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Abstract: The phytochrome-interacting factor (PIF) proteins are part of a subfamily of basic helix–loop–helix
(bHLH) transcription factors that integrate with phytochromes (PHYs) and are known to play important roles
in adaptive changes in plant architecture. However, the characterization and function of PIFs in potatoes are
currently poorly understood. In this study, we identified seven PIF members in potatoes and named them
StPIF01-1, StPIF01-2, StPIF03, StPIF06-1, StPIF06-2, StPIF07, and StPIF09 based on their location in potato
chromosomes. The chromosomal location, gene structures, physicochemical characteristics, phylogenetic
tree, and tissue-specific expression of StPIFs were also analyzed. RT-qPCR analysis revealed that the StPIF3
gene was highly induced by shade and may play a crucial regulatory role in potato responses to shade stress.
Also, multiple cis-regulatory elements involved in light response were detected in the promoter of the StPIF
genes. Subcellular localization analysis indicated that the StPIF3-encoding protein is mainly localized in the
nucleus. Transgenic overexpression of StPIF3 in potatoes increased stem length, chlorophyll accumulation,
and enhanced shade-avoidance symptoms, whereas the StPIF3-interfering lines had a lower plant height and
more chlorophyll accumulation. These findings enhance our comprehension of StPIF gene roles, potentially
advancing potato yield and quality research. This study provides detailed information about StPIFs and
identifies the function of StPIF3, which is involved in shade-avoidance syndrome.

Keywords: phytochrome-interacting factor; Solanum tuberosum; bioinformatics analysis; StPIF3

1. Introduction

Light is one of the most important environmental factors for supporting plant life
and not only provides energy for plant photosynthesis but also a critical environmental
signal to modulate plant growth and development [1]. Plants have developed a refined
control system that responds to environmental stimuli by sensing changes in the light
environment [2]. Photoreceptors have been discovered that play a crucial role in external
light signal reception in plants, including phytochromes (PHYs), cryptochromes (CRYs),
the UV-B photoreceptor (UVR8), and phototropin [3]. Among these photoreceptors, the
PHYs are involved in a series of downstream physiological and biochemical processes in
plants, such as plant morphogenesis, abiotic stress, and defense responses [4–6]. The PHY
proteins can bind the bilin of a chromophore, which absorbs light and triggers protein
conformational changes that incur the first step of signal transduction [5]. However, PHY
proteins interact with multiple partners to modulate the transcription of downstream target
genes to control the light-regulated modulation of plant growth and development [6]. The
phytochrome-interacting factor (PIF) family is one of the key interacting partners and acts
as a key regulator of the transition from skotomorphogenesis to photomorphogenesis [7].
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PIF proteins are encoded by a subfamily of bHLH transcription factors with two con-
served domains, bHLH and APB (active phyB-binding) [8], that are widely distributed from
bryophytes to higher plants and have been identified from bryophytes to angiosperms, such
as Arabidopsis (Arabidopsis thaliana, eight members) [9], rice (Oryza sativa, six members) [10],
maize (Zea mays, eight members) [11], tomatoes (Solanum lycopersicum, eight members) [12],
apples (Malus domestica, eight members) [13], grapes (Vitis vinifera, four members) [14],
Brachypodium distachyon (eight members) [15], Marchantia polymorpha (one member) [16],
and Physcomitrella patens (six members) [17]. Previous studies have demonstrated that
PIFs are diffusely involved in many processes of plant development and growth, such as
seed germination, embryo shaft elongation, chlorophyll biosynthesis, shade-avoidance
responses, circadian clock, and so on [18].

PIF proteins can bind to the G-box core motif (CACGTG) to enhance or inhibit the expres-
sion of downstream genes [9]. The primary function of PIFs has been demonstrated to be an
attenuator within the phototransduction cascade that can suppress photomorphogenesis and
facilitate skotomorphogenesis under dark conditions. In Arabidopsis, PIFs promote skotomor-
phogenesis mainly by enhancing hypocotyl elongation; for example, AtPIL5 impedes seed
germination, and inhibits hypocotyl negative geotropism and hypocotyl elongation [19]. The
ETHYLENE-INSENSI-TIVE 3 (EIN3) activation of AtPIF3 is essential for ethylene-mediated
hypocotyl growth. AtPIF4 has been found to regulate stomatal development, chlorophyll
degradation, and leaf senescence in the absence of light and can enhance the cold resistance
of the plant [19]. AtPIF5 inhibits red-light-induced anthocyanin production in Arabidopsis
seedlings [19]. AtPIF6 is strongly induced during seed development, which exists in two splice
variants, including an alpha form and a beta form. Elevated AtPIF6 expression diminishes
seed dormancy, while the suppression of AtPIF6 enhances it [20]. PHYB, as the primary
shade detector, indirectly modulates growth through the dephosphorylation of PIF7 in shaded
conditions, leading to an upregulation of auxin biosynthetic genes [9].

