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Abstract: Sex determination directs development as male or female in sexually reproducing organ-
isms. Evolutionary transitions in sex determination have occurred frequently, suggesting simple
mechanisms behind the transitions, yet their detail remains elusive. Here we explore the links
between mechanisms of transitions in sex determination and sex chromosome evolution at both
recent and deeper temporal scales (<1 Myr; ~79 Myr). We studied a rare example of a species with
intraspecific variation in sex determination, Carinascincus ocellatus, and a relative, Liopholis whitii,
using c-banding and mapping of repeat motifs and a custom Y chromosome probe set to identify the
sex chromosomes. We identified both unique and conserved regions of the Y chromosome among
C. ocellatus populations differing in sex determination. There was no evidence for homology of sex
chromosomes between C. ocellatus and L. whitii, suggesting independent evolutionary origins. We
discuss sex chromosome homology between members of the subfamily Lygosominae and propose
links between sex chromosome evolution, sex determination transitions, and karyotype evolution.
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1. Introduction

Development as male or female is central to sexual reproduction [1]. Sex determina-
tion decides the sexual fate of the developing gonad, and because the outcome is highly
conserved, the underlying mechanism is also expected to be conserved [2]. However,
sex determination is surprisingly labile in vertebrates, which has generated considerable
scientific interest [1,3-7]. The diversity in sex determination in vertebrates is also accom-
panied by morphological and genetic diversity in sex chromosomes [5,8-11]. Because sex
chromosomes also play a central role in postzygotic isolation and speciation [12-15], they
may simultaneously reinforce any ongoing divergence in sex determination, raising funda-
mental questions about the links between sex chromosome evolution, sex determination
transitions, and lineage divergence [16,17].

Our understanding of the potential contribution of sex chromosomes to transitions
in sex determination relies on basic knowledge of sex chromosome evolution. The classic
theory of sex chromosome evolution describes how they first arise when recombination
around a sex determining locus is suppressed [1,11]. Recombination suppression on
sex chromosomes is marked by the accumulation of inversions [18], heterochromatini-
sation [19], transposable elements and other repetitive sequences such as microsatellite
motifs [20], but it is unknown whether this is a cause or consequence of recombination
suppression [21]. The evolutionary trajectory of sex chromosomes in all but a few bird
and mammal species has resulted in sex chromosomes progressing from homomorphy
to heteromorphy [22-24] and the origin of sex chromosomes in these lineages is ancient
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(approximately 140 and 180 mya ago in birds and mammals, respectively [1,25]. In con-
trast, sex chromosomes are diverse in plants, invertebrates, fish and reptiles and several
mechanisms contribute to this diversity [26-30]. For example, a pair of autosomes may
usurp existing sex chromosomes via the acquisition of a new sex determining locus, or sex
chromosome-autosome fusions may result in a new sex chromosome system [31]. Further,
thermosensitivity in sex determination can lead to transitions between alternative systems
of heterogamety (XY male, ZW female) or from genetic to environmental sex determination,
where sex chromosomes are lost [32,33]. Sex chromosome evolution therefore follows
diverse pathways, the dynamics of which are poorly understood.

Lizards provide an opportunity to understand sex chromosome evolution, and pos-
sible links to transitions in sex determination and speciation. However, the mechanisms
that underpin transitions in sex determination and how they relate to sex chromosomes
and speciation remain unclear because information regarding sex determination and sex
chromosomes is lacking for the vast majority of lineages [1,34]. Among lizards, despite
evidence of homology of sex-linked chromosomal regions among some species [35-39],
sex chromosomes display extraordinary variation in morphology. Within the family Scin-
cidae, XY heterogamety is prevalent, however, the recent discovery of a skink with ZW
heterogamety [40] highlights at least one transition between these systems. In addition,
heteromorphic and homomorphic sex chromosomes are broadly distributed throughout
skinks [41-43] and skink species with sex chromosomes also exhibit temperature sensitiv-
ity of sex determination [35,44—49]. Sex determination transitions and sex chromosome
evolution have occurred frequently in this group and the diploid chromosome complement
is varied [43].

