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Abstract: The Hilbert–Huang transform (HHT) has been used as a powerful tool for analyzing
nonlinear and nonstationary time series. Soil loss is controlled by complicated physical processes
and thus fluctuates with nonlinearity and nonstationarity over time. In order to further clarify
the relationship between rainfall, surface runoff, and sediment yield, this study adopted the HHT
to analyze these characteristics through multiple time scales and investigated their relationship
through time-dependent intrinsic correlation (TDIC) in the time series. A six-year study (2015–2020)
was conducted on sloping farmlands to explore the relationships between soil loss and rainfall in
southwest China. Time series of soil loss and rainfall were identified as the relevant characteristics at
different time scales based on the method of HHT. Local correlation between the soil loss and runoff
was carried out by the method of TDIC. The original time series of the rainfall, runoff, and soil loss
were decomposed into eight intrinsic mode functions (IMFs) and a residue by ensemble empirical
mode decomposition (EEMD). The residue indicated that the rainfall and runoff increased and then
decreased during the maize-growing season from 2015 to 2020, whereas the soil loss gradually
decreased. IMF1 and IMF2 accounted for nearly 80% of the temporal variations in rainfall, runoff,
and soil loss, indicating that the variables varied the most at short time scales. The TDIC analysis
showed that strong and positive correlations between the soil loss, rainfall, and runoff prevailed over
the entire time domain at the scales of IMF1 and IMF2, indicating the rapid response of the soil loss
to rainfall and runoff at short time scales. Time-varying correlations were observed at the IMF3–IMF5
scales. At the IMF7 scale, an evident switchover in the nature of the correlation was identified during
the years 2018 and 2019; this could be related to a sudden rainstorm under low vegetation coverage
conditions. The EEMD-based TDIC tool is an effective means to clarify the relationship between soil
loss, rainfall, and runoff. Our results provide a better understanding of the relationship between
soil loss and rainfall varied with time at multiple time scales. Short-term heavy rainfall and rapid
surface runoff are the important factors causing serious soil and water loss on a short time scale in a
mountainous region with yellow soil, which is of great significance for the construction of a regional
soil erosion prediction model.

Keywords: soil loss; Hilbert–Huang transform (HHT); rainfall; runoff; time-dependent intrinsic
correlation (TDIC); multiple time scales

1. Introduction

Soil loss can cause land degradation, grain reduction, eutrophication, etc., and has
become a major threat to agricultural ecosystem sustainability [1–3]. Sloping farmlands
are believed to be the main sources of soil loss in watersheds, particularly in the hilly
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areas of China [4]. This has led to great concern regarding the fluctuation of soil loss
under long-term agricultural management [5]. However, soil loss is controlled by different
physical processes, each with a specific time scale of variability, and fluctuates at multiple
time scales [6–9]. The fact that, in nature, the effects of different processes at multiple scales
do not follow the principle of superposition indicates the system is nonlinear and nonsta-
tionary [10]. Interpreting the variables based on the measurement scale may disregard
some characteristics of different time scales, leading to confused outcomes [9,11]. Therefore,
the classical analysis of soil loss may be deficient, as it only considers a single time scale [7].

Time series analysis is perceived as having the capability to resolve soil loss time series
for different time scales [12]. However, traditional methods (such as the Fourier transform)
are inadequate, as they can only analyze linear and stationary time series [13–15]. An
alternative technique, termed the wavelet transform, has become popular in investigations
of hydrological data and comprises distinguishing and classifying different sequence
processes in a time series [16,17]. However, this approach is generally only appropriate
for linear and nonstationary datasets, and a prior mother function is required to run its
procedures [14]. Moreover, the choice of the mother function may lead to nonrobust
results [12,18]. At present, the HHT has been used as a powerful tool for analyzing
nonlinear and nonstationary time series owing to its empirical, intuitive, direct, and self-
adaptive nature [12,19,20]. The HHT is composed of empirical mode decomposition (EMD)
and Hilbert spectral analysis (HSA). Using the former, the original time series can be
decomposed into a collection of intrinsic mode functions (IMFs) and a residue. With the
latter, the instantaneous frequency of each IMF is obtained using the Hilbert transform,
which visualizes the time–frequency–amplitude characteristics of the time series [12,14,18].
However, relatively few explorations or applications of the HHT have been reported in the
field of soil erosion [12]. In addition, one of the main disadvantages of EMD concerns mode
mixing (the existence of obtained modes in multiple time scales or vice versa), as this may
lead to physically meaningless frequencies and, thus, misleading interpretations [12,13].
To overcome mode mixing, Huang and Wu (2008) [20] developed an optimized EMD
algorithm called ensemble empirical mode decomposition (EEMD), which proved much
better for identifying the inherent variations of time series at multiple time scales [12].

