
Citation: Ji, J.; Wang, X.; Ma, H.;

Zheng, F.; Shi, Y.; Cui, H.; Zhao, S.

Synchronous Retrieval of Wheat Cab

and LAI from UAV Remote Sensing:

Application of the Optimized

Estimation Inversion Framework.

Agronomy 2024, 14, 359. https://

doi.org/10.3390/agronomy14020359

Academic Editors: Thomas

Alexandridis, Mavromatis Theodoros

and Vassilis Aschonitis

Received: 13 December 2023

Revised: 6 February 2024

Accepted: 8 February 2024

Published: 10 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agronomy

Article

Synchronous Retrieval of Wheat Cab and LAI from UAV
Remote Sensing: Application of the Optimized Estimation
Inversion Framework
Jiangtao Ji 1,2, Xiaofei Wang 1, Hao Ma 1,2 , Fengxun Zheng 1,2,*, Yi Shi 1, Hongwei Cui 1,2 and Shaoshuai Zhao 3

1 College of Agricultural Equipment Engineering, Henan University of Science and Technology,
Luoyang 471023, China

2 Longmen Laboratory, Luoyang 471003, China
3 Henan Modern Agricultural Big Data Industry Technology Research Institute Co., Ltd.,

Zhengzhou 450046, China
* Correspondence: zhengfengxun@126.com

Abstract: Chlorophyll a and b content (Cab) and leaf area index (LAI) are two key parameters of crops,
and their quantitative inversions are important for growth monitoring and the field management of
wheat. However, due to the close correlation between the spectral signals of these two parameters and
the effects of soil and atmospheric conditions, as well as modeling errors, synchronous retrieval of
LAI and Cab from remote sensing data is still a challenging task. In a previous study, we introduced
the optimal estimation theory and established the inversion framework by coupling the PROSAIL
(PROSPECT + SAIL) model with the unified linearized vector radiative transfer model (UNL-VRTM).
The framework fully utilizes the simulated radiance spectra for synchronous retrieval of Cab and LAI
at the UAV observation scale and has good convergence and self-consistency. In this study, based on
this inversion framework, synchronized retrieval of Cab and LAI was carried out by real wheat UAV
observation data and validated with the ground-measured data. By comparing with the empirical
statistical model constructed by the PROSAIL model and coupled model, least squares support
vector machine (LSSVM), and random forest (RF), the proposed method has the highest accuracy of
Cab and LAI estimated from UAV multispectral data (for Cab, R2 = 0.835, RMSE = 14.357; for LAI,
R2 = 0.892, RMSE = 0.564). Our proposed method enables the fast and efficient estimation of Cab and
LAI in multispectral data without prior measurements and training.

Keywords: wheat canopy; optimal estimation inversion; unmanned aerial vehicle (UAV);
multispectral

1. Introduction

As one of the world’s major crops grown on a large scale, wheat plays a significant
role in the global food supply [1]. Cab and LAI are two important indicators of wheat
growth, which can be used to characterize the overall growth and health of the crop.
Thus, their timely and accurate estimation is important for the fine management of wheat
fields [2,3]. Traditional methods of obtaining Cab and LAI mainly use field sampling, which
is destructive to plants and inefficient. The unmanned aerial vehicle (UAV) low-altitude
remote sensing monitoring has the characteristics of non-contact, large area, high efficiency
and strong adaptability. It has become an important means of realizing agricultural sensing
and is widely used in crop physical and chemical parameter inversion [4,5]. Due to the
coupling of spectral signals between Cab and LAI, the synchronous and accurate estimation
of these two parameters from remote sensing data remains a challenging task.

There are currently two main approaches to estimate wheat Cab and LAI based on
multispectral remote sensing data: the empirical modeling method and the physical model-
ing method. The empirical methods are developed by constructing spectral indices using
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linear and nonlinear regression [6,7], support vector regression [8], partial least squares
regression [9] etc. These approaches usually need collect a large amount of measured data
and have poor generalization. For this, current studies construct a variety of spectral indices
by considering the soil background and observation mode [10]. The physical models take
into account the physical transmission process between the canopy and radiation mea-
surements, which has strong generalization and extensibility [11,12]. Inversion methods
based on physical models, such as look-up tables, neural networks, simulated annealing,
genetic algorithms [13–15] etc., have been successfully applied to estimate Cab and LAI.
Among them, the coefficient of determination (R2) of estimated LAI for deciduous forest
plantations reaches 0.9 through a machine learning regression algorithm, but the method
is time-consuming for training and inference [16]. Inadequate information is provided
by the limited spectral bands and the uncertainties in the measurements and models, so
the inversion based on physical model remains hard work [17–19]. Some of the studies
use multi-source remote sensing data to enrich the canopy information. For example, the
color [20], texture features [21] and LiDAR point cloud structural parameters [22] etc. are
introduced to improve the accuracy of the inversion results. However, there is still a need
for improvement in feature extraction. Other methods try to optimize the structure of the
inversion algorithm by eliminating the effects of unconcerned parameters. Zhu et al. [23]
constructed a two-dimensional matrix by combining different vegetation indices to estimate
Cab and LAI from the hyperspectral data. However, the prediction results still need to
be improved.

