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Abstract: Regional assessments of soil organic carbon (SOC) trends and the carbon sequestration
potential of alternative management practices (AMP) are highly relevant for developing climate
change mitigation strategies for the agricultural sector. Such studies could benefit from simplified
SOC modeling approaches on the scale of administrative units as this often corresponds to the level
of policy-making and data availability. However, there is a risk of systematic errors in such scaling
operations. To overcome this problem, we performed a scaling experiment where we simulated the
SOC dynamics of the arable soils of the State of Saxony (Germany) across a series of scales using the
CANDY Carbon Balance (CCB) model. Specifically, we developed model set-ups on four different
administrative levels (NUTS1, NUTS2, NUTS3, and LAU) and evaluated the simulation results of
the upscaled models against a 500 m grid-based reference model. Furthermore, we quantified the
carbon sequestration potential of selected AMP scenarios (addressing field grass, cover crops, and
conservation tillage) across all scales. The upscaled model set-ups adequately simulated the SOC
trends of Saxon arable land compared to the grid-based reference simulation (scaling error: 0.8–3.8%),
while providing significant benefits for model application, data availability and runtime. The carbon
sequestration potential of the AMP scenarios (1.33 Mt C until 2050) was slightly overestimated
(+0.07–0.09 Mt C) by the upscaled model set-ups. Regardless of the scale of model set-up, we showed
that the use of aggregated statistical input data could lead to a systematic underestimation of SOC
trends. LAU and NUTS3 levels were shown to be a suitable compromise for effectively quantifying
SOC dynamics and allowed for an acceptable spatial prioritization of AMPs. Such simplified, scale-
adapted assessments are valuable for cross-regional comparisons and for communication to and
among decision-makers, and might provide a quantitative basis for discussions on the effectiveness
of AMPs in various stakeholder processes.

Keywords: soil organic carbon; soil carbon sequestration; four-per-mille initiative; scaling; climate
change mitigation; NUTS; administrative regions; reduced tillage; field grass; cover crops

1. Introduction

Soil organic carbon (SOC) is an important contributor to global carbon cycles, and
increasing the carbon storage in soils could contribute to climate change mitigation [1]. The
importance of this positive impact is underlined by the “4 per 1000” initiative that has been
launched at the COP 21 [2,3]. This initiative aims to demonstrate that agricultural soils
can play a crucial role in food security and climate change, stimulating current discussions
about the feasibility of CO2 certificates for carbon sequestration in soils [4,5]. Political,
socio-economic and environmental drivers affect the carbon storage of agricultural soils by
changing carbon turnover conditions (e.g., climate change and choice of tillage system) or
the amount of carbon influx into soil (e.g., from cultivated crops and organic amendments
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from livestock or biogas plants) [6]. The scale of origin and impact of these drivers can
be very different. Developing scale-adequate strategies for managing and fostering SOC
storage thus requires an assessment of the impact of different drivers and measures across
various scales as well. This is also important for reaching targeted communication, as a
scale-adapted view would ease discussion between different groups of stakeholders [7].

Consistent approaches are thus needed that could be used for assessing the effects of
specific drivers and measures on SOC over different scales and thus be able to be locally
adapted and prioritize specific targets or measures. Ideally, such an approach should be
easily applicable and allow quantitative assessments, at least on most of the scales that
are relevant for policy and environmental management. Hierarchical administrative units
could be an important basis for scaling levels [8]. Although administrative units typically
do not have a relation to environmental processes such as carbon sequestration, they are
essential in terms of external drivers and data [9]. They have their own sets of policies, are
relevant in a variety of planning processes and are often used for cross-regional comparison
and communication. Furthermore, most of the relevant statistical datasets are maintained
and provided on the level of administrative units.

A prominent example for such administrative units are the European ‘Nomenclature
of Territorial Units for Statistics’ (NUTS) and ‘Local Administrative Units’ (LAU). The
current classification of Europe lists four levels of administrative units: NUTS1 (92 regions),
NUTS2 (244 regions), NUTS3 (1215 regions) and LAU (99,387 regions) [10]. Several studies
that developed spatially distributed estimations of SOC stocks on regional to large scales
at least partly made use of input datasets that were aggregated on those administrative
levels [11–14]. Lugato et al. [12], for example, estimated the SOC stocks of agricultural
soils across Europe using NUTS3 and NUTS2 level statistics on agricultural land-use and
management in the agro-ecosystem SOC model CENTURY. Kaczynski et al. [14] modeled
the regional SOC trends of a 1800 km2 case study area using the Rothamsted C model
(RothC) and LAU level information on agricultural management. Farina et al. [15] used
statistical datasets (e.g., on crop yields) for the spatially distributed modeling of SOC stock
changes and CO2 emissions in Southern Italy using the RothC10N model and RothCIS tool.
Additionally, outside of Europe, statistical input data on administrative levels are often
used without an alternative for SOC modeling. Begum et al. [16], for example, estimated
the regional carbon sequestration potentials of rice cropland on the level of 64 districts of
Bangladesh using the model DayCent because most of the information available was on
the district level.

For many of the existing large-scale simulations of SOC stocks and trends, the scal-
ability of the quantitative approaches is sparsely tested. Due to a lack of data, different
datasets with varying spatial resolutions are often combined in a high-resolution model
set-up. This raises two important questions: (1) does the use of aggregated input data (such
as agricultural parameters on the NUTS level) lead to systematic errors in the modeled
SOC dynamic? (2) is it reasonable (for certain research questions) to model SOC dynamics
directly on the level of administrative units and thus make use of the various benefits such
an upscaled approach promises to provide? To the best of our knowledge, this paper is the
first study that explicitly addresses those questions and presents a scaling experiment for
the assessment of alternative management practices on arable land, which could provide
important insights for regional SOC management.