The potato (Solanum tuberosum L.), ranking fourth globally after rice, maize, and wheat,
is pivotal to the agricultural economy [21]. However, the PIF family in the potato has
not been well characterized, especially the functions of StPIFs, which are still unclear.
In our study, a global analysis of the PIF gene family in potatoes was carried out, and
seven StPIFs were identified. The chromosomal location, gene structures, physicochemical
characteristics, phylogenetic tree, and tissue-specific expression patterns of StPIFs were
also analyzed. Furthermore, we found that StPIF3 plays a crucial regulatory role in potato
responses to shade. The overexpression of StPIF3 in potatoes increased stem length and
chlorophyll accumulation and enhanced shade-avoidance symptoms. Consequently, this
study provides detailed information about StPIFs and identifies the function of StPIF3,
which is involved in shade-avoidance syndrome in potatoes.

2. Materials and Methods
2.1. Plant Materials and Processing Method

The potato cultivar “Atlantic” was used as the experimental material in our research.
Potatoes were planted in test tubes under the following conditions: 22 ± 2 ◦C; 16 h light/8 h
dark; humidity at 80%. Then, 20-day-old test-tube plants were randomly divided into
control and treatment groups, treatment groups were subjected to shaded treatment by
controlling the light intensity at 3500 Lx, and control groups were grown as usual (20,000 Lx).
All the materials were separately harvested, immediately frozen in liquid nitrogen, and
then stored at a −80 ◦C refrigerator for later use.

2.2. Genome-Wide Identification and Annotation of Potato PIF Genes

To identify the PIF family members in potatoes, we downloaded all protein sequences
of AtPIF from the Arabidopsis Information Resource (TAIR) Database; all the downloaded
sequences were used to search against Spud DB Potato Genomics Resources [22]. The
INTERPRO [23] and SMART databases were used to further verify the candidates on the
basis of integrity and the existence of the conserved domains of bHLH and APB [23]. The
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ExPASy database was used to calculate the isoelectric points (pIs) and molecular weights
(MWs) of the proteins of all the StPIFs.

2.3. Bioinformatics Analysis of StPIF Genes

The plant-mPLoc website was used to analyze the subcellular localization of StPIFs. We
exploited GSDS to identify the number and location of the introns and exons of StPIF genes
by blasting the CDS and genomic sequences of the StPIF genes. Chromosome localization
of the StPIFs was achieved with TBtools (v2. 034). MEGA7 was used for multiple sequence
alignment analysis, and the bootstrap test had 1000 replicates. We downloaded all protein
sequences for PIFs from rice, tomato, and Arabidopsis thaliana genomic databases to construct
the phylogenetic analysis. The MEME (v5. 5. 5) website was used to analyze conserved motifs;
we set the motif number as 10 and chose motifs with E-values ≤ 1 × 10−30. In order to reveal
the potential regulatory patterns of StPIFs, PlantCare and TBtools were used to analyze the
cis-acting elements in the promoter regions of the StPIF genes.

2.4. Gene Expression Analysis of StPIFs

Total RNA was extracted from the potato leaves using the CTAB method [24] and
was then used for reverse transcription using kits offered by TaKaRa (Takara Biomedical
Technology, Beijing, China). Quantitative real-time PCR (RT-PCR) was performed with the
CFX96 Real-Time PCR Detection system (Roche, Switzerland). Each qPCR reaction was
established with three technical replicates. The 2−∆∆Ct method was used to calculate the
expression levels of the StPIFs [25]. The EF1α gene served as an internal control.

2.5. Tissue-Specific Analysis of Expression Levels

For inquiry on the expression patterns of the StPIFs in different organs and tissues
of potatoes, we downloaded the RNA sequencing data of the StPIFs from the PGSC
database [26], which were DM (double monoploid S. tuberosum group phureja DM-13).
Tbtools was adopted to visualize the analysis of RNA-seq expression.