To this end, we proposed an inversion method based on the early studies, which use a
more rational model and an inversion strategy [24]. The method, based on the theory of
optimal estimation [25], builds a cost function by combining the a priori information and
the observation error. It can make full use of the effective information from the observed
data. The self-consistency of the inversion framework has been tested under simulated
data, which demonstrates that the proposed framework can be used for multi-parameter
synchronous inversion in wheat. However, the study is yet to be applied to real data.

In this study, we used UAVs to acquire multispectral data of wheat at the field scale.
The obtained data were processed to verify the validity of the proposed coupled model.
Firstly, the simulated data from the coupled and single PROSAIL models were analyzed in
comparison with the observed data. After that, simulated statistical regression methods
were constructed based on the eight typical vegetation indices individually and compared
with the single PROSAIL model estimation results. Finally, we investigated the performance
of the optimal estimation method for synchronous retrieval of Cab and LAI. The proposed
inversion framework is used for UAV multispectral data estimation and compared with
empirical statistical models, LSSVM models and RF models. The main objectives include
the following: (1) to verify the effectiveness of the coupled model; (2) to analyze the
performance of the simulated statistical models, the LSSVM model, the RF model and
the optimal estimation method; (3) to apply the proposed inversion framework for UAV
multispectral data.

2. Materials and Methods
2.1. Study Regional

The study area is located in the National High-Standard Farmland Construction Pilot
in Qi County, Hebi City, Henan Province, as shown in Figure 1. The farmland occupies
an area of about 5000 acres, specifically located in Shiqiao Village, Miaokou Township
(114.17◦ E, 35.6◦ N). The region is located in the shallow hilly area in the middle and lower
reaches of the Yellow River in the North China Plain, and is situated in the north temperate
zone, with obvious seasonal variation. The area features a warm temperate humid monsoon
climate, characterized by high temperatures and rainy summers, as well as cold and dry
winters. The average ground temperature is 16.7 ◦C, the average annual temperature is
13.9 ◦C and the average annual precipitation (including rain, snow and hail) is 605.2 mm,
which can satisfy the requirement of temperature conditions for crops to be twice or thrice



Agronomy 2024, 14, 359 3 of 15

matured in a year. The region is mainly planted with winter wheat and summer maize,
with winter wheat sown in October of the current year and harvested in early June of
the following year. The data collection took place on 3 March, 10 March, 28 March, and
8 April 2021.
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Figure 1. The study area (red points in the right diagram are the ground data validation
collection points).

2.2. UAV Image Data

The multispectral image data was obtained by P4 multispectral UAV (SZ DJI Tech-
nology Co., Ltd., Shenzhen, China) with an imaging spectrometer. The UAV is equipped
with six 1/2.9-inch CMOS image sensors, including one color sensor for routine visible
light (RGB) imaging and five monochrome sensors for multispectral imaging centered
on wavelengths of 450, 560, 650, 730, and 840 nm. We completed the acquisition of flight
data and ground data from 10:00 a.m. to 2:00 p.m. on the same day when the sunlight
intensity was stable, and the weather was clear and cloudless. The flight altitude was
set to 25 m, corresponding to a spatial resolution of 1.3 cm. The UAV heading overlap
and bypass overlap rates are 80% and 70%, and the flight path was planned using auto-
matic takeoff. Radiometric corrections were carried out using a diffuse target plate, and
radiometric calibration data were collected by manually controlling the altitude of the
aircraft to seven times the length of the calibration plate. We turned the head at an angle
of −90◦ to ensure that there was no shadow coverage on the reflector. After obtaining the
original multispectral digital number values, Terra software (version 3.6.8) was used to
perform radiometric correction and image stitching. We used the ground handheld GPS
(ZL Electronic Technology Co., Ltd., Hefei, China) to obtain the sample point number and
location information. The 3 × 3 image pixels near the sample point were extracted using
the remote sensing image as the data source, and the average value was calculated as the
reflectance of the wheat pixels in the sample area.