Carinascincus ocellatus (Scincidae) is a rare example of a species exhibiting population
divergence in sex determination; a high elevation population (1200 masl) has genetic sex
determination (GSD) with XY heterogamety while a low elevation population (50 masl)
has thermosensitive XY GSD [48,50-52]. Herein, we describe the low elevation population
as having GSD+EE (Environmental Effects; sensu Valenzuela, et al. [53]). Shared sex-linked
markers in these populations define conserved sex chromosome sequence. However, these
populations differ in the linkage disequilibrium among these shared sex-linked markers,
and they also possess population-specific sex-linked markers, suggesting sex chromosome
divergence [48]. Recombination is more disrupted in the high elevation GSD population,
representing molecular evidence of more progressed sex chromosome evolution. However,
a karyotype analysis did not reveal differentiated sex chromosomes in C. ocellatus [54].

Here we examine the karyotype of C. ocellatus (2n = 30) and compare it to that of
Liopholis whitii (2n = 32, sex chromosomes homomorphic [41]) from the subfamily Lygo-
sominae (Figure 1), to identify sex chromosomes. Specifically, we examined the high and
low elevation populations of C. ocellatus, which diverged less than 1 Mya [55], to test
whether intraspecific divergence in sex determination is reflected by gross sex chromosome
variation. In addition, we provide a phylogenetic assessment of sex chromosome evolution
through comparison between C. ocellatus and L. whitii, which diverged approximately
79 Mya (Figure 1, divergence data retrieved from TimeTree, [56]), to test for homology of
sex chromosomes in these lineages and to understand the mechanisms of sex chromosome
evolution across deeper temporal scales. We examined metaphase spreads of males and
females and used standard c-banding plus a custom probe set designed from C. ocellatus
Y-linked sequence. In addition, we mapped repeats (AGAT and telomere) to the karyotypes
of both species because of their association with sex chromosomes in a broad range of
reptiles [57,58]. We discuss sex chromosome evolution in the context of sex determination
transitions and karyotype evolution.
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Figure 1. Variation in diploid chromosome complement and sex determination in Scincid subfamilies
Scincinae (red) and Lygosominae (blue, yellow and green). The clades to which our study species
(Carinascincus ocellatus and Liopholis whitii) belong and other species of interest discussed herein are
included. The age of the split between clades containing C. ocellatus, L. whitii and E. heatwolei is
estimated as 79 mya [56]. Adapted from Pyron, et al. [59] and Olmo and Signorino [43]. * denotes

species where thermosensitive sex determination has been reported [35,45,46,49].
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2. Materials and Methods
2.1. Study Species

Carinascincus ocellatus is a small (60 to 80 mm snout-vent length, 3 to 10 g) viviparous
skink endemic to Tasmania, with a broad altitudinal distribution from sea level to 1200 m [60].
We collected three males and three females from populations representing the climatic
extremes of this species’ range: a cool temperate low elevation population with GSD+EE
(42°34’ S, 147°52' E; elevation 50 m, Table 1, Figure 2) and a high elevation, cold temperate
population with GSD (41°51’ S, 146°34’ E; elevation 1200 m, Table 1, Figure 2). Long term
data on these populations consistently documents their divergent sex determination [50-52].

Table 1. Number of male and female individuals and cells examined from whole blood culture of GSD (high elevation) and
GSD+EE (low elevation) populations of Carinascincus ocellatus and a single population of Liopholis whitii. ‘Sequential” FISH
represents Y-linked and microsatellite FISH in series.