We simulated the current stocks and trends in SOC for the arable soils of the State
of Saxony (NUTS 1 region in Eastern Germany) using five different model set-ups. In the
first four set-ups, the spatial resolution of the models and all input data were scaled to
the four administrative levels of Europe (LAU, NUTS3, NUTS2, and NUTS1). The fifth
set-up was a 500 m grid-based reference model of the arable land of Saxony [17] that was
used to evaluate the simulation quality of the upscaled model set-ups. Furthermore, we
selected two alternative management practices (AMP) for our scaling experiment that
are in line with Saxony’s policy efforts and assessed their effects on all of the mentioned
scales. Specifically, the AMPs addressed policies that aim to increase the share of grass
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mixtures in the fodder system and prevent soil erosion by increasing the use of winter
cover crops and conservation tillage [18]. On all of the five scales considered in this study,
the same model approach as well as the type and source of input data were used, but all
set-ups had their own spatial resolution of input data. We expect that such simplified and
scale-adapted assessments of different drivers, measures and pathways could be valuable
for political, economic and environmental considerations as well as easing applicability
and communication.

2. Materials and Methods
2.1. Study Area

The Federal State of Saxony is a NUTS1 region in Eastern Germany (Figure 1), which
is dominated by agricultural land-use (52%). The arable areas (7330 km2) are managed
rather intensively due to the fertile soils (esp. loamy silt and sandy silt) and accordingly
high yield potential. However, three “agro-economic regions” can be distinguished which
are characterized by quite different agricultural activities, landscape characteristics and
soils [19]: (1) the heath landscape in the north/north-east, (2) the loess region in the
center, and (3) the low mountain range in the south/south-west of Saxony. A detailed
characterization of these regions is given in Table S1 (Supplementary Materials). The
climate is temperate, but the lowlands (8–10 ◦C; 500–800 mm) are considerably drier and
milder than the low mountain range (6–8 ◦C; 900–1200 mm). The most important crops
cultivated in Saxony are different types of cereals (esp. winter wheat, winter barley, winter
rye, and triticale) as well as winter oilseed rape and silage maize.
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Figure 1. Workflow for assessing the SOC dynamics of arable land of Saxony and the carbon
sequestration potential of alternative management practices (AMP) across a series of scales. Upscaled
model set-ups on four different administrative levels of Europe (NUTS1, NUTS2, NUTS3, and LAU)
were evaluated against the simulation results of a 500 m grid-based reference model.

2.2. Modeling Approach
2.2.1. CCB Model

The CCB model (CANDY Carbon Balance; [20]) is a simplified version of the CANDY
model (CArbon and Nitrogen DYnamics; [21,22]) and requires less input data because
it was developed for practice-oriented research questions. It has been validated over
various site conditions and cropping systems in Europe and applied in several case studies,
especially in Germany and Austria [17,20,23–32]. CCB was selected for this study as it is
capable to simulate in a specific regional mode [17], in which the model can be driven by
proportional coverages and area averages of different management activities (cropping,
tillage, fertilization, etc.) in any kind of spatial modeling unit (e.g., field, farm, pixel, or
municipality). The ability to use common input data such as crop share statistics is essential
for being able to model directly on the level of administrative units.

CCB simulates carbon dynamics in annual time steps considering three different pools
of soil organic matter (SOM) (active, stabilized, and long-term stabilized) as well as a set
of pools for fresh organic matter (FOM). FOM pools are differentiated by the origin of



Agronomy 2023, 13, 1159 4 of 19

the organic substances, specifically organic amendments (e.g., slurry), crop by-products
(e.g., straw) and crop residues (e.g., roots). The simulation of carbon turnover is controlled
by land management and site conditions. To quantify turnover conditions, CCB uses the
‘Biological Active Time (BAT)’ approach [33], which provides an absolute measure that
considers soil physical parameters, climate (precipitation and temperature) and information
on tillage systems. In CCB, the decomposition of FOM results in a ‘soil carbon reproduction
flux’ (Crep), which recreates SOM. The calculation of Crep considers the properties of the
FOM and allows the calculation of an integrated value across all different FOM sources. A
detailed description of CCB’s pools and fluxes is given by Franko et al. [20] and in Figure
S1 (Supplementary Materials).

The indicators BAT and Crep can be used to describe and compare the state and
development of SOC across different sites or regions [34]. Their usage in CCB allows for
and simplifies the scalability of model set-ups. The spatially upscaled model set-ups in our
study should have a similar amount of Crep and BAT as the reference model.

2.2.2. Reference Model Set-Up

The basis of our scaling experiment was a grid-based CCB model set-up for the
arable soils of Saxony that uses the best information available to local public authorities
of agriculture and water sectors, including inter alia field-discrete cultivation data [17].
The grid-based reference model was developed by Witing et al. [17] and introduced a
‘regional-mode’ of the CCB model, which allows the handling of various spatially and
temporally aggregated input datasets related to agricultural management and climate. The
results of this reference model are used to evaluate the performance of a second set of CCB
models that are set-up with aggregated input data (as described below). The reference
model was set-up on a 500 m grid and included 29,319 modeling units (Figure 1), where
each unit had a specific parameterization of soil, climate and agricultural management. Soil
properties were derived from the soil map series of Saxony [35], climate data originated
from the regional climate information system ReKIS (www.rekis.org) and cultivation data
(crops, yields, tillage systems, fertilizer, etc.) were based on field-scale IACS (Integrated
Administration and Control System) data and regional statistics at the municipality level.
Data on agricultural management were available for five time periods (2000, 2005, 2010,
2011 and 2012) and stayed constant between two periods. The simulation period covered
17 years between 1998 and 2014. More details on the set-up of the reference model are
given by Witing et al. [17]. The initialization of SOC levels was updated in accordance
with the approach of Drexler et al. [36], which provides typical organic matter contents for
the agricultural soils of Germany based on land-use, soil texture, C/N ratio and annual
precipitation (for more details, see Supplementary Materials, Explanation S1).

2.3. Upscaling of Model Set-Ups, Agricultural Parameters, Climate and Soils

The case study region Saxony is a NUTS1, unit and its further administrative division
includes 3 NUTS2 units, 13 NUTS3 units and 414 LAU units [10]. A large set of environ-
mental and agricultural statistics relevant for SOC modeling is available especially on the
level of NUTS regions, either provided by Eurostat [37,38] or in the statistical reports of
the individual administrative units (e.g., [39] for Saxony). However, within our study we
did not directly use those statistics, but aggregated the more detailed input data of our
grid-based reference model to the level of administrative units. We thus mimicked the
procedure of creating agricultural census data, which typically aggregate the information
of smaller reporting units. In doing so, we excluded the potential quality issues of different
publicly available datasets and focused our analysis on the effects that may arise when
upscaling model set-ups.