2.3. Ground Cab and LAI Measured Data

The ground LAI was measured in the study area using the LAI-2200 plant canopy
analyzer from LI-COR, Lincoln, USA. The instrument is set up for one skylight value and
four measurement target values, and the probe wears a lens cover with a 90◦ angle. The
four under-leaf measurement points were located at the top of the row, 1/3 of the way
between the rows, 2/3 of the way between the rows and at the top of the rows, and
the measured points were evenly spaced in that order. Four sampling points were set
up in each plot, and each sampling point was collected three times. The mean value of
the measurements within the same plot was calculated as the LAI measured data. To
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avoid measurement errors caused by direct sunlight, we chose the phases 06:30–09:30 and
16:30–19:30. A portable SPAD-502 Plus chlorophyll content meter from Konica Minolta,
Tokyo Metropolis, Japan was used for Cab measurements. Five plants were selected from
each sample plot and the top part of each plant was taken three times. All the values within
the sample plot were averaged as wheat Cab measured data.

There were 63 sample points in the experimental area in this study. Figure 2 gives the
variation of winter wheat Cab and LAI measured data over time in the form of box-and-
whisker plots. Each box-and-whisker diagram contains the median value (the solid line
in the box), the 25% value (the bottom of the box), the 75% value (the top of the box), as
well as the maximum (top of the whisker) and minimum (bottom of the whisker) values
of the data. The discrete solid diamonds in the figure represent outliers, and the hollow
rectangles in the boxes are the average values for the period. As can be seen in Figure 2,
Cab and LAI increased from the greening stage to the jointing stage with the growth and
development of winter wheat. LAI increased by 57% from 10 March to 28 March, largely
due to a period of concurrent nutrient and reproductive growth. The ground measured
data in this paper satisfy the practical requirements.
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Figure 2. Distribution of Cab and LAI measure data in different periods.

2.4. Forward Modeling

The PROSAIL model is obtained based on the coupling of the leaf optical character-
ization model PROSPECT and the canopy reflectance characterization model SAIL [26],
first proposed by Jacquemoud and Baret in 1990 and refined in 1995 [27–29]. The model con-
siders the physical and chemical parameters, canopy structure and scattering characteristics
of the leaf, and is able to simulate the canopy spectrum with a spectral resolution of 1 nm
in the 400~2500 nm band range. Based on the P4 multispectral UAV, only five bands were
simulated in this study, and the input parameters included Cab, LAI, Cw (equivalent water
thickness), Cm (leaf mass per unit leaf area) etc. The model output is the canopy reflectance
corresponding to the five center wavelengths. The model takes into account the leaf absorp-
tion, scattering and transmission processes of vegetation, as well as the interaction between
vegetation and soil, and is suitable for low-altitude remote sensing inversion.

To efficiently detect the spectral characteristics of target features over large areas, the
physical transfer process based on the atmosphere–vegetation canopy-sensor needs to be
further considered. Several atmospheric correction methods have been introduced [30,31], of
which those based on radiative transfer models are the most widely used [32,33]. However,
these methods are an independent preoperational process for spectral data optimization and
cannot realize the direct coupling with PROSAIL modeling. The Unified Linearized Vector
Radiative Transfer Model, UNL-VRTM, is specifically designed to simulate atmospheric
remote sensing observations and to invert aerosol, gas, cloud and surface properties from
these observations [34]. The model couples the molecular absorption module, MIE scattering
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calculations, and multiple surface reflectivity models. It provides the calculation of the
observed Stokes vectors and the Jacobian matrix of Stokes vectors for aerosol and surface
model parameters. The coupling of the UNL-VRTM model with the PROSAIL model not
only realizes the atmospheric correction, but also obtains the Jacobian matrix of apparent to
canopy reflectance, which is very beneficial to find the parameter optimal solution.

This study was based on the inversion framework, used a Linux system, a Fortran
compiler, and configured the environment needed to run the PROSAIL model with the
UNL-VRTM model. The PROSAIL model selected the PROSAIL_5B_Fortran version,
and the UNL-VRTM model selected the 1.6.4 version. The coupling of the models was
achieved by writing the PROSAIL model output surface reflectance call module, which
was embedded as input to the UNL-VRTM model.

2.5. Simulation Statistical Regression Method

After defining the coupled model input parameter values (Cw = 0.004, Cm = 0.012,
N = 1.3, ALA = 15, Car = 8, Ant = 0, Cbrown = 0, hspot = 0.01, psoil = 0.1, tts = 40,
tto = 0.1, psi = 178), we set Cab and LAI to vary from 20–70 and 1–7, respectively. A total
of 1100 simulated spectra data were generated by using the coupled model. A total of
500 simulated values in the dataset were used for Cab modeling, and the remaining
simulated values were used for LAI modeling.

