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Abstract: Increasing data suggest that overnutrition-induced obesity may trigger an inflammatory
process in adipose tissue and upturn in the innate immune system. Numerous players have been
involved in governing the inflammatory response, including epigenetics. Among epigenetic players,
miRNAs are emerging as crucial regulators of immune cell development, immune responses, au-
toimmunity, and inflammation. In this study, we aimed at identifying the involvement of candidate
miRNAs in relation to inflammation-associated biomarkers in a subsample of European children with
overweight and obesity participating in the I.Family study. The study sample included individuals
with increased adiposity since this condition contributes to the early occurrence of chronic low-grade
inflammation. We focused on the acute-phase reagent C-reactive protein (CRP) as the primary
outcome and selected cytokines as plausible biomarkers of inflammation. We found that chronic
low-grade CRP elevation shows a highly significant association with miR-26b-3p and hsa-miR-576-5p
in boys. Furthermore, the association of CRP with hsa-miR-10b-5p and hsa-miR-31-5p is highly sig-
nificant in girls. We also observed major sex-related associations of candidate miRNAs with selected
cytokines. Except for IL-6, a significant association of hsa-miR-26b-3p and hsa-miR-576-5p with
TNF-α, IL1-Ra, IL-8, and IL-15 levels was found exclusively in boys. The findings of this exploratory
study suggest sex differences in the association of circulating miRNAs with inflammatory response
biomarkers, and indicate a possible role of miRNAs among the candidate epigenetic mechanisms
related to the process of low-grade inflammation in childhood obesity.

Keywords: miRNAs; chronic low-grade inflammation; inflammation-associated biomarkers; overweight
and obesity; children/adolescents; sex-related associations

1. Introduction

During the past decade, obesity has become a global epidemic with substantial health,
social, and economic implications. According to the World Health Organization, there are
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nearly 2 billion overweight adults worldwide and approximately 600 million of them are
obese [1,2]. Numerous studies have recognized a strong association between an increased
body mass index (BMI) and quality and expectancy of life given its interconnected effects
with type 2 diabetes, hyperlipidemia, non-alcoholic fatty liver disease, hypertension, heart
disease, stroke, arthritis, cancer, depression, asthma, psychological problems, and other
non-communicable diseases [3–5].

Despite extensive investigation, most of the genetic variability in obesity remains
unresolved and the influence of candidate genes in this context appears limited. Numerous
studies have suggested that genes that predispose to obesity are not causal but act in
conjunction with a variety of individual, environmental, and lifestyle factors, including
obesogenic environments, low levels of education, sedentary habits, and reduced sleep
hours, among others [6]. A highly energy-dense diet, as well as low physical activity levels,
are considered driving factors [3]. Evidence also indicates that offspring born to obese
mothers are prone to a higher BMI and fat accumulation, thus supporting the conceivable
transgenerational risk contribution based on epigenetic mechanisms [7].

The basic tissue for energy storage in humans is the white adipose tissue. Aside from
its storing function, this tissue is metabolically active. It releases hundreds of different
factors, such as hormones including adiponectin and leptin, growth factors including
Insulin-Like Growth Factor-1 (IGF-1) and Platelet-Derived Growth Factor (PDGF), and
inflammatory mediators including Tumor Necrosis Factor-α (TNF-α), Interleukin-6 (IL-6),
and Interleukin-8 (IL-8), all of which contribute to insulin sensitivity and dietary control.
Growing data suggest that overnutrition-induced obesity triggers an inflammatory process
in adipose tissue [8], with even moderate weight gain linked to inflammatory activation [9]
and an upturn in the innate immune system [10]. Moreover, chemokines and their receptors
also contribute to obesity development by activating the resident immune surveillance
system [11]. This state is firmly interconnected to the local recruitment of macrophages
and enhanced immune cell infiltration/proliferation/activation [12]. All these processes
collectively point toward adipocyte hypertrophy and impaired adipogenesis [13]. The
resulting persistent chronic low-grade inflammation represents a hallmark of obesity that
leads to and perpetuates the state of metabolic alterations and insulin resistance in target
organs, including the adipose tissue, liver, muscles, and vascular system [14]. Among the
inflammatory biomarkers, the acute-phase reactant C-reactive protein (CRP) is considered
the major factor associated with overweight and obesity in both adults and children [15,16].