GSD+EE C. ocellatus GSD C. ocellatus L. whitii
Male Female Male Female Male Female
Ind. Cells Ind. Cells Ind. Cells Ind. Cells Ind. Cells Ind. Cells
Karyotyping 3 73 3 50 3 129 3 64 3 43 3 67
c-banding 1 4 2 6 2 18 2 31 1 3 1 7
FISH
Telomere 3 15 2 20 2 36 2 18 3 17 3 24
AGAT 2 28 2 14 2 43 2 28 2 14 2 24
Y-linked 3 19 2 16 2 33 3 18 3 12 3 19
Sequential 1 11 1 17
masl
1400
1200
1000
- 800
- 600
- 400
- 200
-0

Figure 2. Sampling locations of Carinascincus ocellatus (inset, upper) and Liopholis whitii (inset, lower). C. ocellatus were
sampled from high and low elevation populations exhibiting GSD and GSD+EE, respectively.
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Liopholis whitii is a medium viviparous skink (snout-vent length < 100 mm) found
throughout south eastern Australia. We examined three males and three females from
the same low elevation location as C. ocellatus (Table 1, Figure 2). All guidelines and
procedures for the use of animals were approved by the University of Tasmania animal
ethics committee (no. A0017006).

2.2. Blood Culture and Metaphase Chromosome Preparations

Metaphase spreads were obtained from whole blood using a modified version of
the protocol described in Ezaz, et al. [61]. Briefly, 50 uL of whole blood was taken via
heparinised capillary tube from the sub-orbital sinus to set up 2 mL cultures in Dulbecco’s
modified Eagle’s medium (DMEM,; Gibco, Thermo Fisher Pty Ltd., Scoresby Victoria, Aus-
tralia) supplemented with 20% fetal bovine serum (Gibco), 4% antibiotic-antimycotic solu-
tion (Gibco) and 8% phytohemagglutinin from Phaseolus vulgaris (PHA-M, Sigma-Aldrich,
St. Louis, MI, USA). Cells were cultured for 3 days at 28 °C and 5% CO,. Cell division
was arrested 3.5 h prior to harvesting, using 0.05 pg/mL colcemid (Roche, Mannheim,
Germany). Cells were treated with hypotonic solution (75 mM KCl) at 37 °C and fixed in
3:1 methanol-acetic acid. The cell suspension was dropped onto glass slides, dehydrated
through an ethanol series of 70%, 90%, 100%, air dried and stored at —80 °C.

2.3. Development of Sex-Linked Probe Set for Chromosome Mapping

Thirty-two loci with sex-linked genotypes from double-digest, restriction-site associ-
ated DNA sequencing (RAD-seq) of C. ocellatus [48,62] were chosen for inclusion in our
custom probe set design (Table S1). Of these, 26 represent Y-linked sequence (only present
in males) common to both populations. Six loci were on both X and Y chromosomes,
but with single nucleotide polymorphisms (SNPs) segregating chromosomes (males het-
erozygous, females homozygous). Oligonucleotides were synthesized from these Y-linked
sequences and SNP RAD-tag sequences (38-69 bp) and each fragment was end-labelled
with 3X ATTO594 dye (Arbor Biosciences; https://arborbiosci.com).

2.4. C-Banding

We analysed 1-2 males and females from L. whitii and each C. ocellatus population
and examined 3-31 cells per individual (Table 1). C-banding was performed as described
by Sumner [63], Ezaz, et al. [61] and Shams, et al. [64] with slight modification. Briefly,
10-15 uL of cell suspension was dropped on a glass slide, air dried and aged for 60 min on
a 60 °C hot plate. Aged slides were treated with 0.2 N HCl at room temperature for 30 min,
then rinsed in distilled water and subsequently treated with 5% Ba(OH), at 50 °C for 6 min.
Slides were again rinsed in distilled water and then incubated at 60 °C in 2x SSC (saline
sodium citrate) for 1 h. Finally, for DAPI (4’,6-diamidino-2-phenylindole) staining, the
slides were mounted with antifade medium Vectashield (Vector Laboratories, Burlingame,
CA, USA) containing 1.5 mg/mL DAPL