Previous studies show that leaf Cab and vegetation LAI have different sensitivities
to different bands [23]. Vegetation indices based on the green and red edge bands are
more sensitive to Cab [35], while vegetation LAI is strongly correlated with the red and
near-infrared bands [3]. To reduce the influence of soil background and radiative transfer
error, we adopted eight typical vegetation indices such as normalized vegetation index
(NDVI) and green light chlorophyll index (CIgreen) for Cab and LAI estimation. Eight
typical vegetation indices are listed in Table 1. The wavelengths used are in the bandwidth
domain of the P4 multispectral visible and near-infrared range.

Table 1. Multispectral vegetation indices and their calculation formulas.

Vegetation Index Formula References

NDVI (Normalized Difference Vegetation Index) (R840 − R650)/(R840 + R650) [36]
GNDVI (Green Normalized Difference Vegetation Index) (R840 − R560)/(R840 + R560) [37]
BNDVI (Blue Normalized Difference Vegetation Index) (R840 − R450)/(R840 + R450) [38]

RVI (Ratio vegetation index) R840/R650 [39]
CIgreen (Green Chlorophyll index) R840/R560 − 1 [40]
CIre (Rededge Chlorophyll Index) R840/R730 − 1 [40]

MTCI (MERIS Terrestrial Chlorophyll Index) (R840 − R730)/(R730 − R650) [41]
NDRE (Normalized Difference Red Edge Vegetation Index) (R840 − R730)/(R840 + R730) [42]

Note: R450, R560, R650, R730 and R840 are blue band, green band, red band, red edge band and near infrared (NIR)
band, respectively.

Based on the eight vegetation indices constructed from the simulated data, we used
them as the independent variables and the Cab and LAI as the dependent variables. Then
we constructed the best-fit model according to the fitting methods of linear regression, log-
arithmic regression, power regression and exponential regression. Finally, the performance
of the regression method was assessed based on the R2 of the curve-fitting model. The
performance of eight vegetation indices and four regression methods for the inversion of
Cab and LAI was evaluated, and the top four vegetation indices and the corresponding
regression models are presented in Table 2.

As shown in Table 2, the CIgreen, CIre, MTCI and NDRE were sensitive to Cab
and the regression models all exhibit logarithmic functions with modeling R2 > 0.95. In
the LAI estimation model, the regression models constructed by NDVI, BNDVI and RVI,
with LAI all exhibiting exponential functions. Among them, the R2 of the NDVI and
BNDVI constructed models were 0.71 and 0.73, which was mainly due to LAI gradually
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reaching saturation as the vegetation index continues to increase. The GNDVI with LAI
regression model was a power function, corresponding to modeling R2 of 0.84, since
the green light band has a major impact on deeper canopy structures under composite
canopy conditions [43]. These results show that the estimation model constructed based on
simulated data can exhibit high accuracy and can provide a good basis for the inversion of
actual UAV observation data.

Table 2. Regression analysis of vegetation index with Cab and LAI.

Parameter Variable Vegetation Index Model R2

Cab

CIgreen y = 39.199 × ln(x) − 16.335 0.9716
CIre y = 65.285 × ln(x) + 59.777 0.9846

MTCI y = 70.307 × ln(x) + 51.629 0.9942
NDRE y = 90.016 × ln(x) + 158.27 0.9761

LAI

NDVI y = 0.0021 × e(8.2122x) 0.7082
GNDVI y = 15.97 × x6.8669 0.8405
BNDVI y = 0.00008 × e(11.684x) 0.7331

RVI y = 0.6038 × e(0.0589x) 0.9656
Note: x denotes the vegetation index constructed from the simulated data and y is the corresponding parameter
variable (Cab, LAI).

2.6. Inversion Results Evaluation Method

In this study, the R2 and root mean square error (RMSE) were used to evaluate the
inversion results. The specific calculation formulas as shown in Equations (1) and (2).

R2 =
∑n

i=1
(
xinv

i − x
)2

∑n
i=1 (x i − x)2 (1)

RMSE =

√
∑n

i=1
(

xinv
i − xi

)2

n
(2)

where xinv
i is the inverse value of wheat Cab or LAI. xi and x are the measured values

of wheat Cab or LAI and their mean values for each sample point, respectively. n is the
number of samples.