In recent years, numerous biochemical players have been recognized as being involved
in the inflammatory response, including microRNAs (miRNAs), small non-coding RNAs
expressed in a wide variety of organs and cells and capable of potentially influencing
almost all cellular functions. miRNAs are constituents of the epigenetic mechanisms that
finely regulate the expression of messenger RNAs [17]. Until now, 2599 different miRNAs
have been documented in humans (miRTarBase, release 8.0) [18]. Growing evidence also
underlines their relevance as stable, non-invasive, and reliable biomarkers for a variety
of pathophysiological conditions [19–21], including the body’s energy balance [22]. Many
studies have established that altered miRNA profiles are interconnected with obesity [23]
and other non-communicable diseases [24,25]. However, nowadays, epigenetics repre-
sents a critical but still poorly understood factor among the known molecular mechanisms
related to the process of low-grade inflammation in obesity [26]. Among epigenetic play-
ers, miRNAs are progressively emerging as key regulators of immune cell development,
immune responses, autoimmunity, and inflammation, capable of affecting both pro-and
anti-inflammatory responses [26]. Indeed, by influencing definite signaling networks in
the immune system, so-called immuno-miRs have been shown to impact both innate and
adaptive immune responses in health and disease [27]. Of note, immuno-miRs may exert
different functions in different cell types. Therefore, during inflammation, different cells
undergo substantial transcriptional activation, thus presenting different sets of targets
regulated by a given miRNA.
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In this study, we aimed to identify the potential involvement of candidate miRNAs in
relation to inflammation-associated biomarkers in a subsample of European children with
overweight and obesity (OW/Ob) participating in the I.Family study (www.ifamilystudy.eu,
last accessed on 21 February 2022) [28,29]. The primary outcome of this study was the
association of miRNA expression with CRP. The association of miRNAs with the selected
cytokines constituted a secondary outcome of the study. The study sample included
individuals with OW/Ob since this condition is a known risk factor contributing to the
early occurrence of chronic low-grade inflammation and interconnected metabolic changes.

2. Materials and Methods
2.1. Participants

The study was conducted on a subgroup of European children/adolescents with
OW/Ob belonging to the I.Family study, an EC-funded project aiming at investigating
determinants of food choice, lifestyle, and related health outcomes in children and ado-
lescents of eight European countries (Belgium, Cyprus, Estonia, Germany, Hungary, Italy,
Spain, and Sweden). A full description of the study designs, selection criteria, and par-
ticipants’ characteristics, from which the subsample data are drawn, has been previously
published [30]. A complete explanation of the I.Family study (registration number IS-
RCTN62310987) has been earlier reported [29]. The study was conducted according to the
criteria set by the Declaration of Helsinki. Approval by the national ethics committees
was obtained by each of the participating centers. Anthropometric characteristics, puber-
tal status, and dietary intake data were collected using standardized procedures; a full
description of these methods has been previously published [31,32]. In each country, we
first selected 20 children (n = 160) who retained overweight or obesity, i.e., who had a BMI
z-score of more than + 1 at baseline and after 2 years at follow-up, respectively, and did not
change more than ± 0.1 in BMI z-score per year (defined as overweight/obese) [33]. Out
of 160 subjects, the current analysis was performed on a subsample of 79 overweight and
obese children/adolescents (Belgium n = 7, Cyprus n = 6, Estonia n = 13, Germany n = 16,
Hungary n = 8, Italy n = 12, Spain n = 5, and Sweden n = 12), with a complete dataset for
the variables of interest, after the exclusion of 19 participants with hemolyzed samples.

2.2. Biochemical Analysis

The fasting venous blood draws were collected in BD Vacutainer® blood tubes accord-
ing to standardized operative procedures. A complete description of the sample collection
and investigative procedures has been earlier published [34]. Clinical chemistry tests were
determined as part of routine laboratory testing, in a central laboratory (University of
Bremen, Centre for Biomolecular Interactions Bremen—CBIB). Serum samples stored at
−80 ◦C were used to detect levels of CRP, Interleukin-1 Receptor Antagonist (IL1-Ra), IL-6,
IL-8, Interleukin-15 (IL-15), and TNF-α using an electrochemiluminescent multiplex assay
(using either single or MULTI-SPOT® Assay Systems, Meso Scale Discovery).