2.5. Fluorescence In Situ Hybridisation (FISH) with Microsatellite Motif, Telomere and Y-Linked
Probe Set

We analysed up to three males and three females from L. whitii and each C. ocellatus
population and examined 15-43 cells per individual (Table 1) to determine distributions of
the (AGAT)g microsatellite motif, (TTAGGG)7 telomeric repeats and the custom Y-linked
probe set in males and females. The microsatellite motif (AGAT)g was chosen because of its
association with sex chromosomes in multiple reptilian groups including the Y chromosome
in a closely related skink, Bassiana duperreyi (Figure 1, [57]). Telomere probe and microsatel-
lite motif probes were Cy3-labelled (GeneWorks, Hindmarsh, South Australia, Australia).
FISH was performed as described in Ezaz, et al. [61] and Matsubara, et al. [65] with slight
modifications. Briefly, 500 ng of microsatellite and telomere oligonucleotides and 135 ng
of Y-linked probe set were added to 12.5 uL hybridisation buffer (50% formamide, 10%
dextran sulphate, 2x SSC, 40 mM sodium phosphate pH 7.0 and 1x Denhardt’s solution)
and warmed to 37 °C. The hybridisation mixture was placed onto the slide and sealed with
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a coverslip and rubber cement. Probe and chromosome DNA were denatured at 68.5 °C
for 5 min followed by incubation in a moist hybridisation chamber at 37 °C for 2448 h.
Slides were then washed in 0.4x SSC, 0.3% IGEPAL (Sigma) at 60 °C for 2 min followed by
2x SSC, 0.1% IGEPAL at room temperature for 1 min. Slides were dehydrated by ethanol
series and air dried. Finally, the slides were mounted with antifade medium Vectashield
containing 1.5 mg/mL DAPL

In addition to the individual FISH experiments, we performed sequential FISH initially
with the custom Y-linked probe set followed by the (AGAT)g probe on male metaphase
from both C. ocellatus populations. Hybridisation signals from the Y-linked probe set were
photographed, metaphase positions recorded then slides were washed in 0.4x SSC at 60 °C
for 1 min, followed by 2x SSC at room temperature for 2 min before hybridisation with
the (AGAT)g probe. Because both probes were labelled using fluorophores with similar
excitation-emission wavelengths, it was not possible to resolve these signals using our
existing microscope filter systems. Therefore, photos were merged in Photoshop (CS6) with
the colour of the Y-linked signal altered digitally so its association with repeat motifs could
be examined.

2.6. Microscopy and Image Analysis

Chromosome images were captured using a Zeiss Axio Scope Al epifluorescence
microscope fitted with a high-resolution microscopy camera AxioCam MRm Rev. 3 (Carl
Zeiss Ltd. Oberkochen, Germany) and a Leica DM6 B (Leica microsystems, Macquarie
park, Australia). Images were analysed using Metasystems Isis FISH Imaging System
V 5.5.10 software (Metasystems, Altlussheim, Germany) as well as Thunder Imager 3D
(Leica microsystems).

2.7. Marker Homology

We used NCBI BLAST [66] to identify homologs of our markers with publicly available
sequences from vertebrates. Specifically, we searched the “nr” database with the default
settings in NCBI's blastn suite and report matches related to sex determination or sexual
development with e-values < 0.001.

3. Results
3.1. DAPI Karyotypes

The karyotype of GSD and GSD+EE populations of C. ocellatus is 2n = 30, represented
by eight pairs of macrochromosomes and seven pairs of microchromosomes (Figure 3a-h),
while the karyotype of L. whitii is 2n = 32, represented by nine pairs of macrochromosomes
and seven pairs of microchromosomes (Figure 3i-1). These are consistent with karyotypes
described in Donnellan [54] and Donnellan [41]. Sex chromosomes are homomorphic
(Figure 3a-1).

3.2. Custom Y-Linked C. ocellatus Probe Set

Our Y-linked probe set hybridised adjacent to the centromere on a single chromosome
in males of both populations of C. ocellatus, and therefore identified the Y chromosome
in both populations (Figure 4a,c). We did not detect any signal on females of either
population, evidence that this probe set is specific to Y-linked sequences and does not
contain sequences that are present on the X chromosome in quantities large enough to
detect with FISH (Figure 4b,d). We did not detect any hybridisation signals on L. whitii
(Figure 4e,f).
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Figure 3. DAPI stained (inverted) metaphase spread and karyotypes in GSD+EE (low elevation) Carinascincus ocellatus
male (a,b) and female (c,d), GSD (high elevation) C. ocellatus male (e,f) and female (g,h) and Liopholis whitii male (i,j) and

female (k,1). Scale bar represents 10 pm.
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Figure 4. Chromosomal locations of Carinascincus ocellatus Y-linked FISH probe set (red) in GSD+EE (low
elevation) C. ocellatus male (a) and female (b), GSD (high elevation) C. ocellatus male (c) and female (d),
and Liopholis whitii male (e) and female (f). White arrowhead indicates X and Y (the homologous pair)
chromosomes in C. ocellatus. Scale bar represents 10 pum.