In summer-rain-fed agriculture, the soil loss is modulated by climatically driven
fluctuations, even though agricultural and other factors also influence the processes of soil
loss [21]. Therefore, rainfall and the subsequent runoff play indispensable roles in soil loss
processes [22]. Understanding the relationship between soil loss and its driving factors
is essential. Although past efforts have been conducted to investigate the links between
soil loss, rainfall, and runoff at both the plot scale [8,23–26] and watershed scale [27,28],
most of these investigations have been subject to limitations imposed by the linearity
and stationarity of the data. The classical correlation can only reflect global information
based on a single scale and thus may ignore strong local correlations for nonlinear and
nonstationary time series [29]. Therefore, applying a running correlation procedure may
provide greater insight into the correlations between soil loss, rainfall, and runoff in a
multi-scale approach [18]. TDIC was proposed by Chen et al. (2010) [30] and can track
the temporal evolution of the local correlation between two modes using adaptive sliding
windows based on the EMD. Owing to these advantages, TDIC has been applied in many
fields, such as marine science [13,31,32], hydrometeorology [6,18], and air pollution [29,33].
To the best of our knowledge, however, few studies have employed TDIC to investigate the
correlations between soil loss, rainfall, and runoff.

Yellow soil plays an important role in agricultural production in southwestern China,
where maize is the dominant grain. In this area, however, sloping farmlands represent the
major sediment resources owing to poor natural conditions and irrational anthropogenic
management, thereby hindering agricultural ecosystem sustainability. The maize season
overlaps with the regional rainy period (May to September), during which the rainfall
received accounts for approximately 80% of the annual precipitation [34]. Owing to the
irregularity of rainfall, the soil loss fluctuates greatly during the maize-growing season.
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Therefore, this study was conducted with the following aims: (1) to analyze the charac-
teristics of rainfall, runoff, and soil loss at multiple time scales using the HHT, and (2) to
identify the correlations between the soil loss and rainfall and between the soil loss and
runoff at different time scales using TDIC.

The traditional single-scale cross-correlation analysis may ignore the key changes and
influencing factors in these complex processes. In order to further clarify the relationship
between rainfall, surface runoff, erosion, and sediment yield, this study adopted HHT and
TDIC to analyze the characteristics and correlations of rainfall, runoff, and soil loss to serve
the construction of a regional soil erosion prediction model.

2. Materials and Methods
2.1. Study Area

The field experiments were conducted at the research base of Sichuan Agricultural
University (31◦0034′′ N, 103◦3652′′ E) in the yellow soil area of southwestern China
(Figure 1a,b). The mean elevation was 773.5 m in the study area. This region has a subtropi-
cal humid monsoon climate and an average annual precipitation of 1218.4 mm, and 80% of
the precipitation falls approximately between May and September. According to the USDA
soil taxonomy, the soil type is yellow soil, classified as an Ultisol [35], which is susceptible
to erosion.
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Figure 1. Location of the study area in Sichuan Province: (a) experimental plot in Dujiangyan County
(b) and schematic diagram of experimental plot (c).

2.2. Experimental Design and Data Acquisition

To record the rainfall, runoff, and soil loss, six experimental field plots with a 15◦ slope
gradient were established in 2014 (Figure 1c).

Each plot had a length of 4 m and width of 2 m, and cross-ridge tillage, one of the
main tillage measures used in the area, was implemented. In April 2015, 30,000 kg/hm2 of
organic fertilizer was used as the base fertilizer before sowing. The maize-growing season
of each year followed the local farming behaviors within the year. As the maize-growing
season overlapped with the rainy season, the daily rainfall, runoff, and soil loss were
recorded during the maize-growing season from 2015 to 2020. The rainfall was measured
using a rain gauge. The runoff and soil loss were collected after each rainfall, and the runoff
was determined using the volumetric method; then, the mixture was oven-dried at 105 ◦C
to measure the soil loss. Detailed information on the maize-growing season from 2015 to
2020 is presented in Table 1.
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Table 1. Recorded information on each maize-growing season from 2015 to 2020.