2.3. miRNA Profiling

Taking advantage of the qPCR array technology, we previously reported that an altered
circulating miRNA profile is associated with OW/Ob in children and adolescents [30]. In
that study, we also identified four circulating miRNAs, hsa-miR-10b-5p (MIMAT0000254),
hsa-miR-26b-3p (MIMAT0004500), hsa-miR-31-5p (MIMAT0000089), hsa-miR-576-5p (MI-
MAT0003241), potentially linked to increased CRP levels in subjects with OW/Ob (unpub-
lished data). Of note, among the four miRNAs characterized, only hsa-miR-10b-5p was
confirmed to be associated with OW/Ob. In the current investigation, we aimed to confirm
the association of the candidate miRNAs with levels of CRP and the selected inflamma-
tory biomarkers through validation by SYBR green-based real-time quantitative RT-PCR
(RT-qPCR) in the new sample of children and adolescents with OW/Ob. Protocols for
miRNA extraction and screening from plasma samples have been earlier published [30,32].
Individual plasma samples were first tested for hemoglobin levels and hemolyzed samples

www.ifamilystudy.eu
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were excluded from the analysis [30]. Different assays were performed in triplicate em-
ploying the miScript Primer Assays according to the manufacturer’s instructions (Qiagen,
Germany). miRNA relative levels were determined using the Cel-miR-39 spike-in as the
endogenous normalizer [30]. Levels were calculated using the Data Assist v3.1 software
package (Life Technologies, Thermo Fisher Scientific, Milan, Italy).

2.4. Statistical Analysis

Statistical analyses were achieved by using IBM SPSS Statistics software (v24.0. Ar-
monk, NY, USA: IBM Corp.). Data collected were calculated as means and 95% confidence
intervals (CIs). Associations of miRNA expression with CRP and the different interleukins
were assessed using linear regression analyses, adjusting for covariates including country
of residence, age, BMI z-score, pubertal status. Since potential sex disparities in CRP levels
have been previously reported [35], we considered boys and girls separately in the statisti-
cal analysis. To control for the false discovery rate (FDR), the Benjamini–Hochberg (BH)
method was adopted. The level of statistical significance was set at α < 0.05.

3. Results
3.1. Anthropometric Characteristics and Biochemical Markers of the Study Sample

The anthropometric and metabolic characteristics and levels of inflammatory markers
of the 79 participants are reported in Table 1. There were no obvious differences regard-
ing the anthropometric characteristics and tested biochemical markers between males
and females.

Table 1. Anthropometric and chemical characteristics of the study sample.

Ow/Ob Boys (25/11) Girls (31/12)

Age (years) 12.1 (11.5–12.8) 12.4 (11.9–12.9)
Puberty (% yes) 47.8 52.2
BMI z-score 1.8 (1.6–2.0) 1.7 (1.5–1.9)
CRP (mg/dL) 0.36 (0.08–0.63) 0.45 (0.14–0.77)
TNF-α (pg/mL) 4.3 (2.7–6.0) 3.9 (2.4–5.4)
IL-1Ra (pg/mL) 422.9 (339.7–506.2) 527.8 (398.0–657.6)
IL-6 (pg/mL) 1.2 (−0.1–2.5) 0.8 (0.5–1.0)
IL-8 (pg/mL) 38.5 (−23.1–100.0) 17.6 (1.7–33.6)
IL-15 (pg/mL) 2.6 (2.2–3.0) 3.0 (2.5–3.4)
hsa-miR-10b-5p 2.9 (2.1–3.6) 3.3 (2.7–3.9)
hsa-miR-26b-3p 2.4 (1.6–3.3) 2.7 (0.7–4.6)
hsa-miR-31-5p 1.1 (0.3–1.8) 1.5 (0.8–2.3)
hsa-miR-576-5p 7.3 (5.4–9.1) 6.4 (5.0–7.8)

Data are expressed as mean (CIs) or as frequency (%).

3.2. RT-qPCR Validation in Individual Plasma Samples

After plasma extraction, the single candidate miRNAs were determined in individual
assays by RT-qPCR. Differences in miRNA signatures with respect to anthropometric and
biochemical variables were investigated. Associations of miRNA expression levels with
CRP, the primary outcome of this study, and the selected interleukins were assessed using
linear regression analysis stratified by sex. Results reported in Table 2 are adjusted for
covariates including country of residence, age, BMI z-score, and pubertal status. CRP
values show a significant association with miR-26b-3p and hsa-miR-576-5p exclusively
in boys. Moreover, their associations with hsa-miR-10b-5p and hsa-miR-31-5p are highly
significant only in girls. In Figure S1 is reported the distribution of selected miRNAs in
relation to CRP levels in the girls’ and boys’ subgroups.
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Table 2. Association of miRNA expression levels with CRP.