The spatial references for the data aggregation procedure were the NUTS and LAU
boundaries of the year 2016 [40] (©EuroGeographics for the administrative boundaries).
Based on a spatial overlay, each of the 29,319 grid-based modeling units of the refer-
ence model were assigned to a specific administrative unit. This was carried out for all

www.rekis.org
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four administrative levels. Subsequently, for each input dataset of the reference model,
an aggregation operation was conducted. Agricultural parameters were aggregated us-
ing the area-weighted mean of the grid-based datasets within one administrative unit,
specifically considering the harvest areas and yields of 20 crop types, cultivation of cover
crops, management of crop by-products, tillage systems, and fertilizer applications. As
the “regional mode” of CCB is capable of processing area shares of crops and manage-
ment operations [17], the results of the input data aggregation could be directly used in
the upscaled model set-ups. With respect to climate data, the area-weighted mean was
calculated from the 500m grid for the annual mean temperature and annual precipitation.
In contrast to agricultural management and climate, soil texture is rather constant and is
barely changed by management and other external drivers other than erosion. Further-
more, soil texture and the related soil physical properties are important drivers of SOC
storage [41]. Thus, we kept all of the existing soil types and did only aggregate the shares
of different soil types within one administrative unit. In the CCB model set-ups, each soil
type of an administrative unit was thus considered as an own modeling unit, but could be
seen as a property of that administrative unit without spatial reference. Accordingly, all
soil types within one administrative region received the same input data on agricultural
management and climate. For the initialization of SOC levels, the same approach that is
used in the reference model was applied [36]. Table S2 (Supplementary Materials) provides
a descriptive summary of the aggregation procedure for all relevant datasets.

2.4. Alternative Management Practices

We simulated two alternative management practices (AMPs) on all the five scales
considered in this study (500 m grid, LAU, NUTS3, NUTS2, and NUTS1). Both AMPs
are in line with current policy efforts in Saxony, which are aimed at increasing the share
of grass mixtures in the fodder system, and preventing soil erosion by increasing the use
of cover crops and conservation tillage [18,42]. These alternative management practices
were selected to analyze the sensitivity and suitability of the upscaled model set-ups
regarding two different types of processes—the input and turnover of soil-related carbon.
The scenario assumptions of both AMPs are summarized in Table 1.

Table 1. Parameterization of the alternative management practice (AMP) scenarios summarized on
the level of Saxony (NUTS1).

Crop Shares and Soil
Management 2014 2015–2050

AMP-1 silage maize 11.4% 7.4% (−4%) *
winter barley 12.2% 7.9% (−4.3%) *

field grass 3.1% 11.4% (+8.3%)
winter cover crops 6.6% 16.6% (+10%)

AMP-2 conservation tillage 37.1% 56.0% (+18.9%) **
* cultivated areas reduced by 35% (compared to the status of 2014) and transferred to field grass; ** 30% of the
areas with conventional soil management were converted into conservation tillage areas.

To address the changes in carbon input, we considered an increase in field grass
cultivation, based on a reduction of silage maize and winter fodder barley as well as an
increased use of winter cover crops on areas that are cultivated by summer crops (silage
maize, sugar beet, and summer barley). In order to enable the comparability of the AMP-1
scenario across all model set-ups, we applied relative changes to the mix of cultivated
crops of each modeling unit of each model set-up. Specifically, the areas cultivated with
silage maize and winter fodder barley were reduced by 35% within each modeling unit
(e.g., from 100 ha to 65 ha), which led to absolute changes on the level of Saxony shown in
Table 1. Accordingly, the absolute share of field grass cultivation increased by 8.3% in the
first AMP scenario. Furthermore, the absolute share of areas under cover crop cultivation
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in Saxony was increased by 10%, which ensured winter soil coverage of nearly all areas
under summer crop cultivation within the AMP-1 scenario.

As a second alternative management practice (AMP-2), an increase in conservation
tillage was parameterized, which changed the turnover conditions of fresh and soil organic
matter. Specifically, 30% of the areas with conventional soil management were converted
into minimum tillage areas within each modeling unit, which led to a total increase in
conservation tillage of 18.9% for Saxony (Table 1). The simplified scenario assumptions are
meant to represent a “moderate” degree of AMP implementation with the main objective
of testing the scaling experiment of this study.

For implementing the AMP scenarios into the models, we adapted the management
parameterization of the year 2014 within all five model set-ups and simulated this setting
for 37 years (2014–2050). The final year of the scenario runs was set to be 2050 as this is
the target year for reaching net-zero emissions adopted by the IPCC [43] and the European
Green Deal [44]. To have a clear baseline, the original 2014 parameterization was applied
to this simulation period as well. This ‘business-as-usual’ (BAU) scenario served as a
basis for comparing the effects of the two alternative management practices. All other
parameterizations including climate were kept and repeated during the scenario runs.

2.5. Model Application, Post-Processing and Evaluation

In total, 15 different models were set-up, considering the aforementioned five scales
(500 m grid, LAU, NUTS3, NUTS2, and NUTS1) as well as three scenarios (BAU, AMP-
1, and AMP-2) for each scale. All model set-ups were pre- and post-processed using
the R statistical software [45], and the simulations were carried out using CCB version
20.16.2.26. The results of the grid-based reference models were aggregated to the level of
administrative units and compared to the results of the upscaled model set-ups. Due to
the concept and structure of CCB, all soil types of an administrative unit were modeled
individually in the upscaled model set-ups and the related carbon stocks were aggregated
during post-processing. Both AMP scenarios were related to the BAU scenario to extract
the AMP driven effects from the overall trends in SOC of the period 2014–2050. All analyses
were carried out for the case study of Saxony as a whole as well as for all spatial units
of the upscaled model set-ups. To identify the drivers behind potential scaling errors, a
series of correlation analyses were conducted considering CCB internal indicators (Crep
and BAT), soil properties as well as different datasets that had been aggregated within
the upscaling process (e.g., climate parameters and tillage systems). Specifically, spatial
dispersion parameters (the regional standard deviation) of the mentioned predictors were
used. The analysis of the CCB databases as well the visualization of the results were
carried out in R using the packages ggplot2 [46], ggthemes [47], PerformanceAnalytics [48],
PupillometryR [49], raster [50], reshape2 [51], RODBC [52], scales [53] and viridis [54].