Year Starting Date Ending Date Duration (Days)

2015 6th May 5th September 123
2016 16th April 21st August 128
2017 19th April 21st August 125
2018 18th April 15th August 120
2019 16th April 29th August 136
2020 9th April 21st August 135

2.3. Methods
2.3.1. Hilbert–Huang Transform

The HHT comprises two parts: EMD and HSA. EMD uses an adaptive dyadic filter
bank to decompose input data into several IMFs and extract a residue representing the
trend of the original time series. Sifting is completed when the last component is monotonic
or constant, as in this case, where no additional IMFs can be extracted [15,19,33]. The
flowchart (Figure 2) and equation for the HHT are as follows:

X(t) =
n

∑
k=1

IMFk(t) + R(t) (1)

where R(t) is the residue, k represents the numerical value of each sequential IMF, and n is
the number of IMFs.
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Figure 2. Schematic diagram of HHT.

The IMFs indicate the different scales of the original time series and form the physical
basis of the data [19,30]. An IMF must satisfy the two conditions to represent a proper
output [19]. Additional information on the detailed sifting process of EMD can be found in
Massei and Fournier (2012) [13]. However, one of the main problems of the EMD algorithm
is mode mixing [33], which likely alters the interpretation of the physical meaning of each
IMF. To avoid this drawback, Huang and Wu (2008) [20] proposed the EEMD algorithm,
which adds white noise to the original data; the white noise can eventually be removed by
averaging the components during the decomposition process.

The mean period (T) of each mode can be calculated [31]. The variance contribution
(VC, %) indicates the percent contribution of each IMF to the overall variation of the time
series and can be computed as follows [6]:

VC = Vk

/ n

∑
k=1

(Vk + R) (2)

where Vk is the variance of each IMF and residue (R).
The second part is of the HHF is the HSA. The instantaneous frequency of each IMF

is obtained by the Hilbert transform [19], and then the Hilbert spectrum (H (θ, t)) can be
plotted based on Equation (2) [15]. The Hilbert spectrum can visualize the distribution of
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the signal amplitude through time and frequency [36], revealing additional properties of
the original time series.

2.3.2. Time-Dependent Intrinsic Correlation (TDIC)

Natural processes include various local correlations (positive or negative) with influ-
ential factors over time, and the classical method (e.g., Pearson correlation) can only reveal
the global relationship, leading to the ignorance of important local correlation information
between time series to some extent [31]. Thus, the new TDIC technique was introduced by
Chen et al. (2010) [30]. TDIC determines the sliding window size using the instantaneous
periods of IMFs based on the EMD algorithm as follows:

Ri(tk/tw) = Corr(IMF1
i (tw)IMF2

i (tw)) (3)

tw = [tk − td/2 : tk + td/2] (4)

td = max(IP1
i (tk), IP2

i (tk)) (5)

where IPi
j is the instantaneous period of each IMF, and tw is the adaptive sliding win-

dow size. Corr(. . . ) is the cross-correlation coefficient of two time series, and tk is the
corresponding time [29].

2.4. Statistical Analysis

The EEMD, Hilbert transform, and TDIC algorithms were executed in MATLAB R2018a
(MathWorks. Inc., Reddick, MA, USA). The descriptive statistics and cross-correlation analysis
(Pearson correlation) were processed via Microsoft Excel 2016 and SPSS 22.0, respectively.

3. Results and Discussion
3.1. Descriptive Statistical Analysis of the Original Time Series

Table 2 presents the statistical characteristics of the original time series of rainfall,
runoff, and soil loss. The rainfall ranged from 0 to 273.27 mm, with a mean value of
7.68 mm. The highest rainfall was observed in August 2020 (Figure 3). The coefficient
of variation (CV) was 281.77%, indicating that rainfall was strongly temporally variable
during the maize-growing seasons from 2015 to 2020. The runoff and soil loss ranged from
0 to 105.42 L and 0 to 847.67 g, and the mean values were 3.15 L and 6.63 g, respectively.
The highest values of runoff and soil loss were observed in August 2020 and August 2016,
respectively. The CVs of the runoff and soil loss, at 339.76% and 739.61%, respectively,
indicated that both the runoff and soil loss showed considerable temporal variation during
the different maize-growing seasons in 2015–2020. The strong temporal variations were
probably caused by the impacts of rainfall and agricultural land use.