2.6. Subcellular Localization of StPIF3

To investigate the subcellular localization of the StPIF3 protein, the ORF sequences of
the StPIF3 gene were cloned into the pCAMBIA1300-35S-EGFP vector, and we constructed
the fusion expression vector of pCAMBIA1300-EGFP-StPIF3. The primers were as follows:
5′-AGAACACGGGGGACGAGCTCATGCCTCTCTCTGAGTTCG-3′ (SacI site in bold);
5′-TGCTCACCATGTCGACGTTGGTCAACCTATTCGCC-3′ (SalI site in bold). These were
then transformed into Agrobacterium tumefaciens GV3101. Nicotiana benthamiana foliage
was infiltrated with StPIF3 GFP vectors. After two days of treatment in darkness, GFP
fluorescence signals were visualized with a laser scanning confocal microscope (Leica,
Weztlar, Germany).

2.7. Plasmid Construction and Generation of the Solanum tuberosum Transgenic Plant

We amplified the full-length sequence of StPIF3 from potatoes with the primes
5′-AGAACACGGGGGACGAGCTCATGCCTCTCTCTGAGTTCTG-3′ (SacI site in bold)
and 5′-TGCTCACCATGTCGACTCAGTTGGTCAACCTATTCGCG-3′ (SalI site in bold);
then, the amplified fragment was cloned into the pCAMBIA1300-35S-EGFP vector, and
we constructed the overexpression vector of StPIF3. The interference vector of StPIF3
was constructed with artificial miRNA technology according to a previously published
method [27]. The recombinant construct was transformed into Agrobacterium tumefaciens
strain GV3101. Sterile microtubes were employed for Agrobacterium-mediated potato
transformation to generate potato transgenic plants following the method described by
Si et al. [28]. The regenerated plantlets were selected from hygromycin-resistant genes and
confirmed by genomic PCR analysis.
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2.8. Shade-Avoidance Syndrome Analysis of Transgenic Potato Plants

Plant height and chlorophyll accumulation are typical syndromes under shade-avoidance
responses. In order to understand the function of StPIF3 in potato shade-avoidance re-
sponses, we measured the plant height and chlorophyll content of the transgenic plants. Thus,
25-day-old both wild-type and transgenic plants were used for shade-avoidance syndrome
analysis. The chlorophyll content (Chl) analysis was performed according to the TYS-B live
chlorophyll meter (Jisenpuer, Zhejiang, China) and the fully expanded leaves of the upper,
middle, and lower parts of each plant were measured. The plant height assays of the wild-type
and transgenic plants were performed after seven days of shade treatment.

3. Results
3.1. Identification of Potato PIFs

In this study, a total of seven candidate StPIFs were finally identified in potatoes and
named PIF01-1, PIF01-2, PIF03, PIF06-1, PIF06-2, PIF07, and PIF09 based on their locations
on chromosomes; each of their encoded proteins contain bHLH and APB domains, while
StPIF06-2 and, StPIF01-2 have APA domains. The CDS sequence of seven StPIF genes
varying from 1254 to 2151 bp in length, encodes proteins varying from 417 to 716 amino
acids in length; the theoretical isoelectric point (pI) value ranges from 5.15 to 8.71, and the
molecular weight ranges from 41,285.79 to 76,772.66 Da. Detailed information on gene
IDs, subfamilies, CDS length, protein length, molecular weight, theoretical pI, and domain
regions are summarized in Table 1.

Table 1. Characteristics of phytochrome-interacting factor (PIF) genes in the potato.

Gene ID Name Subfamily CDS Length Protein Length Molecular
Weight Theoretical pI Characteristic Domains

Soltu.DM.01G041140.1 PIF01-2 PIF3 2151 716 76,772.66 7.26 bHLH (460–508)
Soltu.DM.06G002140.1 PIF06-2 PIF1 1548 515 56,408.13 5.13 bHLH (311–359)
Soltu.DM.07G014300.2 PIF07 PIF4 1647 548 61,114.45 6.93 bHLH (372–412)
Soltu.DM.09G018570.7 PIF09 PIF4-RELATED 1737 578 62,943.67 6.42 bHLH (347–393)
Soltu.DM.06G025680.1 PIF06-1 PIF7 1254 417 46,935.82 8.71 bHLH (198–246)
Soltu.DM.01G031430.2 PIF01-1 PIF8 1395 464 50,747.96 7.62 bHLH (286–331)
Soltu.DM.02G028560.1 PIF02 NOT NAMED 1131 376 41,285.79 5.04 bHLH (151–197)
Soltu.DM.03G029660.1 PIF03 PIF7 1314 437 48,174.88 6.79 bHLH (237–283)

3.2. Subcellular Localization, Chromosome Localization, and Gene Structure Analysis of
Potato PIFs

The results of subcellular localization prediction showed that seven StPIF genes
were located in the nucleus, indicating that they were typical transcription factors and
could regulate the expression of downstream genes. Seven StPIFs were mapped into five
chromosomes of the potato (Chr 1, Chr3, Chr6, Chr7, and Chr9) (Figure 1). Gene structure
analysis showed that all seven StPIF genes had intron and exon structures; PIF01-2, PIF06-2,
and PIF09 had six introns; and the rest had five introns (Figure 2).