3. Results
3.1. Comparing Model Complexities and Overall Trends in SOC Dynamics

The case region of Saxony (NUTS1 region) represents the main spatial reference unit of
this study. Table 2 provides an overview of the five model set-ups for Saxony and the SOC
dynamics simulated with different input data sets for the reference period (1998–2014). The
differences in model complexity were substantial between the five set-ups, as demonstrated
by the number of modeling units that ranged between 49 and 29,319. Only for the grid-
based approach, the number of modeling units was equal to the number of spatial units,
as in this set-up a spatially explicit soil type, agricultural management and climate data
set was assigned to each grid cell. The upscaled set-ups considered the distribution of soil
types in each spatial unit (without their exact location; see Section 2.3) and an averaged
climate and agricultural management condition. Obviously, the number of soil types per
administrative region increases with larger administrative levels. While each LAU included
4.8 different soil types on average, this number was already 18.1 for each NUTS3 unit
and up to 49 for the NUTS1 level of Saxony. The difference in model complexity can
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also be described by database sizes and the computation time of the respective model
set-ups, which ranged between 7–467 megabytes and from a few seconds to several hours,
respectively, on a standard personal computer. The initialization of soil carbon levels was
similar for all levels of aggregation and only minor deviations to the grid-based model
set-up were observed (Table 2).

Table 2. Overview of model complexities and general trends in SOC dynamics of the Saxon arable
land (NUTS1 region) simulated for the reference period (1998–2014). A grid-based reference set-up is
compared with four upscaled model set-ups simulating SOC dynamics at the level of administrative
units.

Simulation
Level

Number
of Spatial

Units

Number
of

Modeling
Units

SOC Ini-
tialization

[Mt]

Soil Carbon Sequestration within the
Simulation Period 1998–2014

[Mt C] [kg C ha−1

y−1] [‰ y−1] *

GRID 29,319 29,319 41.40 2.65 212.56 3.76
LAU 414 1980 41.40 2.63 210.92 3.73

NUTS3 13 253 41.40 2.56 205.81 3.64
NUTS2 3 100 41.41 2.55 204.48 3.62
NUTS1 1 49 41.40 2.56 205.75 3.64

* based on SOC stocks of 1998.

Despite the differences in model complexity, the simulated SOC trends of the case
study region as a whole were very similar across all model set-ups. All models predicted
a carbon sequestration level in the Saxon arable soils of about 2.6 Mt C (+/−0.05 Mt C)
for the reference period (1998–2014). This equals to an overall annual increase in carbon
storage of 205–213 kg C ha−1 y−1 or 3.6–3.8‰ when related to the SOC stocks of the
model initialization. However, we could observe that all model set-ups using aggregated
input data showed an underestimation of the simulated SOC trends when compared to
the grid-based reference simulation. While the LAU-level simulation was still close to the
reference simulation (−0.8%), the stronger upscaled simulations showed more significant
deviations of up to −3.8% for the NUTS2 set-up.

3.2. Spatial Analysis and Scale Transitions

To investigate if the upscaling of the model set-ups to and across administrative levels
leads to systematic errors in the simulated SOC dynamics, we compared the individual
sub-regions of each aggregation level with the reference simulation. Figure 2 shows maps
of the average annual change in SOC stocks simulated with the five different model set-ups.
In this section, we show the simulated SOC trends per mille (‰) per year and thus relate
the results to the initial SOC stocks of 1998, which allows easy relation to the targets of the
four-per-mille initiative [2,3].

Obviously, the upscaled simulations can only assess the overall trends for the sim-
ulated spatial units and not their inner heterogeneity. Thus, the total range of simulated
SOC trends is considerably smaller, especially when simulated above the scale of LAU.
However, when analyzing the regional trends on the level of individual administrative
units, all the aggregated model set-ups could reproduce the results of the grid-based ref-
erence simulation in a reasonable range (see the scatter plots in Figure 2c). The scatter
plots also show that there were no clear outliers where the upscaling did not work for
specific administrative units. The root-mean-square error (RMSE) for this trend comparison
ranges between 0.06‰ for the LAU regions and 0.18‰ for the NUTS2 regions. Accordingly,
the mean absolute error (MAE) varies between 0.04‰ (LAU regions) and 0.14‰ (NUTS2
regions), while having a mean overall trend of 3.7–3.8‰ per year in the upscaled model
set-ups. A correlation analysis between the aggregated and grid-based simulation of SOC
trends shows an adjusted r2 of 0.999 for all four administrative levels considered. However,
the slopes of the linear regression models decrease with the increasing size of the admin-
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istrative units: 1.001 (LAU), 0.929 (NUTS3), and 0.902 (NUTS2), indicating a systematic
underestimation of SOC trends in the highly upscaled set-ups. t
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Figure 2. SOC trends (‰ per year based on SOC stocks of 1998) of the case study area Saxony (NUTS1
region in Germany) simulated with five different levels of data aggregation for the period 1998–2014.
(a) Results of the grid-based reference simulation (29,319 grid cells). White areas represent non-arable
land. (b) Results of the simulations using upscaled model set-ups on the level of administrative
units (NUTS1, NUTS2, NUTS3, and LAU). (c) Scatter plots comparing results of the upscaled and the
(grid-based) reference model set-up on the level of the individual administrative units (NUTS1: n = 1;
NUTS2: n = 3; NUTS3: n = 13; LAU: n = 414). ©EuroGeographics for the administrative boundaries.

Figure 3a shows the distribution of the observed model error when comparing the
upscaled model set-ups with the grid-based reference simulation for each administrative
unit. For the individual LAU regions, the model error ranges between +0.15‰ and −0.35‰,
which equals +10.1 and −17.3 kg C ha−1 y−1. However, this needs to be related to the
mean trend of SOC stocks of 212 kg C ha−1 y−1 across all regions in Saxony. With the
increasing size of the simulated regions, the range of the observed model errors decreases,
but at the same time shifts toward a more distinct underestimation of SOC trends. For
the NUTS2 model, set-up the average annual trend in SOC stocks of all three spatial
units was underestimated, while for the NUTS3 set-up, 11 out of 13 regions showed an
underestimation of SOC trends (Figure 3). The NUTS1 set-up (with only one spatial unit
simulated) showed slightly better results than the NUTS2 set-up.