3.2. Ensemble Empirical Mode Decomposition (EEMD)

After using EEMD, the original time series of the rainfall, runoff and soil loss were
decomposed into eight IMFs and one residue (Figure 4). Such scales associated with IMFs,
if separated clearly, are physically meaningful [37]. For all IMFs, IMF1 has the highest
frequency and amplitude, whereas IMF8 oscillates with the lowest frequency and amplitude.
That is, the frequency and amplitude of the IMFs decrease as the EEMD algorithm proceeds.
The IMFs with lower numerical values separate the higher-frequency oscillations at short-
term scales from the lower-frequency oscillations at long-term scales, which correspond to
the IMFs with higher numerical values [19]. Liu et al. (2019) [12] obtained ten IMFs for the
rainfall, runoff, and suspended sediment concentration (SSC) in the Loess Plateau; these
were different from the current results. The SSC is highly nonlinear and uneven at various
temporal scales [38,39]. The difference could be attributed to the time series of the rainfall,
runoff, and SSC they interpreted, which showed more complexity [6]. The residue showed
a predominant trend over time; this was not clearly discerned from the original time series,
owing to the nonlinear and nonstationary characteristics of the data [15].
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Table 2. Descriptive statistics of rainfall, runoff, and soil loss.

Minimum Maximum Mean SD CV (%) Skewness

Rainfall (mm) 0 273.27 7.68 21.63 281.77 5.85
Runoff (L) 0 105.42 3.15 10.70 339.76 4.89
Soil loss (g) 0 847.67 6.63 49.05 739.61 11.46

Note: SD, standard deviation; CV, coefficient of variation.
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As shown in Figure 4, the residues of rainfall and runoff both showed a trend of
increasing and then decreasing, whereas the residue of the soil loss decreased continuously
from 2015 to 2020. The results were confirmed by the findings of recent research conducted
in southwestern China, wherein soil erosion exhibited a notable declining trend from
1980 to 2015 [40]. Liu et al. (2019) [12] also found that soil erosion showed a substantial
decreasing trend in the Loess Plateau from 2006 to 2010, whereas the rainfall and runoff
increased and then decreased. This result was likely caused by an increase in soil anti-
erodibility and vegetation coverage after maize cultivation [34]. Zhang et al. (2022) [9]
highlighted how changes in soil conditions affect soil erosion at long-term scales. Soils with
higher soil anti-erodibility are less (or not) susceptible to erosion [41]. Hence, the soil loss
showed a decreasing trend over time. In addition, the results confirmed that maize could
facilitate soil conservation in this area, as reported in previous studies [24,42].
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Table 3 shows the mean periods (T) and variance contributions (VC) of all of the IMFs.
The T values of the rainfall IMFs lag behind those of the runoff IMFs and soil loss IMFs.
The T of the runoff is nearly equivalent to that of the soil loss for IMF1–IMF2, whereas
it is lower for IMF3–IMF8. This result does not agree with Liu et al. (2019) [12], who
reported that the periods of the IMFs corresponding to rainfall were generally consistent
with those of the runoff and SSC in the Loess Plateau. This discrepancy may be attributed
to the soil type and tillage measures. In particular, Ultisols (such as yellow soil) have
higher clay content and water-stable aggregate content than Inceptisols (such as Loess soil),
providing the Ultisols with stronger water retention and soil anti-erodibility [43]. Therefore,
additional time was needed to generate the runoff and subsequent soil loss in the study area.
Moreover, we implemented cross-ridge tillage on the sloping farmland. This can increase
the topographic relief and restrain runoff behaviors so as to control the occurrences of soil
and water loss [16,44]. Furthermore, we found that the periods of rainfall, runoff, and soil
loss show significant differences at the IMF8 scale relative to the other scales. The time
interval corresponding to the rainfall, runoff, and soil loss may be responsible for this result.
Because not all rainfall can cause runoff and soil loss [8], the time intervals for the rainfall,
runoff, and soil loss were not equivalent; this may have caused some scale overlaps during
decomposition, magnifying the difference in the time scales to some extent [45]. Moreover,
Zhang et al. (2022) [9] also obtained similar results and attributed this phenomenon to
human activities. Table 3 lists the VC of each IMF. It can be seen that the components at the
0.06 gs scale and 0.15 gs scale corresponding to the rainfall, runoff and soil loss account for
nearly 80% of the total variability. Thus, the oscillations of the high-frequency scales play a
major role in the variation of the original time series. This result is similar to those found in
previous studies [12].
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Table 3. The corresponding mean period T (expressed in the mean maize-growing season, gs) and
variance contribution VC (%) of each IMF of rainfall, runoff, and soil loss.