Agronomy 2024, 14, x FOR PEER REVIEW 5 of 17 
 

 

chromosomes of the potato (Chr 1, Chr3, Chr6, Chr7, and Chr9) (Figure 1). Gene structure 
analysis showed that all seven StPIF genes had intron and exon structures; PIF01-2, PIF06-
2, and PIF09 had six introns; and the rest had five introns (Figure 2). 

 
Figure 1. Chromosome localization analysis of StPIFs. The different colors represent the density 
information of the genes, red represents higher gene density, blue is the opposite. 

 
Figure 2. Gene structure characteristics of StPIFs. The blue and yellow boxes represent UTR and 
CDS, and the black lines represent introns. 

3.3. Multiple Sequence Alignment and Phylogenetic Analysis 
The bHLH and APB domains were universally identified across all AtPIF proteins, 

showcasing their highly conservative. The same results were obtained for seven StPIF pro-
teins, and StPIF02 was removed due to a lack of an APB domain [29]. Our study employed 
phylogenetic analysis utilizing an unrooted tree with 1000 bootstrap replicates of full-
length amino acid sequences to analyze the evolutionary trajectories of potato PIF proteins 
alongside those from diverse plant species (Figure 3). Our phylogenetic investigation re-
vealed six distinct clades, with StPIFs predominantly pairing with their orthologous coun-
terparts within subgroups in Solanum lycopersicum or Arabidopsis thaliana. For example, 
StPIF01-2 shared high homology with SlPIF3. StPIF01-1 clustered with SlPIF8a. StPIF07 
showed a close relationship with SlPIF4. According to Figure 4, StPIFs are more closely 
related to SlPIFs than OsPIFs and AtPIFs. 

Figure 1. Chromosome localization analysis of StPIFs. The different colors represent the density
information of the genes, red represents higher gene density, blue is the opposite.



Agronomy 2024, 14, 873 5 of 15

Agronomy 2024, 14, x FOR PEER REVIEW 5 of 17 
 

 

chromosomes of the potato (Chr 1, Chr3, Chr6, Chr7, and Chr9) (Figure 1). Gene structure 
analysis showed that all seven StPIF genes had intron and exon structures; PIF01-2, PIF06-
2, and PIF09 had six introns; and the rest had five introns (Figure 2). 

 
Figure 1. Chromosome localization analysis of StPIFs. The different colors represent the density 
information of the genes, red represents higher gene density, blue is the opposite. 

 
Figure 2. Gene structure characteristics of StPIFs. The blue and yellow boxes represent UTR and 
CDS, and the black lines represent introns. 

3.3. Multiple Sequence Alignment and Phylogenetic Analysis 
The bHLH and APB domains were universally identified across all AtPIF proteins, 

showcasing their highly conservative. The same results were obtained for seven StPIF pro-
teins, and StPIF02 was removed due to a lack of an APB domain [29]. Our study employed 
phylogenetic analysis utilizing an unrooted tree with 1000 bootstrap replicates of full-
length amino acid sequences to analyze the evolutionary trajectories of potato PIF proteins 
alongside those from diverse plant species (Figure 3). Our phylogenetic investigation re-
vealed six distinct clades, with StPIFs predominantly pairing with their orthologous coun-
terparts within subgroups in Solanum lycopersicum or Arabidopsis thaliana. For example, 
StPIF01-2 shared high homology with SlPIF3. StPIF01-1 clustered with SlPIF8a. StPIF07 
showed a close relationship with SlPIF4. According to Figure 4, StPIFs are more closely 
related to SlPIFs than OsPIFs and AtPIFs. 

Figure 2. Gene structure characteristics of StPIFs. The blue and yellow boxes represent UTR and CDS,
and the black lines represent introns.

