall accuracy of model predictions,
but also to the ability of models to capture the temporal dynamics of plant and soil variables.
The verification of LAI dynamics which plays a key role in predicting plant biomass
accumulation and the validation of the critical N dilution curve parameters for spring barley
may also be required to predict AGB and NU more precisely. Morissette et al. [40] concluded
that using cultivar-specific N dilution curves instead of the default curve improves STICS
performance and is essential for adequately predicting the N cycle of potato growing
systems. To our knowledge, no critical N dilution curve for spring barley grown in
agricultural soils from the six provinces of eastern Canada (New Brunswick, Newfoundland,
Nova Scotia, Prince Edward Island, Quebec, and Ontario) has been established or at least
validated to date. The default critical N dilution curve parameters used in this study are
those proposed by Zhao [51] for winter barley from data obtained in China. For wheat, a
specific critical N dilution curve was developed for spring wheat in Canada, which differed
from the reference curve used for winter wheat in Europe [90]. For maize, the critical N
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dilution curve established in France was found to be valid in several agricultural sites
within the province of Quebec [91], although Jégo et al. [92] have proposed a specific critical
N dilution curve for Canada using the Bayesian approach for data analysis.

5. Conclusions

This study enabled us to calibrate STICS for spring barley cultivars grown on gleysolic
soil under the climatic conditions (continental cold and humid climate) of Saguenay–Lac-
Saint-Jean (northeastern Quebec). The STICS calibration procedure required the adjustment
of cultivar parameters in particular, thus confirming the genericity of most plant parameters
defined in STICS. Good agreement was obtained between annual observed and predicted
values of AGB, GY, NCAGB, NCG, NU, and NAG during 31 years of spring barley mono-
culture, although there was a greater dispersion for the plant N attributes. STICS also
reproduced the trends of observed values effectively with different tillage systems and
N sources applied at the locally recommended N rates. Model errors were generally due
to dispersion error rather than systematic error, indicating that the model was correctly
parameterized. Although the simulation results for the spring barley grown at the studied
experimental site were satisfactory, they could be improved with additional data, particu-
larly data obtained during the growing season to capture the temporal dynamics of plant
and soil variables. The validation of the STICS predictions for the temporal dynamics of
spring barley growth and N uptake in response to various crop management approaches
and contrasting soil types is also needed using observations from independent datasets
obtained from different sites. Our results will serve as the basis for future studies aimed at
understanding and quantifying long-term changes in C and N fluxes in cropping systems
with spring barley in the same site and experimental set-up.
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Canada. Table S2. Key cropping practices and measurements at harvest of the 2 spring barley
cultivars. Table S3. Performance of STICS with default parameters and newly calibrated parameters
to predict spring barley aboveground biomass, grain yield, N concentration in aboveground biomass
and grain, plant shoot N uptake, and N amount in grain. Table S4. Mean of field-observed and
STICS-predicted values for aboveground biomass, grain yield, N concentration in aboveground
biomass and grain, N uptake by plant, and N amount in grain as affected by N source type and tillage
system. Figure S1. Aboveground biomass, grain yield, N concentration in aboveground biomass, N
uptake by plant, and N amount in grain as affected by N source type or tillage system. Figure S2.
Scatterplots showing the trend in field-observed spring barley aboveground biomass and grain yield
as a function of N source type. Figure S3. STICS-predicted soil mineral N content down to 100 cm
depth over 31 years according to management system.

Author Contributions: N.R.: conceptualization, methodology, data curation, formal analysis,
writing—original draft. G.J., A.M. and A.K.: supervision, validation, writing—review and edit-
ing. C.M.: funding acquisition, supervision, validation, writing—review and editing. N.Z.: fund-
ing acquisition, resources, supervision, validation, writing—review and editing. J.L.: validation,
writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Funding: This research is funded by Agriculture and Agri-Food Canada’s A-base program and is
supported by the French government’s “Eiffel Excellence Scholarship” (grant No. P769751A).

Data Availability Statement: Data generated or analyzed during this study are available from the
corresponding author upon reasonable request.