3.3. C-Banding

Accumulation of multiple heterochromatic bands are consistently observed across
all macrochromosomes in both populations of C. ocellatus, while only one major band
was observed in all microchromosomes. At least four microchromosomes are highly
heterochromatic (Figure 5a-h). Comparisons of C-banded karyotypes between males and
females of both populations of C. ocellatus identified one of the homologs of chromosome
pair 7 as highly heterochromatic in males but not females from the GSD (high elevation)
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population (Figure 5e-h); no sex specific heterochromatinisation was observed at low
elevation (Figure 5a-d). This corroborates the signal from the Y-specific probe and confirms
the Y chromosome has a region of heterochromatinisation in the GSD population. C-
banding in L. whitii revealed similar patterns to C. ocellatus, although we did not detect
any sex specific heterochromatinisation between male and female L. whitii (Figure 5i-1).
Multiple c-bands are observed in macrochromosomes and fewer in microchromosomes, and
one macrochromosome pair and one microchromosome pair are highly heterochromatic
(pairs 9 and 10; Figure 5i-1).
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Figure 5. C-banded spread and karyotypes in GSD+EE (low elevation) Carinascincus ocellatus male
(a,b) and female (c,d), GSD (high elevation) C. ocellatus male (e,f) and female (g,h) and Liopholis whitii
male (i,j) and female (k,1). Scale bar represents 10 pm.
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3.4. Telomere Repeats

Telomeric repeats were observed to hybridise onto the distal regions of both micro
and macrochromosomes of males and females of all individuals (Figure 6a—f). Telomeric
repeats are also observed at the centromeres of the two largest pairs of macrochromosomes
in C. ocellatus (Figure 6a—-d). We did not detect any sex specificity of any distal or interstitial
telomeric sequences in either species (Figure 6a—f).
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Figure 6. Chromosomal locations of the telomeric repeat (TTAGGG); sequence (red) in Carinascincus
ocellatus GSD+EE (low elevation) male (a) and female (b), GSD (high elevation) C. ocellatus male (c)
and female (d) and Liopholis whitii male (e) and female (f). White arrowhead indicates centromeric
telomeres. Scale bars represent 10 pm.

3.5. Microsatellite Motif (AGAT)s Mapping

The (AGAT)g probe hybridised onto telomeric regions of most of the macro and
microchromosomes in males and females of both populations of C. ocellatus (Figure 7a—d).
In addition, amplified hybridisation signals were observed in several microchromosomes
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in some males and females of both populations of C. ocellatus (Figure 7a—d). We also
detected sex specific amplification of (AGAT)g on chromosome pair seven of the GSD (high
elevation) population of C. ocellatus. Hybridisation was observed at the distal ends of
both arms of both members of this pair, however, in one member of the pair this signal
was amplified on the p arm in males and identifies the Y chromosome (Figure 7c,d). This
sex-specificity of the (AGAT)g signal was not observed in the GSD+EE (low elevation)
population. We did not detect any hybridisation signals of the (AGAT)g probe in L. whitii
(Figure 7e,f).