3. Results and Analysis
3.1. Comparison of Simulated Spectral Data and UAV Observed Spectral Data

Considering that remote sensing data are biased during acquisition and processing,
we added 5% relative Gaussian noise as reflectance uncertainty to the simulated canopy
spectra. Figure 3a describes the comparison of a set of simulated data with the UAV
observations on 28 March 2021. A total of 63 sets of data were collected from four periods in
the study area, and we performed a statistical comparative analysis of the observed data, as
well as the canopy spectral data simulated by the PROSAIL model and the coupled model,
as shown in Figure 3b. The horizontal coordinates represent the observed reflectance and
the vertical coordinates represent the simulated reflectance, as shown in Figure 3b. The
blue solid circle and yellow solid line represent the coupled model simulation data and
its fitting line, respectively. The orange solid triangle and violet solid line represent the
PROSAIL model simulation data and its fitting line, respectively.

As shown in Figure 3a, the coupled model simulations a slightly different from the
PROSAIL simulations in the blue and red light bands, which is mainly because the relatively
small effect of the atmospheric corrections on the two bands. In the green, red-edge and
near-infrared bands, the coupled model simulations are significantly lower compared to
the PROSAIL simulations. The most significant decrease of reflectance was in the NIR band,
with a decrease of 10%, which is mainly because the coupled model removes the effects
caused by atmospheric scattering and absorption, and improves the spectral resolution of
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the remote sensing images. As shown in Figure 3b, the correlation between the observed
data and the coupled simulated data is significantly improved compared to the PROSAIL
simulated data, with a 26% improvement in R2. The coupled simulations were close to the
UAV observations as a whole.
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3.2. Inversion of Parameters Based on Simulation Statistical Regression Method

Based on UAV observations, Cab and LAI were estimated using a statistical regression
model constructed from coupled simulation data. The inversion results were compared
with the PROSAIL model as shown in Figures 4 and 5. The horizontal and vertical coordi-
nates indicate the measured and estimated values, respectively. The blue solid circle and
dotted line indicate the results of the statistical regression estimation based on the coupled
model and its fitting line, and y1 is the corresponding regression equation. The orange solid
triangles (pentagrams) and dashed lines indicate the results of the statistical regression
estimation based on the PROSALI model and its fitted line, and y2 is the corresponding
regression equation. The green line is the 1:1 line.

As illustrated in Figure 4, four statistical regression models based on the coupled
model exhibit superior estimation accuracy for Cab, and the fitted curves are closer to
the y = x straight line compared to PROSAIL. Statistical regression models based on the
PROSAIL model have a similar estimation accuracy compared with the coupled model, but
the latter estimate Cab with lower uncertainty. Among these, estimated Cab and LAI based
on the CIre and NDRE have the higher accuracy, which is mainly because of the stronger
sensitivity of the red-edge band to Cab. For both vegetation indices, the R2 estimated
based on the coupled model improved by 0.011 and 0.008 compared to PROSAIL. We
can also know that for CIgreen, CIre and NDRE, both estimates based on PROSAIL and
coupled models exhibit slightly lower than measured values for Cab < 50 and higher than
measured values for Cab > 50. On the one hand, it is due to the inherent deviation of
spectral data from measured data during modeling. On the other hand, the statistical
regression modeling approach of the coupled model is similar to PROSAIL. For MTCI, the
regression estimation results based on the PROSAIL model are overall high compared to
the measured values, and the coupled model effectively avoids this problem.

Based on the canopy spectral data simulated by the single PROSAIL model and the
coupled model, the results of LAI estimation by the regression estimation model using
NDVI, BNDVI, GNDVI and RVI are shown in Figure 5. As illustrated in the figure, for
the first three vegetation indices, the fitted curves of the estimation results of the coupled
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model do not change significantly compared to the PROSAIL. This suggests that the
vegetation index is relatively insensitive to atmospheric change. However, the coupled
model estimates are generally better than the PROSAIL model. For RVI, the estimation
accuracy R2 of the coupled model is improved by 0.071 compared to the PROSAIL model,
and the fitted curve is significantly closer to the 1:1 line. In addition, both model estimates
constructed based on BNDVI had the highest accuracy, with R2 of 0.746 and 0.719, and
RMSE of 0.76 and 0.788. While the scattered spatial distributions of the model estimates
based on BNDVI were closest to the 1:1 line with the measured values.

Agronomy 2024, 14, x FOR PEER REVIEW 8 of 15 
 

 

  
(a) Results of regression model estimation based on CIgreen (b) Results of regression model estimation based on CIre 

  
(c) Results of regression model estimation based on MTCI (d) Results of regression model estimation based on NDRE 

Figure 4. Results of Cab estimation based on four regression models: CIgreen (a), CIre (b), MTCI (c) 

and NDRE (d). 