Acknowledgments: We are deeply grateful to the dedicated staff of Agriculture and Agri-Food
Canada at Normandin Experimental Farm for their fieldwork during the study. We also thank Gilles
Bélanger for his excellent comments on an early draft of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/agronomy13102540/s1
https://www.mdpi.com/article/10.3390/agronomy13102540/s1


Agronomy 2023, 13, 2540 23 of 26

References
1. Ministère de l’Agriculture, des Pêcheries et de l’Alimentation du Québec. Sectoral Diagnostic Portrait of the Grain Industry in Quebec;

Bibliothèque et Archives Nationales du Québec: Montréal, QC, Canada, 2020; 51p. (In French)
2. Bulman, P.; Mather, D.E.; Smith, D.L. Genetic Improvement of Spring Barley Cultivars Grown in Eastern Canada from 1910 to

1988. Euphytica 1993, 71, 35–48. [CrossRef]
3. Holland, J.; Brown, J.L.; MacKenzie, K.; Neilson, R.; Piras, S.; McKenzie, B.M. Over Winter Cover Crops Provide Yield Benefits for

Spring Barley and Maintain Soil Health in Northern Europe. Eur. J. Agron. 2021, 130, 126363. [CrossRef]
4. Statistics Canada. Estimated Area, Yield, Production, Average Farm Price and Total Farm Value of Major Field Crops, in Metric

and Imperial Units. 2008. Available online: https://www.pgq.ca/articles/services-dinformation-sur-les-marches/portrait-
quebec/production-quebec/ (accessed on 13 January 2023).

5. Friedt, W.; Horsley, R.D.; Harvey, B.L.; Poulsen, D.M.; Lance, R.C.; Ceccarelli, S.; Grando, S.; Capettini, F. Barley Breeding History,
Progress, Objectives, and Technology. In Barley: Production, Improvement, and USES; Blackwell Publishing: Hoboken, NJ, USA,
2011; pp. 160–220.

6. Bélanger, G.; Bootsma, A. Impacts of climate change on agriculture in Quebec [Paper presentation]. In Proceedings of the
Présentation au 65e congrès de l’Ordre des Agronomes du Québec, Quebec, Sainte-Foy, 7–8 June 2002; 20p. (In French)

7. Agriculture and Agri-Food Canada. Effective Growing Degree Days—Quebec. 2010. Available online: https://publications.gc.
ca/collections/collection_2018/aac-aafc/A59-55-2010-eng.pdf (accessed on 23 February 2023).

8. Moore, T. Soils of Quebec. In Digging into Canadian Soils. An Introduction to Soil Science; Canadian Society of Soil Science: Pinawa,
MB, Canada, 2021; pp. 401–409.

9. Setter, T.L.; Burgess, P.; Waters, I.; Kuo, J. Genetic Diversity of Barley and Wheat for Waterlogging Tolerance in Western Australia.
In Proceedings of the 9th Australian Barley Technical Symposium, Melbourne, VIC, Australia, 12–16 September 1999; Australian
Barley Technical Symposium Inc.: Melbourne, VIC, Australia, 1999; pp. 1–7.

10. Cao, W.; Moss, D.N. Temperature and Daylength Interaction on Phyllochron in Wheat and Barley. Crop Sci. 1989, 29, 1046–1048.
[CrossRef]

11. Juskiw, P.; Jame, Y.-W.; Kryzanowski, L. Phenological Development of Spring Barley in a Short-Season Growing Area. Agron, J.
2001, 93, 370–379. [CrossRef]

12. Ma, B.L.; Smith, D.L. Apical Development of Spring Barley under Field Conditions in Northeastern North America. Crop Sci.
1992, 32, 144–149. [CrossRef]

13. Russell, G. Barley Knowledge Base; Joint Research Centre: Brussels, Belgium, 1990; p. 135.
14. Oteng-Darko, P.; Yeboah, S.; Addy, S.N.T.; Amponsah, S.; Danquah, E.O. Crop Modeling: A Tool for Agricultural Research—A

Review. J. Agric. Res. Develop. 2013, 2, 1–6.
15. Quintero, D.; Díaz, E. A Comparison of Two Open-Source Crop Simulation Models for a Potato Crop. Agron. Colomb. 2020, 38,

382–387. [CrossRef]
16. Basso, B.; Cammarano, D.; Troccoli, A.; Chen, D.; Ritchie, J.T. Long-Term Wheat Response to Nitrogen in a Rainfed Mediterranean

Environment: Field Data and Simulation Analysis. Eur. J. Agron. 2010, 33, 132–138. [CrossRef]
17. Salo, T.J.; Palosuo, T.; Kersebaum, K.C.; Nendel, C.; Angulo, C.; Ewert, F.; Bindi, M.; Calanca, P.; Klein, T.; Moriondo, M.