Male (&) Female (Q)

GSD+EE

)]
35
®
=
O
O
@)
%2)
S
(&)
kS
o
2]
®©
k=
o
©
o
%]
S
ey
g
O
(&)
o
w
S
O
IS
(&)
2}
®©
kS
o
©
@)

Liopholis whitii
(outgroup)

Figure 7. Chromosomal locations of the (AGAT)g repeat (red) on Carinascincus ocellatus GSD+EE
(low elevation) male (a) and female (b), GSD (high elevation) C. ocellatus male (c) and female (d) and
Liopholis whitii male (e) and female (f). C. ocellatus sex chromosomes inset. White arrowhead indicates
X and Y (the homologous pair) chromosomes in C. ocellatus. Scale bars represent 10 um.
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3.6. Sequential FISH of (AGAT)g and Custom Y-Linked Probe Set

The identity of the X and Y chromosome pair in both GSD and GSD+EE populations of
C. ocellatus was confirmed as macrochromosome pair seven (Figure 8) based on sequential
FISH, which also confirmed population-specific (AGAT)g signals on the Y chromosomes
(Figure 8b,c, Figure S1).

+ Y-linked probe

Carinascincus ocellatus

%]
2
2
D
Q
o
%)
3
o
S
O
1%
©
<
=
v
O

+ Y-linked probe

Carinascincus ocellatus

Figure 8. Sequential FISH and karyotyping in GSD (high elevation) population of Carinascincus
ocellatus to confirm chromosome seven as the sex chromosome pair. (a) DAPI stained karyotype
with FISH signals from Y-linked probe set (Pseudocoloured green) on C. ocellatus male; (b) DAPI
stained karyotype with FISH signals from (AGAT)g microsatellite probe (red) on the same metaphase;
(c) Superimposed image of both layers indicates (AGAT)g rich Y chromosome.

3.7. Marker Homology

The only sequence with homology (e-value 2.34 x 10~%) to our C. ocellatus Y-linked
probe set sequences that is relevant to sex determination or sex chromosome differentiation
is a Sauria short interspersed nuclear element [67].

4. Discussion

Carinascincus ocellatus is a rare example of a species exhibiting population divergence
in sex determination; GSD and GSD+EE occur in high and low elevation populations,
respectively [51,52]. Here we also report divergence between the same populations in
sex chromosome evolution. Given divergence between our C. ocellatus study popula-
tions occurred less than 1 million years ago [55,68], the mechanisms underpinning the
transition in sex determination and those governing early sex chromosome evolution are
potentially linked.

The high elevation, GSD Y chromosome is more heterochromatic and the p arm is
AGAT rich compared to the low elevation, GSD+EE Y chromosome. This is consistent
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with observations of greater linkage disequilibrium of sex-linked DNA markers in the high
elevation population [48], and that reduced recombination between the sex chromosomes
is associated with repeat and heterochromatin accumulation on the Y chromosome during
early differentiation from the X chromosome [19,20,69]. The differences in sex chromo-
somes with elevation can be explained by population-specific selection that drives the
divergence in sex determination [52]. GSD is adaptive at high elevation because large
interannual temperature fluctuations would produce maladaptive sex ratio skews if sex
determination was thermosensitive [51]. Therefore, sex chromosomes with lower recombi-
nation around a sex determining locus are the result of selection against skewed sex ratios
and thus selection towards balanced sex ratios and GSD. Selection for GSD+EE at low
elevation occurs because of the sex-specific fitness benefits of climate-mediated birthdate
variation in this population [52]. Considering the lower selective advantage of GSD at low
elevation, there is less selection against recombination around the sex determining locus in
this population, and hence lower divergence between X and Y. Population-specific repeat
and heterochromatin accumulation (this study), and recombination between the X and Y
chromosomes [48], therefore likely reflect differences in the size of the pseudoautosomal re-
gion (the region of the sex chromosomes that continues to recombine) of the Y chromosome
in each population resulting from differential selection for GSD. One alternative is that
population size differences have led to different rates of accumulation of mutations on the
Y chromosome, however, the high and low elevation populations are of similar size [68]
making this unlikely.