While for the LAU set-up the simulation errors of the individual regions are rather
evenly distributed within Saxony, a clear spatial pattern can be observed for the NUTS2
and NUTS3 set-ups (Figure 3b). Here, an underestimation of SOC trends can be observed
especially in the northern and western regions of the case study area. These regions are
characterized by a variety of different soil types (sandy soils and loamy silt soils) and
cultivation systems.

3.3. Analyzing the Drivers behind Errors in Upscaled SOC Simulations

The scaling of SOC simulations goes along with aggregating the input and turnover
conditions of soil-related carbon, which both have a strong influence on the simulated
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dynamics in SOC stocks. Within CCB, the carbon flux from FOM to SOC (Crep) and the
turnover variable BAT, that aggregates the environmental conditions, are the two most
important indicators for describing the state and development of SOC. Our results show
that Crep and BAT were scaled satisfactorily to and across administrative levels.
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non-arable land. ©EuroGeographics for the administrative boundaries.

For all model set-ups, the average annual sum of the carbon reproduction flux Crep of
Saxony was 0.93 Mt C y−1 within the simulation period 1998–2014. The upscaled model set-
ups showed a slight overestimation of the total Crep flux in a range of +0.06–+0.11%, which
equals about 1.3 kg C ha−1 y−1. A somewhat higher range of deviations was observed
when considering the individual administrative regions (NUTS2 regions: −0.09–+0.05%;
NUTS3 regions: −0.17–+0.34%; LAU regions: −1.3–+0.92%) or the annual development
of Crep (e.g., NUTS1: −0.91–+0.93%). However, the analysis did not show a systematical
overestimation or underestimation of the Crep flux for the upscaled model set-ups.

Regarding the carbon turnover conditions of Saxony, a minor underestimation of the
total BAT was observed for the aggregated model set-ups with a range between −0.07% for
the LAU set-up and −0.93% for the NUTS1 set-up. The tendency for the underestimation
of BAT was confirmed when analyzing the individual regions on the LAU and NUTS
levels (NUTS2 regions: −0.46–+0.09%; NUTS3 regions: −0.92–+0.14%; LAU regions: −1.65–
+1.19%). The SOC turnover indicator BAT also showed higher annual deviations, of, e.g.,
up to −3.02–+1.48% for the NUTS1 set-up.

To analyze if model upscaling and thus a loss of variation in the drivers leads to
systematic errors in simulated SOC dynamics, we carried out a series of correlation analyses,
starting with the main indicators Crep and BAT, but also considering the original factors that
drive carbon turnover conditions (climate parameters, tillage system, and soil properties).
Specifically, spatial dispersion parameters of the mentioned predictors were correlated to
the observed absolute errors in the simulated trends of SOC. Accordingly, Figure 4 shows a
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set of correlation matrices for the LAU-level (414 spatial units) and the NUTS3-level (13
spatial units) simulations. Due to the low number of data points, this analysis was not
available for the NUTS2 (3 units) and NUTS1 (1 unit) set-ups.
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Figure 4. Correlation matrices between absolute errors of the upscaled model set-ups (comparing
SOC trends of the upscaled model set-ups with the grid-based reference simulation on the level of
individual administrative units) and the spatial dispersion (standard deviation) of a set of predictor
variables describing the input and turnover conditions of soil-related carbon. (a) Correlation matrices
for the LAU-level model set-up; (b) Correlation matrices for the NUTS3-level model set-up. The
predictors of the matrices are the soil carbon reproduction flux (Crep), carbon turnover indicator BAT,
soil fine particle content (FAT), conservation tillage shares (Cons_till), annual mean temperature
(Temp) and annual precipitation (Precip). For each predictor, its regional dispersion (standard
deviation—SD) within an administrative unit was calculated from the reference dataset and used
for the correlation matrix. The distribution of each variable is shown on the diagonal. Below this
diagonal, the bivariate scatter plots with a fitted line are displayed. Above the diagonal, the value of
the correlation is shown as well as its significance level (stars), where the p-values of <0.001, <0.01 are
associated with the symbols *** and **, respectively.

For the LAU-level simulation (Figure 4a), the matrices show a rather low correlation
between the predictor variables and the observed model error. Nevertheless, a high spatial
dispersion of a region’s turnover conditions (BAT) and specifically its soil fine particle con-
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tent (FAT) as well as conservation tillage shares (Cons_till) significantly favors higher model
errors in simulated SOC trends (p-values < 0.001). For the NUTS3 simulation (Figure 4b),
this picture becomes more pronounced and strong correlations between the dispersion of
Crep, BAT, FAT and conservation tillage and the model error were found. However, the
results are affected by cross-correlations, e.g., between BAT and Crep, as variations in soil
properties often go along with variations in yields. The climate-related predictors (regional
dispersion in temperature and precipitation) had no statistically significant correlation with
the observed errors of the aggregated models.

An individual correlation matrix for LAU regions with high and with low variability
in BAT (Figure 5) could be used to further investigate the role of regional carbon turnover
conditions in the observed model error. The analysis showed that for administrative
units with low standard deviation in regional carbon turnover conditions (Figure 5a),
the observed model errors were lower and there was no significant correlation of the
model error with any of the predictors. For administrative units with high variability in
turnover conditions (Figure 5b), the observed model error could be partially explained
by the regional variability in Crep, FAT and conservation tillage. The range in the spatial
dispersion of Crep and conservation tillage shares was nearly the same in both matrices, but
the variability in soil fine particle content increased. As shown in Figure S2 (Supplementary
Materials) the relevance of regional deviations in soil fine particle content (FAT) is higher
for regions with high spatial dispersion of Crep. For regions with a high spatial dispersion
of both Crep and BAT, Crep was the most significant predictor for the observed error of the
LAU-level model set-up (Figure S3).
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Figure 5. Correlation matrices between the absolute errors of the LAU-level model set-up and the
spatial dispersion (standard deviation) of a set of predictor variables. (a) Correlation matrix for a
subset of LAU regions that show a low variability in carbon turnover conditions (BAT); (b) correlation
matrix for a subset of LAU regions that show a high variability in carbon turnover conditions
(BAT). The predictors of the matrices are the soil carbon reproduction flux (Crep), soil fine particle
content (FAT), conservation tillage shares (Cons_till), annual mean temperature (Temp) and annual
precipitation (Precip). For each predictor, its regional dispersion (standard deviation—SD) within an
administrative unit was calculated from the reference dataset and used for the correlation matrices.
The distribution of each variable is shown on the diagonal. Below this diagonal, the bivariate scatter
plots with a fitted line are displayed. Above the diagonal, the value of the correlation is shown as
well as its significance level (stars), where the p-values of <0.001, <0.01, <0.05 are associated with the
symbols ***, ** and *, respectively.
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3.4. Assessing Alternative Management Practices across Scales