Comparing the Performance of 11 Crop Simulation Models in Predicting Yield Response to Nitrogen Fertilization. J. Agric. Sci.
2016, 154, 1218–1240. [CrossRef]

18. Cheng, M.; Wang, H.; Fan, J.; Xiang, Y.; Liu, X.; Liao, Z.; Abdelghany, A.E.; Zhang, F.; Li, Z. Evaluation of AquaCrop Model for
Greenhouse Cherry Tomato with Plastic Film Mulch under Various Water and Nitrogen Supplies. Agric. Water Manag. 2022, 274,
107949. [CrossRef]

19. Saadi, S.; Pattey, E.; Jégo, G.; Champagne, C. Prediction of Rainfed Corn Evapotranspiration and Soil Moisture Using the STICS
Crop Model in Eastern Canada. Field Crops Res. 2022, 287, 108664. [CrossRef]

20. Lammoglia, S.-K.; Moeys, J.; Barriuso, E.; Larsbo, M.; Marín-Benito, J.-M.; Justes, E.; Alletto, L.; Ubertosi, M.; Nicolardot, B.;
Munier-Jolain, N. Sequential Use of the STICS Crop Model and of the MACRO Pesticide Fate Model to Simulate Pesticides
Leaching in Cropping Systems. Environ. Sci. Pollut. Res. 2017, 24, 6895–6909. [CrossRef] [PubMed]

21. Yin, X.; Beaudoin, N.; Ferchaud, F.; Mary, B.; Strullu, L.; Chlébowski, F.; Clivot, H.; Herre, C.; Duval, J.; Louarn, G. Long-Term
Modelling of Soil N Mineralization and N Fate Using STICS in a 34-Year Crop Rotation Experiment. Geoderma 2020, 357, 113956.
[CrossRef]

22. Yin, X.; Kersebaum, K.-C.; Beaudoin, N.; Constantin, J.; Chen, F.; Louarn, G.; Manevski, K.; Hoffmann, M.; Kollas, C.; Armas-
Herrera, C.M.; et al. Uncertainties in Simulating N Uptake, Net N Mineralization, Soil Mineral N and N Leaching in European
Crop Rotations Using Process-Based Models. Field Crops Res. 2020, 255, 107863. [CrossRef]

23. Constantin, J.; Beaudoin, N.; Launay, M.; Duval, J.; Mary, B. Long-Term Nitrogen Dynamics in Various Catch Crop Scenarios: Test
and Simulations with STICS Model in a Temperate Climate. Agric. Ecosyst. Environ. 2012, 147, 36–46. [CrossRef]

24. Gardi, M.W.; Memic, E.; Zewdu, E.; Graeff-Hönninger, S. Simulating the Effect of Climate Change on Barley Yield in Ethiopia
with the DSSAT-CERES-Barley Model. Agron. J. 2022, 114, 1128–1145. [CrossRef]

25. Yin, X.; Kersebaum, K.C.; Kollas, C.; Manevski, K.; Baby, S.; Beaudoin, N.; Öztürk, I.; Gaiser, T.; Wu, L.; Hoffmann, M. Performance
of Process-Based Models for Simulation of Grain N in Crop Rotations across Europe. Agric. Syst. 2017, 154, 63–77. [CrossRef]