IMFs
Rainfall Runoff Soil Loss

T VC T VC T VC

IMF1 0.05 53.73 0.06 52.49 0.06 30.97
IMF2 0.11 27.95 0.15 31.21 0.15 40.84
IMF3 0.28 6.14 0.36 7.52 0.44 21.37
IMF4 0.94 6.39 0.78 4.39 1.30 3.96
IMF5 2.06 2.43 2.26 1.61 3.19 1.33
IMF6 6.03 1.74 8.98 1.95 9.12 0.45
IMF7 15.87 0.50 20.91 0.24 22.33 0.38
IMF8 37.58 0.16 64.77 0.06 89.32 0.32

Residue — 0.96 — 0.52 — 0.36

The results highlight that the rainfall, runoff, and soil loss vary the most at the short
time scales corresponding to the regional meteorological conditions of the mountainous
yellow soil area in southwestern China. Short-duration and high-intensity rainfall can
cause a high amount of soil and water loss, but it is infrequent and concentrated within a
specific period (Figure 3). Small-sum and low-intensity rainfalls occur most frequently, and
such successive events cause soil saturation, leading to repeated runoff and soil loss [8,46].
Gil et al. (2021) [8] also obtained a similar conclusion by analyzing a thirty-year time series
from plot studies of mountainous agricultural slopes in the Western Polish Carpathians.
Moreover, high amplitudes are observed in the late maize-growing season of each year
in IMF4 (mean period of 1 gs). We can infer that the IMF4 of the rainfall represents the
concentrated rainfall with a theoretical period of 1 gs occurring in the late maize-growing
season (July to August). Therefore, the IMF4 for the runoff and soil loss may represent
the corresponding soil and water loss events induced by concentrated rainfall with high
intensity. The study area belongs to the rain screen area of West China, which has the
characteristics of high precipitation frequency and heavy rainfall, thereby corresponding to
the regional meteorological conditions [34].

3.3. Hilbert Spectral Analysis (HSA)

The Hilbert spectrum can provide users with insights into the temporal changes in
amplitude for each component of a signal by visualizing a three-dimensional plot with
respect to time and frequency [13,15]. In these spectra, the y-axis and x-axis provide the
variability of the frequency over time [13]; the color scale represents the distribution of
the amplitude with time and frequency for each component [12]. In the current study, an
intermittent frequency was detected at the high-frequency scales, whereas a continuous
frequency was detected at the low-frequency scales; this represented the typical signature
of nonlinearity (Figure 5) [36].

The high-frequency components with different amplitudes also indicated the nonsta-
tionarity of the original time series [15,19]. For the high-frequency components in this study
(IMF1–IMF3), the instantaneous frequency varies with time. The rainfall and runoff show
similar spectra, in which high amplitudes are readily detected in the late maize-growing sea-
son of 2020 (Figure 5a,b). High amplitudes for soil loss are visible in the late maize-growing
season of 2016 (Figure 5c). For the component with a mean period of 1 gs (IMF4), the
instantaneous frequency is more regular, and the singularities are quite evident in the form
of abrupt changes in the instantaneous frequency, similar to the results from a previous
study [13]. Franceschini and Tsai (2010) [36] suggested that this phenomenon likely resulted
from natural events or anthropogenic interventions. In addition, high amplitudes can be
identified in the late maize-growing season of 2020 for the rainfall and runoff and in the
late maize-growing season of 2016 for the soil loss. For the inter-gs scale circulation (IMF5),
the frequency is almost constant. The rainfall and runoff exhibit high amplitudes in the late
maize-growing season of 2020, whereas the soil loss displays concentrated high amplitudes
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in the mid-maize-growing season of 2015. Furthermore, the frequency becomes constant at
larger scales (IMF6–IMF8). The concentration of the high amplitudes prevails over a long
period, particularly in regard to soil loss. This may be related to rainfall characteristics,
as well as the interception, stem flow, and root action of maize in different periods in the
study area.
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3.4. Global Cross-Correlation Analysis and the TDIC