As illustrated in Figure 4, four statistical regression models based on the coupled 

model exhibit superior estimation accuracy for Cab, and the fitted curves are closer to the 

y = x straight line compared to PROSAIL. Statistical regression models based on the PRO-

SAIL model have a similar estimation accuracy compared with the coupled model, but 

the latter estimate Cab with lower uncertainty. Among these, estimated Cab and LAI 

based on the CIre and NDRE have the higher accuracy, which is mainly because of the 

stronger sensitivity of the red-edge band to Cab. For both vegetation indices, the R2 esti-

mated based on the coupled model improved by 0.011 and 0.008 compared to PROSAIL. 

We can also know that for CIgreen, CIre and NDRE, both estimates based on PROSAIL 

and coupled models exhibit slightly lower than measured values for Cab < 50 and higher 

than measured values for Cab > 50. On the one hand, it is due to the inherent deviation of 

spectral data from measured data during modeling. On the other hand, the statistical re-

gression modeling approach of the coupled model is similar to PROSAIL. For MTCI, the 

regression estimation results based on the PROSAIL model are overall high compared to 

the measured values, and the coupled model effectively avoids this problem. 

Figure 4. Results of Cab estimation based on four regression models: CIgreen (a), CIre (b), MTCI (c)
and NDRE (d).



Agronomy 2024, 14, 359 9 of 15Agronomy 2024, 14, x FOR PEER REVIEW 9 of 15 
 

 

  
(a) Results of regression model estimation based on NDVI. (b) Results of regression model estimation based on GNDVI. 

  

(c) Results of regression model estimation based on BNDVI. (d) Results of regression model estimation based on RVI. 

Figure 5. Results of LAI estimation based on four regression models: NDVI (a), GNDVI (b), BNDVI 

(c) and RVI (d). 

Based on the canopy spectral data simulated by the single PROSAIL model and the 

coupled model, the results of LAI estimation by the regression estimation model using 

NDVI, BNDVI, GNDVI and RVI are shown in Figure 5. As illustrated in the figure, for the 

first three vegetation indices, the fitted curves of the estimation results of the coupled 

model do not change significantly compared to the PROSAIL. This suggests that the veg-

etation index is relatively insensitive to atmospheric change. However, the coupled model 

estimates are generally better than the PROSAIL model. For RVI, the estimation accuracy 

R2 of the coupled model is improved by 0.071 compared to the PROSAIL model, and the 

fitted curve is significantly closer to the 1:1 line. In addition, both model estimates con-

structed based on BNDVI had the highest accuracy, with R2 of 0.746 and 0.719, and RMSE 

of 0.76 and 0.788. While the scattered spatial distributions of the model estimates based 

on BNDVI were closest to the 1:1 line with the measured values. 

By comparing the two models and the statistical regression models built with differ-

ent vegetation indices, it can be concluded that the coupled model has better estimation 

results. The regression model based on NDRE predicted Cab with the highest accuracy, 

with an R2 of 0.635. BNDVI-based regression model predicted LAI with the highest accu-

racy, with an R2 of 0.746. The results show that our proposed coupled model is useful for 

Figure 5. Results of LAI estimation based on four regression models: NDVI (a), GNDVI (b), BNDVI (c)
and RVI (d).

By comparing the two models and the statistical regression models built with different
vegetation indices, it can be concluded that the coupled model has better estimation results.
The regression model based on NDRE predicted Cab with the highest accuracy, with an
R2 of 0.635. BNDVI-based regression model predicted LAI with the highest accuracy,
with an R2 of 0.746. The results show that our proposed coupled model is useful for
atmospheric correction and its statistical regression method can support the inversion of
wheat physicochemical parameters Cab and LAI.

3.3. Inversion of Parameters Based on Optimal Estimation Method

If there are some unknown parameters of a system that need to be estimated, the
optimal estimation inversion method is a better solution idea. It finds the optimal parameter
by minimizing a cost function, and the function is usually based on the error between
the observed data and the model simulated data [24]. We transformed the nonlinear
canopy radiative transfer model inversion into a cost function minimization problem.
The minimum solution of the cost function is obtained through continuous optimization
iterations. In this paper, the values of model parameters come from the empirical values of
the fertility period. We estimated the observation geometries based on the UTC of the UAV
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flight during data collection and the longitude and latitude of the sampling points. The
previous estimation of Cab and LAI were based on the historical data statistics of the same
period of crop parameters.