https://doi.org/10.1007/BF00023465
https://doi.org/10.1016/j.eja.2021.126363
https://www.pgq.ca/articles/services-dinformation-sur-les-marches/portrait-quebec/production-quebec/
https://www.pgq.ca/articles/services-dinformation-sur-les-marches/portrait-quebec/production-quebec/
https://publications.gc.ca/collections/collection_2018/aac-aafc/A59-55-2010-eng.pdf
https://publications.gc.ca/collections/collection_2018/aac-aafc/A59-55-2010-eng.pdf
https://doi.org/10.2135/cropsci1989.0011183X002900040045x
https://doi.org/10.2134/agronj2001.932370x
https://doi.org/10.2135/cropsci1992.0011183X003200010031x
https://doi.org/10.15446/agron.colomb.v38n3.82525
https://doi.org/10.1016/j.eja.2010.04.004
https://doi.org/10.1017/S0021859615001124
https://doi.org/10.1016/j.agwat.2022.107949
https://doi.org/10.1016/j.fcr.2022.108664
https://doi.org/10.1007/s11356-016-6842-7
https://www.ncbi.nlm.nih.gov/pubmed/27194012
https://doi.org/10.1016/j.geoderma.2019.113956
https://doi.org/10.1016/j.fcr.2020.107863
https://doi.org/10.1016/j.agee.2011.06.006
https://doi.org/10.1002/agj2.21005
https://doi.org/10.1016/j.agsy.2017.03.005


Agronomy 2023, 13, 2540 24 of 26

26. Pasquel, D.; Roux, S.; Richetti, J.; Cammarano, D.; Tisseyre, B.; Taylor, J.A. A Review of Methods to Evaluate Crop Model
Performance at Multiple and Changing Spatial Scales. Precis. Agric. 2022, 23, 1489–1513. [CrossRef]

27. Di Paola, A.; Valentini, R.; Santini, M. An Overview of Available Crop Growth and Yield Models for Studies and Assessments in
Agriculture. J. Sci. Food Agric. 2016, 96, 709–714. [CrossRef]

28. Rötter, R.P.; Palosuo, T.; Kersebaum, K.C.; Angulo, C.; Bindi, M.; Ewert, F.; Ferrise, R.; Hlavinka, P.; Moriondo, M.; Nendel, C.
Simulation of Spring Barley Yield in Different Climatic Zones of Northern and Central Europe: A Comparison of Nine Crop
Models. Field Crops Res. 2012, 133, 23–36. [CrossRef]

29. Jame, Y.W.; Cutforth, H.W.; Selles, F.; Campbell, C.A.; Jedel, P.; Kryzanowski, L. Determine the Best Crop Management Option
on Canadian Prairies with a Computerized Decision Support System. In Soils and Crops Workshop; University of Saskatchewan:
Saskatoon, SK, Canada, 1997; pp. 356–363.

30. Brisson, N.; Mary, B.; Ripoche, D.; Hélène Jeuffroy, M.; Ruget, F.; Nicoullaud, B.; Gate, P.; Devienne-Barret, F.; Antonioletti, R.;
Durr, C.; et al. STICS: A Generic Model for the Simulation of Crops and Their Water and Nitrogen Balances. I. Theory and
Parameterization Applied to Wheat and Corn. Agronomie 1998, 18, 311–346. [CrossRef]

31. Brisson, N.; Gary, C.; Justes, E.; Roche, R.; Mary, B.; Ripoche, D.; Zimmer, D.; Sierra, J.; Bertuzzi, P.; Burger, P. An Overview of the
Crop Model STICS. Eur. J. Agron. 2003, 18, 309–332. [CrossRef]

32. Beaudoin, N.; Launay, M.; Sauboua, E.; Ponsardin, G.; Mary, B. Evaluation of the Soil Crop Model STICS over 8 Years against the
“on Farm” Database of Bruyères Catchment. Eur. J. Agron. 2008, 29, 46–57. [CrossRef]

33. Coucheney, E.; Buis, S.; Launay, M.; Constantin, J.; Mary, B.; de Cortázar-Atauri, I.G.; Ripoche, D.; Beaudoin, N.; Ruget, F.;
Andrianarisoa, K.S. Accuracy, Robustness and Behavior of the STICS Soil–Crop Model for Plant, Water and Nitrogen Outputs:
Evaluation over a Wide Range of Agro-Environmental Conditions in France. Environ. Model. Softw. 2015, 64, 177–190. [CrossRef]

34. Lebonvallet, S. Quinoa Establishment and Its Culture Simulation on the Bolivian Altiplano. Ph.D. Thesis, Institut des Sciences
et Industries du Vivant et de l’Environnement (Agro Paris Tech), Avignon, France, 2008. Available online: https://theses.hal.
science/pastel-00003841/ (accessed on 26 January 2023). (In French, with English Abstract).