3.3. Multiple Sequence Alignment and Phylogenetic Analysis

The bHLH and APB domains were universally identified across all AtPIF proteins,
showcasing their highly conservative. The same results were obtained for seven StPIF
proteins, and StPIF02 was removed due to a lack of an APB domain [29]. Our study
employed phylogenetic analysis utilizing an unrooted tree with 1000 bootstrap replicates
of full-length amino acid sequences to analyze the evolutionary trajectories of potato
PIF proteins alongside those from diverse plant species (Figure 3). Our phylogenetic
investigation revealed six distinct clades, with StPIFs predominantly pairing with their
orthologous counterparts within subgroups in Solanum lycopersicum or Arabidopsis thaliana.
For example, StPIF01-2 shared high homology with SlPIF3. StPIF01-1 clustered with SlPIF8a.
StPIF07 showed a close relationship with SlPIF4. According to Figure 4, StPIFs are more
closely related to SlPIFs than OsPIFs and AtPIFs.
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Figure 3. The multiple alignment of deduced amino acid sequences of StPIFs. (A) Comparison of
active PHYB binding (APB). (B) Comparison of BHLH binding. (C) Comparison of active PHYA
binding (APA). * represents identical amino acid residue. EL, GQ represent conserved amino acid
residues in the APB domain. L, N represent conserved amino acid residues of the APA domain in
PIF1. F, F represent conserved amino acid residues of the APA domain in PIF3.
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3.4. Conserved Motif and Cis-Acting Element Analysis of PIF Family

To investigate the structural diversity of StPIF-encoded proteins, we detected the motif
compositions of these StPIFs. A total of 10 motifs were found among the StPIF gene family
(Figure 5), named Motifs 1 to 10. In detail, Motif 1 and Motif 2 existed in all StPIF-encoded
proteins and were inferred from the nucleotide composition of the bHLH domain. All
StPIFs had Motif 3 (the APB domain). Moreover, StPIF06-2 and StPIF09 had the same
kinds of motifs and were on a branch of the phylogenetic tree. StPIF06-1 and PIF03 had the
same condition.
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We analyzed the cis-elements of PIF genes to clarify the gene function and transcrip-
tional regulation mechanism. All StPIFs had TATA-box and CAAT-box. The predicted
cis-elements could be divided into three classes; these are the cis-elements related to photore-
action, phytohormones, and adverse environmental conditions. The cis-elements related to
photoreaction (GT1-motif, GA-motif, TCT-motif, Box 4, AE-box, GATA-motif, ACE, I-box,
AT1-motif, Sp1, G-box, TCCC-motif, and CAG-motif) were more abundant than the remain-
ing two classes and varied from three to nine. The cis-elements related to phytohormones
included cis-acting elements involved in abscisic acid, jasmonic acid, gibberellin, salicylic
acid, and the auxin response. StPIF03 and StPIF07 had low-temperature stress respon-
siveness (LTR) elements. Drought-inducibility (MBS)-related elements were found in the
promoters of StPIF03, StPIF06-1, and StPIF09. Circadian control (circadian: CANNNNATC)
elements were detected in the promoters of StPIF01-1, StPIF06-1, and StPIF09. StPIF01-1
had a heat stress responsiveness element (an AT-rich element). Anaerobic induction (ARE)-
related elements were detected in the promoters of StPIF01-2, StPIF06-1, and StPIF07;
the promoters of StPIF06-2, StPIF06-1, and StPIF07 had cis-acting regulatory elements of
meristem expression (CAT-box). The cis-acting elements related to zein metabolism were
detected in the promoters of StPIF06-2 and StPIF06-1. The promoters of StPIF06-1 had the
MYBHv1 (CCAAT-box) cis-acting element. Additionally, cis-acting elements involved in
defense and stress responsiveness (TC-rich repeats) were also found in the promoters of
StPIF01-2; StPIF09 had the cis-acting elements of seed-specific expression (GCN4-motif),
and the MYB binding site involved in light responsiveness (MRE) was found in the pro-
moters of StPIF06-2 (Figure 6). These results indicated that StPIFs play diverse roles in
regulating polymorphism, hormone metabolism, and responses to various stresses.
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Figure 6. The cis-elements in the promoters of potato PIF genes. The PlantCare website was used
to analyze and present the results with TBtools. The 2000 bp upstream of the StPIFs was used to
perform cis-elements analysis.

3.5. QRT-PCR Analysis of StPIF Genes under Shaded Stress

By combining cis-acting element analysis and previous report results, we found that
the PIF gene family is involved in shade-avoidance responses and regulates multiple shade-
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avoidance syndromes. To investigate the expression pattern of the seven StPIF genes under
shading conditions, the expression levels of these StPIFs under shade were analyzed by RT-
qPCR (Figure 7). The results showed that the expression level of StPIF01-2 was obviously
increased after shade treatment; the expression level of StPIF06-1 was decreased after shade
treatment; the expression levels of StPIF06-2 and StPIF03 were increased after 5 days of
shade treatment and decreased after 10 days of shade treatment; the expression level of
StPIF01-1 was decreased after 5 days of shade treatment and increased after 10 days of
shade treatment; and the expression of StPIF07 was not detected in this experiment. Based
on the results above, the expression level of StPIF01-2 was found to be significantly induced
under shade conditions, and it was renamed StPIF3 for future functional identification.
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3.6. Tissue-Specific Analysis of Expression Levels of StPIFs in Potatoes