Two scenarios were used to assess the ability of the upscaled model set-ups for
quantifying the carbon sequestration potential of alternative management practices (AMP).
Both AMP scenarios were related to a ‘business-as-usual’ scenario to extract the AMP-
driven effects from the overall trends in SOC stocks. Our results show that the upscaled
model set-ups could reproduce the results of the grid-based reference model for both
scenarios in a reasonable range, although some limitations do apply.

For the first AMP, addressing an increase in soil carbon input based on changes in the
cultivation of fodder crops and cover crops resulted in a carbon sequestration of 0.56 Mt C
within the grid-based reference simulation (2014–2050), which equals 20.7 kg C ha−1 y−1.
The upscaled model set-ups underestimated these results to a small extent, ranging between
−0.13 kg C ha−1 y−1 (LAU set-up) and −0.71 kg C ha−1 y−1 (NUTS1 set-up), which equals
−0.6% and −3.4% of the overall AMP effect, respectively. Figures 5b and 6a show that on
the level of individual administrative regions, the simulated carbon sequestration potentials
of the first AMP scenario are scattered along the 1:1 line for all model set-ups. For the
individual LAU regions, the deviation of the model error was highest and included some
relevant outliers (Figure 6c).
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The second AMP scenario addressed a different driver of SOC dynamics and reduced 
carbon turnover conditions by increasing the use of conservation tillage within Saxony. 
For the reference simulation, this scenario resulted in a SOC sequestration of 0.77 Mt C for 
the period 2014–2050, which equals to 28.2 kg C ha−1 y−1. The upscaled model set-ups sig-
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Figure 6. Carbon sequestration potential of the first alternative management practice (AMP-1;
increasing soil carbon influx based on increased cultivation of field grass and cover crops) simulated
with five different model set-ups. (a) Results of the grid-based reference simulation compared to
the four upscaled model set-ups. (b) Same content as (a), but using a logarithmic scale for better
visualization of carbon sequestration in smaller LAU regions. (c) Model errors in the assessment of
AMP-1 for individual administrative units.

The second AMP scenario addressed a different driver of SOC dynamics and reduced
carbon turnover conditions by increasing the use of conservation tillage within Saxony.
For the reference simulation, this scenario resulted in a SOC sequestration of 0.77 Mt C
for the period 2014–2050, which equals to 28.2 kg C ha−1 y−1. The upscaled model set-
ups significantly overestimated these results within a range between +2.7 and +4.2 kg
C ha−1 y−1, which equal +9.5% and +15.0% of the overall AMP effect, respectively. The
absolute model error on the level of Saxony was highest for the NUTS1 set-up, which
simulated a total SOC sequestration of the second AMP scenario of 0.88 Mt C. Figure 7c
compares the simulated effects of the conservation tillage scenario on the level of individual
administrative regions, showing that the deviation of the model error was highest in the
LAU-level model set-up. Furthermore, the scatterplots of Figure 7a show that the results
of the upscaled simulations are clearly above the 1:1 line and systematically increase for
administrative units with high C sequestration potential.



Agronomy 2023, 13, 1159 13 of 19

Agronomy 2023, 13, x FOR PEER REVIEW 13 of 19 
 

 

error on the level of Saxony was highest for the NUTS1 set-up, which simulated a total 
SOC sequestration of the second AMP scenario of 0.88 Mt C. Figure 7c compares the sim-
ulated effects of the conservation tillage scenario on the level of individual administrative 
regions, showing that the deviation of the model error was highest in the LAU-level model 
set-up. Furthermore, the scatterplots of Figure 7a show that the results of the upscaled 
simulations are clearly above the 1:1 line and systematically increase for administrative 
units with high C sequestration potential. 

 
Figure 7. Carbon sequestration potential of the second alternative management practice (AMP-2; 
reducing carbon turnover conditions by increasing the use of conservation tillage) simulated with 
five different model set-ups. (a) Results of the grid-based reference simulation compared to the four 
upscaled model set-ups. (b) Same content as (a), but using a logarithmic scale for better visualization 
of carbon sequestration in smaller LAU regions. (c) Model errors in the assessment of AMP-2 for 
individual administrative units. 

The spatial distribution of the carbon sequestration potential simulated with both 
AMP scenarios is mapped in Figure S4 (Supplementary Materials). Accordingly, the high-
est total carbon sequestration can be reached in the loess regions of central Saxony. The 
NUTS3- and LAU-level model set-ups allowed an acceptable spatial prioritization of 
AMPs, which was not the case for the set-ups on the scales above. 

4. Discussion 
Effective management of the SOC stocks of arable land requires an understanding of 

the scalability of the drivers affecting the SOC dynamics. Furthermore, it is necessary to 
find appropriate reference scales that simplify the applicability, scalability and communi-
cation of SOC assessments. Ideally, a consistent approach could be used for assessing the 
effects of specific drivers and measures on SOC over different scales and thus enable the 
local adaptation and prioritization of targets or measures. In this paper, we discuss ad-
ministrative units as a promising spatial basis for scaling levels, and demonstrate the po-
tential and limitations of such an approach. We also discuss whether or not the use of 
aggregated statistical data sources may lead to an underestimation of regional SOC trends 
regardless of the actual process model in use and the scale of its set-up. For each point of 
discussion, we conclude with recommendations for how to better incorporate scale-re-
lated aspects in the assessment and management of SOC. 