35. Sierra, J.; Brisson, N.; Ripoche, D.; Noël, C. Application of the STICS Crop Model to Predict Nitrogen Availability and Nitrate
Transport in a Tropical Acid Soil Cropped with Maize. Plant Soil 2003, 256, 333–345. [CrossRef]

36. Corre-Hellou, G.; Faure, M.; Launay, M.; Brisson, N.; Crozat, Y. Adaptation of the STICS Intercrop Model to Simulate Crop
Growth and N Accumulation in Pea–Barley Intercrops. Field Crops Res. 2009, 113, 72–81. [CrossRef]

37. Jégo, G.; Pattey, E.; Bourgeois, G.; Morrison, M.J.; Drury, C.F.; Tremblay, N.; Tremblay, G. Calibration and Performance Evaluation
of Soybean and Spring Wheat Cultivars Using the STICS Crop Model in Eastern Canada. Field Crops Res. 2010, 117, 183–196.
[CrossRef]

38. Jégo, G.; Chantigny, M.; Pattey, E.; Bélanger, G.; Rochette, P.; Vanasse, A.; Goyer, C. Improved Snow-Cover Model for Multi-
Annual Simulations with the STICS Crop Model under Cold, Humid Continental Climates. Agric. For. Meteorol. 2014, 195–196,
38–51. [CrossRef]

39. Jégo, G.; Pattey, E.; Bourgeois, G.; Drury, C.F.; Tremblay, N. Evaluation of the STICS Crop Growth Model with Maize Cultivar
Parameters Calibrated for Eastern Canada. Agron. Sust. Dev. 2011, 31, 557–570. [CrossRef]

40. Morissette, R.; Jégo, G.; Bélanger, G.; Cambouris, A.N.; Nyiraneza, J.; Zebarth, B.J. Simulating Potato Growth and Nitrogen
Uptake in Eastern Canada with the STICS Model. Agron. J. 2016, 108, 1853–1868. [CrossRef]

41. Jégo, G.; Bélanger, G.; Tremblay, G.F.; Jing, Q.; Baron, V.S. Calibration and Performance Evaluation of the STICS Crop Model for
Simulating Timothy Growth and Nutritive Value. Field Crops Res. 2013, 151, 65–77. [CrossRef]

42. Ministère de l’agriculture, des pêcheries et de l’alimentation du Québec. Saguenay-Lac-Saint-Jean Agri-Food Portrait 2010; M. de
l’agriculture, des pêcheries et de l’alimentation, Ed.; Direction Régionale du Saguenay-Lac-Saint-Jean: Saguenay, QC, Canada,
2014. (In French)

43. Lapointe, R. Profil 2005 de La Production Agricole de La Région Du Saguenay-Lac-Saint-Jean; M. de l’agriculture, des pêcheries et de
l’alimentation, Ed.; Direction Régionale du Saguenay-Lac-Saint-Jean: Saguenay, QC, Canada, 2006.

44. Agriculture and Agri-Food Canada. The Normandin Research Farm in Quebec Looks to the Future. Government of Canada.
Available online: https://agriculture.canada.ca/en/agri-info/normandin-research-farm-quebec-looks-future (accessed on 23
September 2023).

45. Lafond, J.; Angers, D.A.; Pageau, D.; Lajeunesse, J. Sustainable Cereal and Forage Production in Dairy-Based Cropping Systems.
Can. J. Plant Sci. 2016, 97, 473–485. [CrossRef]

46. Kong, D.; Choo, T.M.; Narasimhalu, P.; Jui, P.; Ferguson, T.; Therrien, M.C.; Ho, K.M.; May, K.W. Genetic Variation and Adaptation
of 76 Canadian Barley Cultivars. Can. J. Plant Sci. 1994, 74, 737–744. [CrossRef]

47. Isaac, R.A.; Johnson, W.C. Determination of Total Nitrogen in Plant Tissue, Using a Block Digestor. J. Assoc. Off. Anal. Chem. 1976,
59, 98–100. [CrossRef]

48. Beaudoin, N.; Lecharpentier, P.; Ripoche, D.; Strullu, L.; Mary, B.; Leonard, J.; Launay, M.; Justes, E. STICS Soil-Crop Model.
Conceptual Framework, Equations and Uses; Éditions Quæ: Versailles, France, 2022.