Based on measured UAV multispectral data, the optimal estimation method was
applied to invert wheat Cab and LAI. The inversion results were compared with the
simulated statistical regression model, as shown in Figure 6. To evaluate the applicability
of the optimal estimation more comprehensively, LSSVM and RF were added in this study
for comparison, as shown in Table 3. LSSVM is an improved method based on standard
Support Vector Machines (SVM), which map data to a high-dimensional feature space
through mathematical optimization and kernel tricks, thus turning a nonlinear problem
into a linear one. The model does not require much hyperparameter tuning and is widely
used in regression problems. RF is a powerful machine learning algorithm that can be
resistant to noise and randomness in the input data and provides better fitting to nonlinear
problems. For the LSSVM and RF methods, this study is based on 63 sets of measured data,
eight vegetation indices are calculated and used as inputs to the model, and Cab and LAI
were used as outputs, respectively. Where 2/3 of the dataset is used for the training of
the model and the rest of the data is subjected to validation. The horizontal and vertical
coordinates in Figure 6 represent the measured and estimated values, respectively. The
blue solid circle and dotted line represent the estimation results based on the optimal
estimation method and its fitted line, and y1 is the corresponding regression equation. The
orange solid triangle (pentagram) and dashed line indicate the estimation results based on
the simulated statistical regression model and its fitted line, and y2 is the corresponding
regression equation. The green line is a 1:1 line.

Table 3. Inversion of Cab and LAI from UAV multispectral data using different methods.

Retrieval Methods
Retrieval Accuracy

R2 RMSE

statistical regression Cab: 0.635 Cab: 14.357
LAI: 0.746 LAI: 0.76

LSSVM
Cab: 0.689 Cab: 4.513
LAI: 0.783 LAI: 0.614

RF
Cab: 0.766 Cab: 0.62
LAI: 0.827 LAI: 0.565

optimal estimation Cab: 0.835 Cab: 4.567
LAI: 0.892 LAI: 0.564

As shown in Figure 6, for the statistical regression model and the optimal estimation
inversion method, the latter has the highest estimation accuracy. The R2 of Cab and
LAI increased by 0.2 and 0.146, respectively, and the RMSE decreased by 9.79 and 0.196,
respectively. The optimal estimation method, developed by integrating simulated and
observed data, outperforms the statistical regression model. In addition, the inversion
value of Cab in the statistical method is significantly lower than the measured value is
effectively corrected in the optimal estimation method. This shows that the inversion
strategy based on iterative optimization has a better fitting effect, while the addition of a
priori constraints can effectively suppress the ill-posed problem of physical model inversion.
As illustrated in Table 3, the statistical regression model estimation accuracy is lower than
the LSSVM and RF models. This is primarily because the simulated statistical regression
model relies on coupled model simulation data, and the model parameters are empirical
values, which are less pertinent compared to the validated measured data. However, the
model does not need to be trained and measured in advance due to the introduction of a
more generalized physical model. In addition, the results show that our proposed method
has better performance compared to LSSVM and RF models. The R2 and RMSE were 0.835
and 4.567 for Cab and 0.892 and 0.564 for LAI, respectively.
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4. Discussion

Cab and LAI are crucial indicators for assessing the growth conditions and health
of wheat. High chlorophyll content in the early stages of wheat growth enhances robust
photosynthesis, thereby accelerating growth and energy accumulation for later develop-
ment stages [44]. During the tillering and jointing phases, a higher LAI helps maximize
photosynthesis, supporting rapid growth and development [45]. Variations in Cab and
LAI, whether excessive or deficient, could indicate potential challenges such as nutritional
imbalances, water stress or pest infestations in wheat crops [46,47]. It is critical to con-
tinuously monitor and manage these parameters throughout the wheat’s growth cycle to
optimize conditions, preemptively tackle potential problems and ultimately elevate wheat
yield and quality.

In this study, we found that the effectiveness of an iteratively optimal estimation
inversion strategy for accurately estimating wheat Cab and LAI. Initially, the simulation
data from the coupled PROSAIL and UNL-VRTM models were closer to the observed data,
with a correlation of 0.97, indicating that the coupled model considers more details in the
atmospheric–vegetation canopy sensor radiative transfer process compared to the pure
PROSAIL model. Moreover, a comparative analysis of statistical regression models derived
from both models and various vegetation indices demonstrates the enhanced estimation
capabilities of the coupled model. In addition, by comparing the optimal estimation method
with LSSVM and RF models, we discovered that the iterative optimal estimation inversion
strategy demonstrates superior performance. This paper focuses on the application of
the optimal estimation framework to actual observational data, providing a solution for
synchronously monitoring key growth stages of wheat Cab and LAI.