The expression levels of the seven StPIFs were investigated thoroughly using a tran-
scriptome analysis procedure based on the public transcriptomic data of 18 different
tissues of potatoes, including leaves, roots, shoots, leaf-wounding secondary tissue, callus,
tuber 1, tuber 2, sepals, stamens, stolon, whole mature flowers, petioles, petals, carpels,
leaf-wounding primary tissue, mature whole fruit, immature whole fruit, and the insides
of the fruit (mesocarp and endocarp) (Figure 8). The results indicated that the seven
StPIF genes exhibited constitutive expression in all tissues. In leaf-wounding secondary
tissue, StPIF01-1 had the highest expression compared with the other tissues. Some StPIFs
were predominantly expressed in different organs and tubers, such as StPIF01-1, which
had a higher expression in leaf-wounding secondary tissue, sepals, leaves, petioles, and
leaf-wounding primary tissue; StPIF06-2 had a higher expression in shoots and showed a
slight expression in roots, stolons, tuber 2, petals, and leaves. StPIF01-2 in mature whole
fruit, roots, the callus, and sepals presented with higher expression than the other tissues.
StPIF03 in leaf-wounding primary tissue had higher expression than the other tested tissues.
StPIF09 in roots and StPIF06-1 in leaf-wounding primary tissue showed slight expression.
StPIF07 was almost not expressed, and the expression level was the lowest compared with
other members.
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3.7. Subcellular Localization of StPIF3

To better understand the role of StPIF3 in potatoes, subcellular localization analysis
was used to trace the intracellular proteins of StPIF3, and we constructed a fusion plasmid
StPIF3-GFP. the recombinant plasmid was transiently transfected into tobacco leaf cells, and
subsequent confocal laser scanning microscopy revealed the nuclear localization of StPIF-
GFP fusion protein fluorescence, while GFP in the controls was distributed throughout the
cytoplasm and nucleus (Figure 9). These results indicated that StPIF3 is localized in the
nucleus. This shows that it is a typical transcription factor.
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3.8. Potato Transformation and Identification

To elucidate the potential function of StPIF3 in potato shade-avoidance responses,
StPIF3 overexpression (OE) and knockdown (RNAi) transgenic potato lines were obtained.
In total, six independent transformants were detected as transgenic potato lines by genomic
PCR (Figure 10). QRT-PCR analysis revealed that the expression level of StPIF3 in the
leaves of the overexpression transgenic lines was significantly higher than that of the
non-transgenic lines (Figure 10A), while the relative expression levels of StPIF3 were
significantly lower in RNAi lines than non-transformed lines (Figure 10B), indicating that
we successfully achieved StPIF3 overexpression and the suppression of transgenic potato
lines. Based on the qRT-PCR results, three independent overexpression lines (StPIF3-
OE1, StPIF3-OE2, and StPIF3-OE3) and three suppression transgenic lines (StPIF3-RNAi1,
StPIF3-RNAi2, abd StPIF3-RNAi3) were severally selected for further analysis.
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Figure 10. Expression analysis of StPIF3 in WT and transgenic strains. StEf1α (elongation factor 1α)
was used as an internal control. (A) Comparison of the expression levels of overexpressed StPIF3
lines and WT controls. (B) Comparison of the expression levels of interfering expression lines and
WT controls. Asterisks denote significant differences from control (*, p < 0.05; **, p < 0.01).

3.9. StPIF3 Regulates Shade-Avoidance Syndrome by Coordinating Chlorophyll Accumulation

Previous studies have shown that a shade-induced decrease in chlorophyll content is a
typical phenotype of shade-avoidance syndrome in plants. Chlorophyll content indicators
can be used to assess plant nutritional status, photosynthesis efficiency, and growth and
development levels. To examine the effects of StPIF3 on potato chlorophyll content, we
measured chlorophyll content among StPIF3 overexpression and knockdown transgenic
lines and wild-type potatoes (Figure 11). The results showed that the chlorophyll content
was higher in the StPIF3 knockdown plants than the wild-type plants, while the chlorophyll
content was lowest in the StPIF3 overexpression plants between wild-type and knockdown
lines. These results reveal that StPIF3 negatively regulates chlorophyll content and then
enhances shade-avoidance syndrome.
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3.10. StPIF3 Regulates Shade-Avoidance Syndrome by Regulating Plant Heights