49. Brisson, N. Conceptual Basis, Formalisations and Parameterization of the STICS Crop Model; Éditions Quæ: Versailles, France, 2008.
50. Lemaire, G.; Jeuffroy, M.-H.; Gastal, F. Diagnosis Tool for Plant and Crop N Status in Vegetative Stage: Theory and Practices for

Crop N Management. Eur. J. Agron. 2008, 28, 614–624. [CrossRef]

https://doi.org/10.1007/s11119-022-09885-4
https://doi.org/10.1002/jsfa.7359
https://doi.org/10.1016/j.fcr.2012.03.016
https://doi.org/10.1051/agro:19980501
https://doi.org/10.1016/S1161-0301(02)00110-7
https://doi.org/10.1016/j.eja.2008.03.001
https://doi.org/10.1016/j.envsoft.2014.11.024
https://theses.hal.science/pastel-00003841/
https://theses.hal.science/pastel-00003841/
https://doi.org/10.1023/A:1026106208320
https://doi.org/10.1016/j.fcr.2009.04.007
https://doi.org/10.1016/j.fcr.2010.03.008
https://doi.org/10.1016/j.agrformet.2014.05.002
https://doi.org/10.1007/s13593-011-0014-4
https://doi.org/10.2134/agronj2016.02.0112
https://doi.org/10.1016/j.fcr.2013.07.003
https://agriculture.canada.ca/en/agri-info/normandin-research-farm-quebec-looks-future
https://doi.org/10.1139/CJPS-2016-0100
https://doi.org/10.4141/cjps94-132
https://doi.org/10.1093/jaoac/59.1.98
https://doi.org/10.1016/j.eja.2008.01.005


Agronomy 2023, 13, 2540 25 of 26

51. Zhao, B. Determining of a Critical Dilution Curve for Plant Nitrogen Concentration in Winter Barley. Field Crops Res. 2014, 160,
64–72. [CrossRef]

52. Nicolardot, B.; Recous, S.; Mary, B. Simulation of C and N Mineralisation during Crop Residue Decomposition: A Simple Dynamic
Model Based on the C:N Ratio of the Residues. Plant Soil 2001, 228, 83–103. [CrossRef]

53. Saxton, K.E.; Rawls, W.J. Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Sci. Soc.
Am. J. 2006, 70, 1569–1578. [CrossRef]

54. Malhi, S.S.; Johnston, A.M.; Loeppky, H.; Vera, C.L.; Beckie, H.J.; Bandara, P.M.S. Immediate Effects of Time and Method of
Alfalfa Termination on Soil Mineral Nitrogen, Moisture, Weed Control, and Seed Yield, Quality, and Nitrogen Uptake. J. Plant
Nutr. 2007, 30, 1059–1081. [CrossRef]

55. Martel, Y.A.; Lasalle, P. Radiocarbon Dating of Organic Matter from a Cultivated Topsoil in Eastern Canada. Can. J. Soil. Sci. 1977,
57, 375–377. [CrossRef]

56. Guillaume, S.; Bergez, J.-E.; Wallach, D.; Justes, E. Methodological Comparison of Calibration Procedures for Durum Wheat
Parameters in the STICS Model. Eur. J. Agron. 2011, 35, 115–126. [CrossRef]

57. Hickey, L.T.; Germán, S.E.; Pereyra, S.A.; Diaz, J.E.; Ziems, L.A.; Fowler, R.A.; Platz, G.J.; Franckowiak, J.D.; Dieters, M.J. Speed
Breeding for Multiple Disease Resistance in Barley. Euphytica 2017, 213, 64. [CrossRef]

58. Buis, S.; Wallach, D.; Guillaume, S.; Varella, H.; Lecharpentier, P.; Launay, M.; Guerif, M.; Bergez, J.-E.; Justes, E. The STICS Crop
Model and Associated Software for Analysis, Parameterization, and Evaluation. Methods Introd. Syst. Models Agric. Res. 2011, 2,
395–426. [CrossRef]

59. Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. Available online:
https://cran.r-project.org/package=nlme (accessed on 22 September 2023).