4.1. Administrative Units as an Adequate Compromise for Scaling SOC Assessments, Communi-
cation and Policy-Making 

Like many other ecosystem services, soil carbon sequestration tends to be heteroge-
neously distributed over space. Due to partly existing mismatches on the scale of produc-
tion, management and benefits the dynamics of carbon sequestration need to be evaluated 
and assessed across different scales [9]. Ecosystem services are frequently analyzed and 
mapped in the highest possible resolution and later aggregated to a desired spatial unit, 

Figure 7. Carbon sequestration potential of the second alternative management practice (AMP-2;
reducing carbon turnover conditions by increasing the use of conservation tillage) simulated with
five different model set-ups. (a) Results of the grid-based reference simulation compared to the four
upscaled model set-ups. (b) Same content as (a), but using a logarithmic scale for better visualization
of carbon sequestration in smaller LAU regions. (c) Model errors in the assessment of AMP-2 for
individual administrative units.

The spatial distribution of the carbon sequestration potential simulated with both
AMP scenarios is mapped in Figure S4 (Supplementary Materials). Accordingly, the highest
total carbon sequestration can be reached in the loess regions of central Saxony. The NUTS3-
and LAU-level model set-ups allowed an acceptable spatial prioritization of AMPs, which
was not the case for the set-ups on the scales above.

4. Discussion

Effective management of the SOC stocks of arable land requires an understanding
of the scalability of the drivers affecting the SOC dynamics. Furthermore, it is necessary
to find appropriate reference scales that simplify the applicability, scalability and commu-
nication of SOC assessments. Ideally, a consistent approach could be used for assessing
the effects of specific drivers and measures on SOC over different scales and thus enable
the local adaptation and prioritization of targets or measures. In this paper, we discuss
administrative units as a promising spatial basis for scaling levels, and demonstrate the
potential and limitations of such an approach. We also discuss whether or not the use of
aggregated statistical data sources may lead to an underestimation of regional SOC trends
regardless of the actual process model in use and the scale of its set-up. For each point of
discussion, we conclude with recommendations for how to better incorporate scale-related
aspects in the assessment and management of SOC.

4.1. Administrative Units as an Adequate Compromise for Scaling SOC Assessments,
Communication and Policy-Making

Like many other ecosystem services, soil carbon sequestration tends to be hetero-
geneously distributed over space. Due to partly existing mismatches on the scale of
production, management and benefits the dynamics of carbon sequestration need to be
evaluated and assessed across different scales [9]. Ecosystem services are frequently an-
alyzed and mapped in the highest possible resolution and later aggregated to a desired
spatial unit, which is often the management level in policy-making [8]. Despite the averag-
ing effect, which results in a loss of information, this approach seems to be adequate for soil
carbon-related assessments [9,55], which is not always the case for other ecosystem services
(e.g., tourism and maple syrup and timber production [9,55]). However, the availability
of some key datasets (e.g., agricultural parameters) of regional SOC assessments is often
limited to larger scales—specifically, low-resolution statistics on the level of organizational
boundaries or administrative units, which is also equal to the level of policy-making.
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The results of our study show that the simulation of SOC dynamics on the scale
of administrative units can be feasible and lead to significant benefits for model set-up,
application and runtime. The degree of model simplification was substantial, while the
simulation error introduced by upscaling the model set-ups was in an acceptable range in
our case study set-up. The LAU-level set-up reduced the number of modeling units by a
factor of 15 (6.8% of the units of the grid-based reference setup), while the NUTS1-level set-
up even resulted in a reduction by a factor of 600 (0.17% of the grid-based reference setup).
At the same time, the model scaling error on the level of Saxony was −0.8% and −3.2%
for the LAU- and NUTS1-level set-ups, respectively, and was thus in a reasonable range,
bearing in mind the uncertainties that come along with large-scale assessments. Obviously,
the decision of whether or not such a simplified assessment is acceptable depends on the
scale of interest, and higher errors have been observed for individual units on smaller
administrative levels.

Upscaling the modeling framework to administrative units led to a simplified ap-
plication of CCB and easy scenario implementation, and allowed for scalability across
administrative levels. By using two contrasting scenarios, we showed that the approach
could be used for a scale-adequate quantification of the anticipated effects of alternative
management practices (AMPs) on carbon sequestration. Here, the simulation of AMPs
addressing changes in soil carbon input (e.g., cultivated crops, residue management, and
organic fertilizer) was shown to be more robust on larger scales than AMPs were, influ-
encing carbon turnover conditions (e.g., tillage systems). In the latter case, we observed
an overestimation of the carbon sequestration potential in the upscaled model set-ups of
up to 15%. As administrative regions are also often the level of policy-making, communi-
cation and cross-regional comparisons, the approach shown in this study could promote
discussions on the effectiveness of AMPs on a quantitative basis, which could be helpful in
various stakeholder processes.

The scaling experiment presented in this study represents an idealized framework
of the overall concept. By upscaling the input data of our reference model to the level
of administrative units, we ensured that the scaling effects we observed were not caused
by different types and qualities of data sources. However, we showed that this type of
scaling is reasonable as well as that CCB is a capable tool for this kind of analysis. We
expect that other soil carbon models may be suitable for such scaling operations as well,
given that these models accept input data in the form of proportional coverages and area
averages of different management activities. One example of such a model that could be
used to confirm our results is the C-N-P model (carbon-nitrogen-phosphorus model; a
further development of CCB) [56,57]. Furthermore, it is essential to consider that at least
the distribution of soil types in a region should be included in an upscaled model set-up.
An exclusion of soil types, e.g., by using the dominant soil of an administrative unit, will
strongly affect the overall scaling error. For very heterogeneous regions, especially in terms
of soils and yield potential, the upscaling of input data could lead to systematic errors
(see also the following Section 4.2). However, this effect was rather minor for the case
study of Saxony despite the diversity of its agricultural systems, landscape characteristics
and soils. Regarding the administrative levels of Europe, the LAU regions were shown
to be the most suitable compromise between model simplification and observed model
errors. However, the model set-ups on the larger NUTS3, NUTS2 and NUTS1 levels also
provided scale-adequate results and had the benefit of better data availability and relevance
to communication and policies.