In order to identify the role of StPIF3 in potato shade-avoidance responses, we con-
structed StPIF3 overexpression and knockdown transgenic lines and measured the plant
height of transgenic potato lines and a wild-type control. The results showed that there
was a significant difference in plant height between the transgenic lines and the wild-type
potato plants (Figure 12A,C). The plant height was obviously increased in the StPIF3 over-
expression transgenic lines, whereas the plant height was significantly shortened in StPIF3
knockdown transgenic lines. As expected, the plant height of both the transgenic and
wild-type plants significantly increased after shade treatment; however, there was a signifi-
cant difference in the increase rate between the transgenic and wild lines (Figure 12B,D).
Taken together, these results imply the crucial role of StPIF3 in regulating plant height and
shade-avoidance responses.
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4. Discussion
4.1. StPIF Identification and Evolution in Potatoes

Phytochrome-interacting factors have been discovered as regulatory hubs that inte-
grate environmental cues into transcriptional scenarios, and functional characterizations
have shown that PIF proteins are widely involved in plant growth, development, and
stress response biological processes [30,31]. Several PIF genes have been identified in many
species; for example, eight candidate PIF genes have been reported in Arabidopsis [9],
tomatoes [12], maize [11,32], apples [13,33], and Brachypodium distachyon [15]; six have
been reported in rice [10] and Physcomitrella patens [17]; and only one has been reported in
Marchantia polymorpha [16]. However, the PIF genes have been insufficiently identified in
potatoes to date. In this study, we identified seven candidate StPIFs in potatoes; StPIF02
was removed due to a lack of an APB domain (Figure 3). The number of StPIFs was
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similar to most plants, probably due to the evolutionary conservation of the gene family.
Physicochemical property analysis showed that there were differences in the theoretical
isoelectric point and the location of the characteristic domains of the StPIFs; this showed
that their structures were quite different, and we can speculate that they perform different
functions (Table 1). The APB and APA domains have been reported to be necessary factors
for identifying PIF family members apart from bHLH domains. PIF family members regu-
late the morphogenesis of plants via the APB domain, combined with the phyB or APA
domain, combined with phyA [7]. In our study, all the gene family members had the APB
domain; only StPIF06-2 and StPIF01-2 had both the APA domain and the APB domain,
similar to AtPIF1 and AtPIF3, suggesting that they may physically interact with phyA and
phyB, so these StPIFs might be close to AtPIF1 and AtPIF3 on an evolutionary scale [34]
(Figure 3). A comparative phylogenetic investigation revealed high orthology between the
StPIFs and their Solanum lycopersicum PIF counterparts (Figure 4).

4.2. PIF Transcription Factors Exhibit Phylogenetic Conservation across Plantae

Evolutionary analysis showed that the phylogenetic trees of StPIFs can be divided
into six groups and clustered with tomatoes: SlPIF1a/1b, SlPIF3, SlPIF4, SlPIF7a/7b, and
SlPIF8a/8b (Figure 4). Further analysis of the conserved motifs of the StPIF family mem-
bers using the MEME software revealed that the majority of StPIFs in the same group had
similar motifs, and those genes containing similar motifs were likely generated by gene am-
plification in the same group (Figure 5) [35]. We found motifs that were conserved across all
groups; for example, Motifs 1, 2, and 8 contained the bHLH domain, and Motif 3 contained
the APB domain. Different groups of StPIFs showed some differences in motifs. Although
StPIF03 was missing Motif 4 in a group and had one more Motif 7 compared with StPIF06-1,
this may reflect the diversity of StPIF protein functions. The number of exons and introns
of the StPIF06-2 and StPIF07 was similar to that of A. thaliana and Vitis vinifera L., implying
that PIF genes can be functionality conserved across plant species [9,14]. StPIF06-2, StPIF09,
StPIF06-1, StPIF03, and StPIF01-1 shared the same number of exons and introns; we also
found that they were from the same group (Figure 2).