60. Alfons, A.; cvTools: Cross-Validation Tools for Regression Models. Vignette, R Foundation for Statistical Computing. Available
online: https://cran.r-project.org/web/packages/cvTools/cvTools.pdf (accessed on 22 September 2023).

61. Correndo, A.A.; Hefley, T.J.; Holzworth, D.P.; Ciampitti, I.A. Revisiting Linear Regression to Test Agreement in Continuous
Predicted-Observed Datasets. Agric. Syst. 2021, 192, 103194. [CrossRef]

62. Falconnier, G.N.; Journet, E.-P.; Bedoussac, L.; Vermue, A.; Chlébowski, F.; Beaudoin, N.; Justes, E. Calibration and Evaluation
of the STICS Soil-Crop Model for Faba Bean to Explain Variability in Yield and N2 Fixation. Eur. J. Agron. 2019, 104, 63–77.
[CrossRef]

63. Jamieson, P.D.; Porter, J.R.; Wilson, D.R. A Test of the Computer Simulation Model ARCWHEAT1 on Wheat Crops Grown in New
Zealand. Field Crops Res. 1991, 27, 337–350. [CrossRef]

64. Piñeiro, G.; Perelman, S.; Guerschman, J.P.; Paruelo, J.M. How to Evaluate Models: Observed vs. Predicted or Predicted vs.
Observed? Ecol. Model. 2008, 216, 316–322. [CrossRef]

65. Correndo, A.A.; Hefley, T.; Holzworth, D.P.; Ciampitti, I.A. R-Code Tutorial: Revisiting Linear Regression to Test Agreement in
Continuous Predicted-Observed Datasets. Harvard Dataverse 2021. [CrossRef]

66. Ho, K.M.; Choo, T.M.; Martin, R.A. AC Maple Barley. Can. J. Plant Sci. 2002, 82, 93–94. [CrossRef]
67. Ho, K.M.; Seaman, W.L.; Choo, T.M.; Martin, R.A.; Rowsell, J.; Guillemette, L.; Dion, Y.; Rioux, S. AC Legend Barley. Can. J. Plant

Sci. 2000, 80, 113–115. [CrossRef]
68. Ho, K.M.; Seaman, W.L.; Choo, T.M.; Martin, R.A. AC Hamilton Barley. Can. J. Plant Sci. 1995, 75, 697–698. [CrossRef]
69. Spaner, D.; Todd, A.G.; McKenzie, D.B. The Effect of Seeding Rate and Nitrogen Fertilization on Barley Yield and Yield

Components in a Cool Maritime Climate. J. Agron. Crop Sci. 2001, 187, 105–110. [CrossRef]
70. Mapfumo, E.; Chanasyk, D.S.; Puurveen, D.; Elton, S.; Acharya, S. Historic Climate Change Trends and Impacts on Crop Yields in

Key Agricultural Areas of the Prairie Provinces in Canada: A Literature Review. Can. J. Plant Sci. 2023, 103, 243–258. [CrossRef]
71. Calderini, D.F.; Dreccer, M.F.; Slafer, G.A. Consequences of Breeding on Biomass, Radiation Interception and Radiation-Use

Efficiency in Wheat. Field Crops Res. 1997, 52, 271–281. [CrossRef]
72. Gallagher, J.N.; Biscoe, P.V. Radiation Absorption, Growth and Yield of Cereals. J. Agric. Sci. 1978, 91, 47–60. [CrossRef]
73. Raj Singh, D.S.; Biswas, B.; Mani, J.K. Radiation Interception and Radiation Use Efficiency in Barley. J. Agrometeorol. 2012, 14,

358–362.
74. Bingham, I.J.; Blake, J.; Foulkes, M.J.; Spink, J. Is Barley Yield in the UK Sink Limited?: I. Post-Anthesis Radiation Interception,

Radiation-Use Efficiency and Source–Sink Balance. Field Crops Res. 2007, 101, 198–211. [CrossRef]
75. Muurinen, S.; Peltonen-Sainio, P. Radiation-Use Efficiency of Modern and Old Spring Cereal Cultivars and Its Response to

Nitrogen in Northern Growing Conditions. Field Crops Res. 2006, 96, 363–373. [CrossRef]
76. Ahmadi, A.; Joudi, M.; Janmohammadi, M. Late Defoliation and Wheat Yield: Little Evidence of Post-Anthesis Source Limitation.