Boys (36) q-Value Girls (43) q-Value

hsa-miR-10b-5p 2.7 (1.7–3.7) 0.399 3.6 (3.0–4.2) 0.008
hsa-miR-26b-3p 3.2 (3.0–3.4) 0.004 2.1 (−0.9–5.0) 0.553
hsa-miR-31-5p 1.1 (−0.3–2.1) 0.914 1.3 (0.9–1.8) 0.02
hsa-miR-576-5p 8.3 (6.8–9.8) 0.006 6.8 (5.7–8.0) 0.187

Data are expressed as mean (CIs). Covariates: Country of residence, age, BMI z-score, pubertal status. q-values
are BH-adjusted p-values. Values in bold indicate statistically significant results.

Table 3 reports the results of the associations of candidate miRNAs with the cytokines
selected as additional inflammation biomarkers. A significant association of both hsa-
miR10b-5p and hsa-miR-26b-3p with TNF-α, IL1-Ra, IL-8, and IL-15 levels was found
exclusively in boys. No association of candidate miRNAs with IL-6 has been established.
Moreover, none of the candidate miRNAs was associated with cytokine levels in girls.

Table 3. Association of miRNA expression levels with selected cytokines (secondary outcome).

Cytokine Sex miR-10b-5p q-Value miR-26b-3p q-Value miR-31-5p q-Value miR-576-5p q-Value

TNF-α
Boys 2.5 (2.0–3.0) 1.000 3.0 (2.6–3.4) 0.006 1.3 (0.3–2.2) 0.963 7.7 (6.4–9.0) 0.005
Girls 3.2 (2.4–4.0) 0.635 2.4 (−0.4–5.2) 1.000 1.5 (1.0–2.1) 0.485 7.2 (6.1–8.2) 0.730
Boys 2.6 (2.1–3.1) 0.810 3.0 (2.6–3.4) 0.005 1.1 (−0.03–2.2) 0.393 7.9 (6.4–9.4) 0.023

IL1-Ra Girls 3.3 (2.5–4.1) 0.558 2.3 (−0.8–5.5) 1.000 1.6 (0.9–2.2) 1.000 6.6 (5.3–7.8) 0.735

IL-6
Boys 2.6 (2.0–3.2) 0.743 3.0 (2.1–4.0) 0.461 0.8 (−0.5–2.0) 0.963 7.1 (4.2–10.0) 0.932
Girls 3.3 (2.5–4.1) 0.949 2.2 (−0.9–5.3) 0.732 1.6 (0.9–2.2) 0.692 6.8 (5.7–8.0) 0.625
Boys 2.4 (1.8–3.0) 0.927 2.9 (2.5–3.3) 0.005 1.2 (0.2–2.2) 0.410 7.2 (5.6–8.9) 0.021

IL-8 Girls 3.3 (2.4–4.1) 0.649 2.5 (−0.5–5.4) 1.000 1.6 (1.1–2.1) 1.000 7.3 (6.2–8.4) 0.856

IL-15
Boys 2.6 (2.1–3.1) 0.588 2.9 (2.5–3.3) 0.005 1.2 (0.1–2.3) 0.890 7.5 (5.9–9.1) 0.015
Girls 3.3 (2.6–4.0) 0.512 2.3 (0.9–2.3) 0.912 1.6 (0.9–2.2) 0.856 6.8 (5.7–8.0) 0.908

Data are expressed as mean (CIs). Covariates: Country of residence, age, BMI z-score, pubertal status. q-values
are BH-adjusted p-values. Values in bold indicate statistically significant results.

4. Discussion

Inflammation is a physio-pathological process, commonly triggered by injuries and
infections, and characterized by a complex flow of dynamically and finely regulated re-
sponses. The degree, the dynamics of pro-and anti-inflammatory networks, and the course
of an inflammatory reaction may decisively impact the onset, progression, and develop-
ment of health disorders. Inflammation and its supporting mechanisms are considered
closely related to numerous diseases’ progression. Various studies have established that
specific miRNAs participate in the development of innate and adaptive immunity, acting
as crucial players in the fine-tuning of the inflammatory network. In this context, several
miRNAs attenuate the response, while others, by depressing specific inhibitors, are capable
of intensifying the immune reaction [36], with certain miRNAs essential for mounting
the inflammatory response [37]. Notably, chronic inflammation is one of the main factors
involved in the process of obesity progression [9,38], and several studies have reported that
even limited weight gain is interconnected with the sustained inflammatory process [38].

Previously, we identified specific circulating miRNAs associated with childhood
obesity in a subsample of the I.Family study [28,30]. Moreover, we also recognized in that
study candidate miRNAs possibly related to CRP levels, among which only hsa-miR-10b-5p
was associated with OW/Ob. In the present analysis, we report sex-related associations of
these miRNAs with inflammatory biomarkers in children and adolescents with OW/Ob.
Of note, the subjects enrolled for the current investigation belong to a different subgroup of
the common I.Family population.