Time series from natural science fluctuate in a whole range of scales, which may be a
result of the fractal nature of physical processes and influencing factors [42,47,47]. Thus,
the interpretation must consider the scale question [48]. In particular, a cross-correlation
analysis based on multiple scales is necessary to identify the associations between soil
loss, rainfall, and runoff. From Table 4, strong and positive correlations are observed in
the association between soil loss and rainfall and between soil loss and runoff, but the
nature and degree of the correlations are not consistent for the rest of the cases. That is, at
short-term scales, the correlation is positive, whereas, at long-term scales, the association
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can be negative. For example, when considering the correlation between soil loss and
rainfall, the correlation coefficients are 0.209 for IMF1 and −0.361 for IMF8. The negative
correlations between the soil loss and both rainfall and runoff occur at a large scale, which
may be related to the fact that the rainfall and runoff cannot reach the threshold for
causing soil loss. At the 1 gs scale (IMF4), the link is relatively weak compared to other
scales; this is contrary to common knowledge, i.e., that concentrated rainfall is highly
correlated with soil and water loss. This can be explained by the fact that the correlation
is determined by the occurrence, development, and mechanisms of operation between
variables [42]. The global correlation considers the average over time as defined in an
integral sense based on the complete dataset [29]. However, in fact, correlations may show
rich dynamics, and strong correlations can be quite local in the time domain [32]. Therefore,
the classical cross-correlation, as applied to nonlinear and nonstationary time series, may
ignore local correlations and distort the true correlation information between time series,
consequently providing misleading interpretations [29,30,46]. Adarsh and Priya (2020) [18]
also highlighted that reasonably good correlations should not be ignored in local time
periods or time scales, although the global correlation may be very low. To gain greater
insight into the local moving correlation between soil erosion and rainfall, a TDIC based
on EEMD was employed in our study. In general, the TDIC can calculate the running
correlation matrix for IMFs with a similar mean period and generates a graphic triangle. In
the TDIC plot, the y-axis and x-axis represent the sliding window size and time, respectively.
The color bar indicates the correlation between the two components [29,30].

Table 4. Global cross-correlation coefficients between soil loss with rainfall and runoff for the IMFs
and residues after EEMD.

Rainfall Runoff

IMF1 0.209 ** 0.399 **
IMF2 0.124 ** 0.258 **
IMF3 0.188 ** 0.380 **
IMF4 0.129 ** 0.198 **
IMF5 0.113 ** 0.139 **
IMF6 0.142 ** 0.274 **
IMF7 −0.083 * 0.155 **
IMF8 −0.361 ** 0.449 **
Residue −0.208 ** −0.539 **

Note: * p < 0.05, ** p < 0.01, n = 767.