Field Crops Res. 2009, 113, 90–93. [CrossRef]
77. Maydup, M.L.; Antonietta, M.; Guiamet, J.J.; Tambussi, E.A. The Contribution of Green Parts of the Ear to Grain Filling in Old

and Modern Cultivars of Bread Wheat (Triticum Aestivum L.): Evidence for Genetic Gains over the Past Century. Field Crops Res.
2012, 134, 208–215. [CrossRef]

78. Zhang, M.; Gao, Y.; Zhang, Y.; Fischer, T.; Zhao, Z.; Zhou, X.; Wang, Z.; Wang, E. The Contribution of Spike Photosynthesis to
Wheat Yield Needs to Be Considered in Process-Based Crop Models. Field Crops Res. 2020, 257, 107931. [CrossRef]

https://doi.org/10.1016/j.fcr.2014.02.016
https://doi.org/10.1023/A:1004813801728
https://doi.org/10.2136/sssaj2005.0117
https://doi.org/10.1080/01904160701394501
https://doi.org/10.4141/cjss77-042
https://doi.org/10.1016/j.eja.2011.05.003
https://doi.org/10.1007/s10681-016-1803-2
https://doi.org/10.2134/advagricsystmodel2.c14
https://cran.r-project.org/package=nlme
https://cran.r-project.org/web/packages/cvTools/cvTools.pdf
https://doi.org/10.1016/j.agsy.2021.103194
https://doi.org/10.1016/j.eja.2019.01.001
https://doi.org/10.1016/0378-4290(91)90040-3
https://doi.org/10.1016/j.ecolmodel.2008.05.006
https://doi.org/10.7910/DVN/EJS4M0
https://doi.org/10.4141/P00-154
https://doi.org/10.4141/P99-052
https://doi.org/10.4141/cjps95-118
https://doi.org/10.1046/j.1439-037X.2001.00507.x
https://doi.org/10.1139/cjps-2022-0215
https://doi.org/10.1016/S0378-4290(96)03465-X
https://doi.org/10.1017/S0021859600056616
https://doi.org/10.1016/j.fcr.2006.11.005
https://doi.org/10.1016/j.fcr.2005.08.009
https://doi.org/10.1016/j.fcr.2009.04.010
https://doi.org/10.1016/j.fcr.2012.06.008
https://doi.org/10.1016/j.fcr.2020.107931


Agronomy 2023, 13, 2540 26 of 26

79. Sansoulet, J.; Pattey, E.; Kröbel, R.; Grant, B.; Smith, W.; Jégo, G.; Desjardins, R.L.; Tremblay, N.; Tremblay, G. Comparing the
Performance of the STICS, DNDC, and DayCent Models for Predicting N Uptake and Biomass of Spring Wheat in Eastern Canada.
Field Crops Res. 2014, 156, 135–150. [CrossRef]

80. Hastie, T.; Tibshirani, R.; Friedman, J.; Hastie, T.; Tibshirani, R.; Friedman, J. Model Assessment and Selection. In The Elements of
Statistical Learning: Data Mining, Inference, and Prediction; Springer: Berlin/Heidelberg, Germany, 2009; pp. 219–259. [CrossRef]

81. Spaner, D.; McKenzie, D.B.; Todd, A.G.; Simms, A.; MacPherson, M.; Woodrow, E.F. Six Years of Adaptive and On-Farm Spring
Cereal Research in Newfoundland. Can. J. Plant Sci. 2000, 80, 205–216. [CrossRef]

82. Maharjan, G.R.; Prescher, A.-K.; Nendel, C.; Ewert, F.; Mboh, C.M.; Gaiser, T.; Seidel, S.J. Approaches to Model the Impact of
Tillage Implements on Soil Physical and Nutrient Properties in Different Agro-Ecosystem Models. Soil Tillage Res. 2018, 180,
210–221. [CrossRef]
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