Atmospheric radiative transfer models consider the effects of atmospheric absorption
and scattering on remote sensing data. They are commonly used for atmospheric corrections
to obtain accurate surface reflectance data. Combining the apparent reflectance generated
by the PROSAIL model with atmospheric radiative transfer models requires additional
processing [31,48] in some studies. In this study, based on the surface reflectance model
interface provided by the UNL-VRTM model, the PROSAIL model is embedded to realize
the direct coupling of the two models. The results show that the correlation is significantly
improved by coupling simulation data with UAV observation data. By using different
statistical regression models to invert Cab and LAI, we find that NDVI is sensitive to
atmospheric effects, which is consistent with the studies of Hadjimitsis et al. [49] and
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Mannschatz et al. [50]. However, due to the lower flight altitude of UAV remote sensing,
the atmospheric impact is not significant. Future studies might consider investigating the
effect of atmospheric correction from different altitudes. NDRE and BNDVI have higher
prediction accuracies for Cab and LAI, respectively, which aligns with the findings of
Su et al. [51] and Yang et al. [35]. In recent years, Zhu et al. [23] developed a dual-layer
vegetation index matrix for joint estimation of Cab and LAI with test set R2 of 0.79 and 0.73,
and RMSE of 11.7 and 0.91, respectively. Chen et al. [52] developed a model to improve
the estimation of wheat leaf area index using leaf chlorophyll content information, where
the LCC function equation (growth equation) had the highest estimation accuracy, with an
RMSE of 0.736. Zhao et al. [53] developed a mixed method of the PROSAIL-D model and
the XGBoost model for the mangrove leaf area index, achieving a maximum R2 of 0.86 and
an RMSE of 0.31 in the test set. In these vegetation parameter estimation studies, the highest
R2 was 0.86. In this study, the optimal estimation method and machine learning method,
which share similar principles, achieved the highest accuracy of 0.892 in estimating LAI,
indicating that the integration of radiative transfer models and machine learning models
can become a trend for future vegetation parameter estimation.

However, the UNL-VRTM model is a generic atmospheric model that requires complex
input parameters. Meteorological statistics have a large impact on the accuracy of the results,
and we need to obtain more accurate meteorological data (such as AOD and aerosols) for
the same time of the day at a later stage. In addition, the construction of the regression
model relies entirely on simulated data. In order to improve the accuracy of the inversion,
the input parameters need to be dynamically adjusted to approximate the real crop growth
state in practical applications.

Compared to simulated statistical regression models, LSSVM and RF models, the
optimal estimation inversion method has higher accuracy in estimating the results of
Cab and LAI. This is mainly because the model introduces iterative optimization and
reasonable a priori information, which can reduce the number of iterations to achieve fast
and efficient estimation while searching for optimal values. When the parameter changes
do not satisfy the convergence conditions or the number of iterations exceeds 20, we
consider the inversion to have failed. However, after inverting the statistics for the 63 sets
of validation data, we obtained that the average number of iterations of the dataset when
searching for the optimal solution is 12, and the speed of iterative convergence still needs to
be improved. Conversely, the a priori information comes from statistics contemporaneous
data, and it is important to support the accuracy of the inversion results. Thus, we need
to spend more time to specify reasonable a priori information as well as other physical
parameters. In addition, the optimal estimation method is based on certain statistical
models and assumptions, and the optimal estimation method has a small estimation bias
when these models and assumptions are consistent with the real data distribution.

5. Conclusions

In this study, the Cab and LAI of winter wheat are obtained synchronously by the
previously proposed inversion framework from the UAV multispectral measured data. The
inversion results were further verified by ground verification points.

In addition, the proposed inversion method is compared with the statistical regression
model, LSSVM and RF model estimation results.

The results show that:

(1) The proposed model, coupled with PROSAIL and UNL-VRTM, is more suitable
for UAV low-altitude remote sensing than the PROSAIL model. By comparing the
simulated data with the real UAV data, the results show that the correlation of the
coupled model is significantly improved compared to the PROSAIL, with an increase
of R2 by 0.26. Furthermore, the retrieval of Cab and LAI are obtained by different
statistical regression model, and the results show that the coupled models are also
better than those from the pure PROSAIL model. Among these statistical regression
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models, estimated Cab and LAI based on the NDRE and BNDVI have the higher
accuracy.

(2) The OE inversion methods have better performance. By comparing simulated empiri-
cal statistical models, LSSVM and RF models, we conclude that the optimal estimation
method has better estimation results. The R2 and RMSE were 0.835 and 4.567 for
Cab and 0.892 and 0.564 for LAI. Where the simulated statistical regression model
inversion of Cab is significantly lower than the measured value is effectively corrected
in the optimal estimation model.

Due to the physical modeling, our proposed method does not require measurements
and training in advance. The optimal estimation synchronous inversion method has better
estimation potential for Cab and LAI remote sensing of wheat canopy, which can improve
the application of purely physical models for the fine management of farmland.
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