The measured TDIC between the soil loss and rainfall is presented in Figure 6. There
is a predominant positive correlation between the two variables in IMF1 and IMF2, which
indicates the strong influence of rainfall on soil loss at short-term scales. Massei and
Fournier (2012) [13] highlighted that time scales of less than half a month may represent
a rapid response to rainfall that directly results in soil erosion. Small and low-intensity
rainfalls occur the most frequently and can repeatedly cause soil saturation and, thus, soil
and water loss in mountainous areas [8]. Therefore, it is evident that the high-frequency
component of rainfall plays a direct role in the soil loss process. IMF3 exhibits a dominant
positive correlation, but during a short period in 2017 and 2018, a negative association can
be observed. At the 1 gs scale (IMF4), the rich dynamics of the correlation can be seen
over time, and the switchover of positive and negative correlation mainly occurs in the
maize-growing seasons of 2016, 2018, and 2020. The reason for such a switchover may be
that the rainfall oscillation is not sufficiently large to lead to soil loss when considering
the maize cover, especially in the mid-maize-growing season. During this period, the
maize cover is so high that it can efficiently protect the soil surface from rainfall; moreover,
the maize roots are significantly developed and are therefore able to stabilize the soil
structure more effectively than in the early maize-growing season [34]. In addition, the
rainfall intensity is smaller than that in the late maize-growing season. Consequently, it is
difficult to generate soil loss during the mid-maize-growing season. The switchover of the
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nature correlation contributes to the low correlation (0.129), as anticipated. IMF5 displays a
pronounced negative association during the short time spell of the maize-growing season
of 2017, even though the correlation is primarily positive. A constant positive correlation is
visible at the IMF6 scale, indicating that rainfall will accelerate soil loss at the 6 gs scale.
IMF7 shows a predominant negative correlation, but there is a local positive correlation in
2018–2019. The results reveal a negative relationship on a large scale, potentially related to
the impacts of agricultural land use. It is believed that agricultural cultivation can increase
soil loss [5,8,49]. However, based on a previous study in the same location [34] and positive
feedback regarding the maize growth and application of organic fertilizer, the soil stability
in this area has improved over time. Consequently, there is uncertainty about soil loss due
to rainfall events. The switchover from a negative to positive correlation can be explained
by the fact that during the early maize-growing season of 2019 (26 April), an unexpected
rainstorm occurred when the slope was plowed without vegetation cover. Accordingly, a
severe soil loss is observed after the rainfall (446.33 g). Moreover, the correlation dynamics
are fairly stable at the larger time scales of IMF5; this was also reported in a reservoir inflow
study in India [50]. Fluctuations of the long-term scale may be related to seasonal weather,
global climate change, and soil conditions in the watershed [12,31]. The results confirm that
the global cross-correlation coefficient ignores the local/multi-scale information, which
could be recovered by a proper methodology (Chen et al., 2010). Therefore, changes at a
large time scale are slow and have a low amplitude, making the correlation more stable.
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Figure 7 shows the TDIC between the soil loss and runoff at different temporal scales.
A long-range positive correlation is observed in the entire time domain, i.e., not only at
short time scales (IMF1, IMF2) but also at long-term scales (IMF6, IMF8). This suggests
that the runoff shows stronger impacts and better consistency with the fluctuations of
the soil loss at multiple time scales relative to the case with rainfall. Liu et al. (2019) [12]
showed a similar result, i.e., that runoff was more strongly correlated with the SSC than
with rainfall. IMF7 exhibits a distinct switchover from a negative correlation to a positive
correlation during 2018–2019. This result may be related to extreme soil erosion events
in April 2019. High heterogeneity is visible in the correlations at the IMF3, IMF4, and
IMF5 scales. However, these transformations of the correlations may be owing to uncertain
physical processes, such as local microclimates and human intervention [50]. The exact
reasons require further investigation in the future. Overall, the TDIC breaks the notion of
uniqueness regarding the nature of the association between soil loss, rainfall, and runoff;
the relationship varies in time scale and time domain [18]. Based on the TDIC, we can
conclude that at some scales, rainfall and runoff are likely not as influential on the soil
loss process as at other scales. Therefore, using the TDIC technique to identify such low



Agronomy 2023, 13, 1492 15 of 18

influential modes at multiple scales and excluding them may eventually improve soil loss
prediction performance [12,50].
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4. Conclusions

The EEMD-based TDIC method breaks the notion that the correlations between soil
loss, rainfall, and runoff are not always unique but vary over time at some scales. Eight
IMFs and one residue were obtained by EEMD. Our results showed the soil loss decreased
during the growing season of maize from 2015 to 2020, but the rainfall and runoff showed
an increasing trend. IMF1–IMF2 accounted for nearly 80% of the temporal variations in
rainfall, runoff, and soil loss, indicating that the variables varied the most at short time
scales. Small and low-intensity rainfall and the soil loss that occurred as a result occurred
most frequently in the yellow soil area of southwestern China. The HSA illustrated that
the instantaneous values of each variable varied with time at short time scales but were
stable at long-term scales. Strong and positive correlations between soil loss, rainfall, and
runoff were observed over the entire period at the IMF1 and IMF2 scales, indicating that
such high-frequency rainfall (with a small sum and low intensity) showed a rapid and
direct influence on soil loss. The TDIC revealed the evolution of the local correlation
between soil loss, rainfall, and runoff with time at the IMF3–IMF5 scales. The switchover
from a negative correlation to a positive correlation at the IMF7 scale may be related to
a sudden natural event (rainstorm) and/or human intervention (tillage or cultivation).
Compared with the traditional correlation between soil loss and runoff, a scale-dependent
moving correlation analysis can provide more information with time and frequency. The
small and low-intensity rainfalls that were often ignored in previous studies occurred most
frequently and showed dominant impacts on inducing soil loss; moreover, the concentrated
rainfalls with high intensity were correlated with the soil loss very locally. Thus, greater
attention should be paid to soil loss caused by high-frequency rainfall in the study area. A
better understanding of the time-varying associations may assist authorities in imposing
measures that are more adaptive to local characteristics to control soil loss from sloping
farmlands. We suggest that the characteristics of rainfall should be fully considered in the
allocation of soil and water conservation measures, especially high-frequency rainfall in
the study area.
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