4.3. PIFs Function as Key Nodes Conjoining Environmental and Hormonal Signals

Increasing evidence underscores the centrality of PIFs as regulatory nodes in various
biological processes, including resistance to drought [36], salt [37], cold [38], chlorophyll
biosynthesis [39], plant hormone signaling pathways (GA, BR, and auxin) [40], and the
regulation of plant immune responses [41]. Promoter cis-acting element analysis is useful
for predicting the potential functions of genes. A variety of cellular proteins, including
transcription factors, can bind promoter cis-elements that regulate gene transcription and
expression in response to environmental and hormonal signals. There are a total of 25 pre-
dicted promoter cis-acting elements, which roughly include hormone response elements,
light response elements, response elements related to abiotic stress, and some special
elements (Figure 6). For example, in the gibberellin signaling pathway, DELLA protein
stabilization inhibits PIF4-driven cellular expansion, while gibberellins promote elongation
by destabilizing DELLA, facilitating nuclear PIF4 accrual and target gene activation [42].
In Cucumis sativus, researchers delineate CsPIF3’s pivotal function in the orchestration
of red/far-red and UV-B light signaling pathways that govern hypocotyl development.
Specifically, the interaction between CsPhyB and CsPIF3, followed by downstream engage-
ment with CsGA20ox-2-DELLA and CsPIF3-CsARF18, modulates hypocotyl elongation via
gibberellin and auxin routes. CsPIF3’s transcriptional control is affected through its binding
to G/E-box motifs within the CsGA20ox-2 and CsARF18 promoter regions [30]. Considering
the central role of PIFs in light signal transduction, this study explored the effect of light
intensity on StPIF expression levels. Our results indicated that the expression of six StPIFs
was affected by the light intensity. Shading treatments can increase the expression level
of PIF06-2 and StPIF03, but the increase was limited with time. The expression level of
StPIF01-1 decreased obviously and then increased after shade; the expression of StPIF06-1
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was induced by light-shading conditions (Figure 7). In grapes, shade treatment facilitates
increased transcript levels of VvPIFs [14]. This is generally consistent with our results.

Transcriptomic profiling of StPIFs in different potato organs and tissues revealed
the dynamics of gene expression, providing valuable insights for functional analysis. An
expression weight heat map was obtained and revealed the spatial differences in the
expression levels of StPIFs in different potato organs/tissues. StPIF01-1 had the highest
expression in leaf-wounding secondary tissue, StPIF06-2 was highly expressed in shoots,
and most of the StPIFs showed different expression patterns in different organs/tissues,
suggesting that different StPIFs had different biological functions (Figure 8).

4.4. StPIF3 Regulates Shade-Avoidance Syndrome in Potatoes

Previous studies have shown that PIFs participate in regulating light-dependent
growth and development processes. AtPIF3 is a positive regulator of PHYB signal trans-
duction; in Poc1 mutant plants, dark conditions attenuate PIF3 transcript levels, whereas
red illumination upregulates expression concomitantly with abbreviated hypocotyl elon-
gation, which has been interpreted as being associated with PIF3 overexpression [43]. In
Arabidopsis thaliana, researchers characterized PIF3’s role in photomorphogenesis, revealing
that overexpression lengthens hypocotyls and shrinks cotyledons under red light, with
diminished cotyledon expansion under red and far-red spectra, contrasting the truncated
phenotypes observed in pif3 mutants [44]. In our study, StPIF3-overexpressed potato plants
have higher plant heights compared with wild-type and interfering expressing plants, and
the overexpression plants exhibited smaller cotyledons; this is consistent with previous
reports. The key role of PIF3 in light signal transduction is demonstrated in Figure 12.
Shade during the tuber expansion period can lead to an increase in chlorophyll content [45].
In Arabidopsis thaliana, PIF3 overexpression lines exhibit elevated anthocyanin and dimin-
ished chlorophyll levels [44]. Our results showed that StPIF3 overexpression significantly
decreased the chlorophyll content compared with wild-type plants, which may be related
to the fact that they have smaller cotyledons; this is basically consistent with previous
research. Increased plant height is one of the typical shade-avoidance syndromes. The
results of our experiment also confirmed that the overexpression of StPIF3 can greatly
improve the plant height of transgenic potatoes. In summary, we propose that StPIF3 plays
a critical role in regulating shade-avoidance syndrome in potatoes.

5. Conclusions

This study identified seven StPIF genes, all putative amino acid sequences containing
APB and bHLH conserved domains unique to PIFs. In evolutionary relationships, StPIFs
can be divided into four groups, each group with similar conserved motifs. Tissue expres-
sion profiling indicated that most of these genes were highly expressed in the leaves. All
seven StPIFs screened responded to light intensity changes, and shading was beneficial to
improving the expression level of the StPIFs. StPIF3 overexpression showed higher plant
height and less chlorophyll accumulation in normal light; interfering expression was the
opposite. Furthermore, StPIF3 overexpression reduced sensitivity to low-light treatment.
Our research will provide ideas for optical signal transduction networks of PIFs in potatoes.
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