4.2. Data-Driven Underestimation of SOC Trends in Regional Assessments

Our results indicate that regional heterogeneity in the carbon input and turnover condi-
tions of a study area may drive systematic errors in regional SOC assessments. Specifically,
we observed a slight, but systematic underestimation of SOC trends within our upscaled
model set-ups. While in our study this error was introduced by the upscaled modeling
approach, it might be relevant for all regional assessments of SOC that make use of regional
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statistics in their input data. Due to the widespread limitations in data availability, the
use of statistical datasets on administrative levels is quite common in regional to large
scale estimations of SOC stocks [11–16]. We showed that with increasing heterogeneity
in turnover conditions (e.g., that driven by different soil types or tillage systems), the use
of aggregated input data (especially in agricultural management) leads to an increasing
model error.

This effect can be best discussed with the example of a fictional region that has two
different soil types: (1) sandy soils with high carbon turnover conditions and low yield
potential and (2) silty soils with lower SOC turnover conditions and high yield potential.
Obviously, both soil regions have different amounts of biomass available to be returned
into the soil, which may lead to vastly different steady-state levels of SOC. The agricultural
parameters (e.g., yield) reported in the statistical datasets of this fictional region will only
provide an average value across both soil types, which might then be applied as a uniform
value to both soils types within a model set-up. Accordingly, an overestimation of the
carbon influx into the sandy soils and an underestimation of the carbon influx into the silty
soils can be expected. However, as the residence time of carbon in sandy soils is shorter
than that in silty soils, the virtual transfer of carbon from silty soils to sandy soils leads to
an underestimation of a region’s SOC sequestration. This effect is purely input data-driven
and occurs regardless of the model in use or the scale of model set-up.

With a series of correlation analyses, we showed the relevance of this effect and it
became clear that regional heterogeneity in soil properties and tillage systems are the most
relevant variables that drive the scaling error in our framework. For regions that have high
turnover conditions for soil-related carbon, the regional heterogeneity in soil carbon input
levels also becomes relevant, which is not the case for regions with low heterogeneity in
turnover conditions. The overall effect on our case study results was rather low; however,
we recommend that regional SOC assessments consider this effect in their uncertainty
analyses [24].

4.3. Supporting SOC Sequestration in the Case Study Region, Saxony

The SOC stocks of Saxon arable land show a positive trend within the reference
period due to positive developments in agricultural management practices such as the
increased use of conservation tillage [17,58]. Within our study, we quantified a total carbon
sequestration in the arable soils of 2.6 Mt C for the period 1998–2014, which equals to a
trend of 3.7‰ per year based on the SOC stocks of 1998. This is considerably higher than
the results reported by Witing et al. [17]. The updates applied in the initialization of CCB
SOC pools in accordance with the approach of Drexler et al. [36] were the main reason for
the differences observed and underlined the widespread challenges of model initialization
in regional SOC assessments [59,60].

Our results also show that an increased use of conservation tillage as well as increased
cultivation of field grass and cover crops could substantially support future SOC sequestra-
tion in Saxony. We observed that moderate changes in management (an absolute increase
of 8.3% in field grass and 10% in conservation tillage) could potentially store an additional
1.33 Mt C (48.9 kg C ha−1 y−1) in Saxon arable soils until 2050. This is lower than the results
of similar scenarios that have been reported for the arable land of Great Britain [61], but is
still in a reasonable range. Future studies should investigate other potential management
actions as well as effective and reasonable degrees of implementation, which were not the
focus of this study. Promising management activities in the local context are, for example,
related to the management of crop by-products and residues, self-planted fallow greening,
or the adapted management of field margins [18,42]. Additionally, the biogas sector became
an important factor for the SOC dynamics in Saxony [62], and together with implications
of upcoming changes on climate [63,64] and dietary habits, a re-evaluation of the carbon
fluxes of the agricultural system may be required [65].

The use of conservation tillage showed higher carbon sequestration potential in Saxony
than the increased cultivation of field grass and cover crops did. However, CCB did only
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simulate the carbon dynamics of the topsoil (30 cm), and the potential negative impacts
of reduced tillage on the SOC levels of deeper soil layers could not be investigated [66,
67]. Furthermore, management decisions need to consider that SOC accumulation rates
decrease over time and are always accompanied by major changes in nitrogen cycles and
stocks [17,68].

5. Conclusions

Regional and quantitative assessments of SOC stocks and trends as well as of the
carbon sequestration potential of alternative management practices (AMP) are highly
relevant to developing climate change mitigation strategies for the agricultural sector.
However, such assessments are still rarely performed due to limitations in the availability
of input data and the complexity of model set-ups. This study showed that a simplified,
upscaled assessment of AMPs on the level of administrative units can be feasible for
several applications. By using the “regional mode” of the CCB model, we could apply a
consistent approach for quantifying SOC dynamics over different scales, which enabled
the local adaption and prioritization of targets or measures. In general, and not only
for upscaled model set-ups, modelers need to be aware that the use of statistical input
data (esp. in agricultural management) may lead to a systematic underestimation of SOC
trends, regardless of the model in use. However, simplified and scale-adapted assessments
of SOC dynamics using commonly available data could be valuable for cross-regional
comparisons, communication and policy-making, and could provide a quantitative basis
for discussions on the effectiveness of AMPs in various stakeholder processes. Regarding
the administrative levels of Europe, the LAU and NUTS3 regions were shown to be the
most suitable compromise between model simplification, data availability and observed
model errors, and allowed the acceptable spatial prioritization of AMPs.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/agronomy13041159/s1, Table S1: Agro-economic regions of Saxony;
Table S2: Descriptive summary of the data aggregation procedure; Explanation S1: Initialization of
SOC-levels; Figure S1: Pools and fluxes of the CCB model; Figure S2: Correlation matrices for LAU
units with high/low spatial dispersion in the carbon influx into SOC (Crep); Figure S3: Correlation
matrix for LAU units with high spatial dispersion in carbon turnover conditions (BAT) as well as in
the carbon influx into SOC (Crep); Figure S4: Maps of the simulated carbon sequestration potential of
two alternative management practices.
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