Observations of heterochromatin and AGAT repeat accumulation in the high elevation
GSD population suggest that the ancestral sex chromosomes and sex determination was
closer to the current situation in the low elevation GSD+EE population. An alternative
hypothesis is that selection favouring recombination between sex chromosomes has driven
the evolution of GSD+EE at low elevation from a GSD ancestor that possessed sex chro-
mosomes similar to those in the high elevation population. However, this alternative
hypothesis is unlikely because transitions from environmental to genetic sex determination
in squamates are higher than the reverse, suggesting GSD is more stable [5]. Because
both populations are characterised by a Y-specific region with significant homology to a
class of retrotransposable elements implicated in recombination suppression [10,70,71],
selection in the ancestral population, and indeed the low elevation population currently,
may have favoured subtle variations in sex ratio with climate, rather than a strict TSD
system. Population divergence in sex determination and sex chromosomes in C. ocellatus
occurred without gene flow [68] and our results show that the accumulation of changes
that accompany transitions can occur over short evolutionary time scales.

While divergence in C. ocellatus sex determination has arisen recently, it is super-
imposed over a deep evolutionary conservation of sex-linked sequences. Comparisons
against Eulamprus heatwolei (Scincidae) suggests conservation of Y chromosome sequences
in C. ocellatus for ~79 million years (Figure 1; [35]). Likewise, heteromorphism of chro-
mosome pair seven has been reported in two species of skink, Bassiana duperreyi [44] and
Pseudemoia entrecasteauxii [69], both close relatives of C. ocellatus (Figure 1, divergence
time [36,37] Mya, retrieved from TimeTree; [56,59]), suggesting a conserved role for pair
seven as sex chromosomes (but requiring confirmation of sequence homology). The histori-
cal conservation of the sex-linked sequence, combined with the recency of transition in sex
determination in C. ocellatus, is compatible with only a small number of genetic changes
potentially underlying this transition [48].

Observations from L. whitii provide a contrasting perspective on sex chromosome
evolution among Lygosomine skinks. Sex-specific chromosomes (Y or W) usually display
increased heterochromatinisation [11,19]. Further, microsatellite and telomere repeat accu-
mulation characterizes the sex chromosomes (Y and W) in a broad range of reptiles [57,58].
We found no sex-specific patterns of telomere accumulation in the karyotype of C. ocellatus
or L. whitii. In addition, we found no evidence to suggest the AGAT repeat is involved
in sex chromosome evolution in L. whitii. Our custom Y-linked probe set also lacked
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accumulation on any L. whitii chromosome. These absences suggest independent evolution
of sex chromosomes in L. whitii. Independent evolution may include processes resulting
in the loss of the Y chromosome region containing our C. ocellatus probe sequence and
may also include accumulation of lineage-specific repeats. Sex chromosome evolution in
subfamily Lygosominae may be associated with changes in chromosome number, because
C. ocellatus, B. duperreyi, P. entrecasteauxii and E. heatwolei all possess a diploid chromosome
compliment of 30, while L. whitii, belonging to a clade nested within these species’ clades,
possesses 32 (Figure 1; [41,44,54,69]). Differences in the number of acrocentric chromosomes
(C. ocellatus = 1; L. whitii = 2) suggest chromosome fission or fusion events during speciation
and karyotype evolution [70,71]. Therefore, karyotype changes may favour the indepen-
dent evolution of sex chromosomes and this may be one mechanism acting at the time of
the split between the ancestor of L. whitii and other Lygosomine lineages with a diploid
complement of 30. Sex chromosome origin coinciding with chromosome fission/fusion
events is evident in Iguanids [72,73], and may represent a common mechanism throughout
squamates. This can be confirmed in Scincidae via further experiments designed to iden-
tify sex chromosome homology and identity among closely and distantly related species,
alongside karyotype analysis.

5. Conclusions

By examining the karyotypes of C. ocellatus with intraspecific variation in sex de-
termination, we reveal that structural changes in sex chromosomes such as heterochro-
matinisation and repeat accumulation could be associated with such transitions. This is
evidence of links between sex determination transitions and sex chromosome evolution.
Through broader taxonomic comparisons, we also reveal a potential association between
sex chromosome origin and karyotype evolution. Scincidae represents a valuable taxon for
our understanding of diversity in sex determination, sex chromosomes and karyotype.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
409/10/2/291/s1, Figure S1: Sequential FISH in GSD+EE male, Table S1: Custom Y-linked probe
set sequences.
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