Given the different fat distribution and the influence of sex hormones, it is conceiv-
able that the relationship between inflammatory markers and obesity may differ by sex.
Accordingly, we stratified the study population by sex. Association analyses were cor-
rected for confounding factors including the country of residence, age, BMI z-score, and
pubertal status.
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We found a clear indication pointing towards a cross-talk between candidate c-
miRNAs and inflammatory biomarkers in the context of raised adiposity. Among the
numerous inflammatory biomarkers, we focused on the acute-phase reactant CRP as the
primary outcome of the study. CRP has been considered the strongest factor associated with
OW/Ob in epidemiological studies [15]. Several reports consider CRP to be a consequence
of an obesity condition rather than the cause [15]; conversely, increasing evidence estab-
lishes a causal role of CRP elevation in the onset and development of obesity by causing
extensive tuning in the innate immune system and energy expenditure system [39].

We also found sex-related associations of the candidate miRNAs with the selected
cytokines as plausible inflammation biomarkers. Except for IL-6, a significant association
of both hsa-miR-26b-3p and hsa-miR-576-5p with TNF-α, IL1-Ra, IL-8, and IL-15 levels was
found exclusively in boys. Moreover, no association of candidate miRNAs with cytokine
levels was established in the girls’ subgroup.

Among the characterized miRNAs, miR-10b-5p is one of the first identified as ab-
normal in human cancer and, since its first description, it has been widely studied in
this context. Recent papers also suggest that it participates in inflammation control and
inflammation-associated diseases by regulating T cells [40,41]. Similarly, miR-26b has
been described as a key regulator in carcinogenesis and cancer progression, acting as a
tumor suppressor gene in several types of cancer. miR-26b has also been shown to play a
role in inflammation as in cytokine secretion [42]. miR-26b also targets the inflammatory
factor prostaglandin-endoperoxide synthase 2, which plays relevant roles in inflamma-
tory diseases by inducing the production of prostaglandin E2 [43]. However, abnormal
expression of miR-31-5p has been described in various cancers, where this miRNA plays
a significant role in tumorigenesis, acting as either an oncogene or tumor suppressor, in
a context-dependent manner, although the underlying mechanism remains unclear [44].
Moreover, miR-31 is involved in several inflammation-associated disorders. Interestingly,
the molecular role of miR-31-5p activation in early inflammation has been recently de-
fined [45]. Several studies have demonstrated that miR-576-5p acts as a tumor-promoting
miRNA in several types of human tumors, highlighting its potential role as a predictor of
cancer prognosis [46]. However, in silico studies have shown that miR-576-5p is involved
in the regulation of inflammatory, growth, and proliferation signaling pathways.

Our apparently controversial results are in line with recent studies reporting sex influ-
ences on the severity and evolution of various inflammatory conditions [47,48]. Numerous
studies have confirmed the role of sex hormones in the immune response and recent clinical
data have shown significant sex differences in inflammatory markers also in prepubertal
children, supporting a genetic contribution [47]. Sex differences occur in both innate and
adaptive immune responses and are evolutionarily conserved across species [49]. Overall,
there is accumulating evidence that sex is a critical variable that influences innate and
adaptive immune responses, resulting in sex-specific outcomes, but the main molecular
mechanisms remain elusive [48].

The findings of this exploratory study suggest major differences in the association
of circulating miRNAs and inflammatory response biomarkers across sexes, pointing to a
conceivable role of miRNAs among the candidate epigenetic mechanisms related to the low-
grade inflammation process in childhood obesity, calling for more attention in this largely
underexplored area. However, evidence concerning how these molecules may act remains
questioned since the experimental design of our cross-sectional analysis, explorative in
essence, cannot answer this question.

5. Conclusions

Many regulatory steps are relevant in the transformation and delivery of genetic
information to cellular effectors. This network orchestration is finely regulated by both tran-
scriptional and post-transcriptional mechanisms. Sex differences can provide substantial
support in defining the course of these supervisory mechanisms [50]. The fascinating emer-
gence of circulating miRNAs as stable and affordable molecules has opened up a promising
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opportunity for the identification of new crucial players in the onset and progression of
inflammation in childhood obesity, as well as their potential application as non-invasive
biomarkers. However, it is still uncertain whether the identified miRNAs are drivers of
sex-related disparities in obesity-related inflammation or represent epiphenomena. Further
molecular-oriented studies are needed to explore the functional relevance of the miRNA
species identified.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/genes13040632/s1, Figure S1. The different panels show the distribution of
reported miRNAs in relation to CRP levels in girls and boys.
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