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Abstract: Urban areas, characterized by dense anthropogenic activities, are among the primary
sources of nitrogen oxides (NOx), impacting global atmospheric conditions and human health.
Satellite observations, renowned for their continuity and global coverage, have emerged as an
effective means to quantify pollutant emissions. Previous bottom-up emission inventories exhibit
considerable discrepancies and lack a comprehensive and reliable database. To develop a high-
precision emission inventory for individual cities, this study utilizes high-resolution single-pass
observations from the TROPOspheric Monitoring Instrument (TROPOMI) on the Sentinel-5 Precursor
satellite to quantify the emission rates of NOx. The Exponentially Modified Gaussian (EMG) model is
validated for estimating NOx emission strength using real plumes observed in satellite single-pass
observations, demonstrating good consistency with existing inventories. Further analysis based on
the results reveals the existence of a weekend effect and seasonal variations in NOx emissions for the
majority of the studied cities.

Keywords: nitrogen oxides (NOx); satellite observations; emission estimation; weekend effect;
seasonal variation

1. Introduction

Nitrogen oxides (NOx = NO + NO2) play a pivotal role in atmospheric chemistry, air
quality, and climate dynamics and are widely distributed across both the troposphere and
stratosphere of the global atmosphere. In the stratosphere, NOx participates in reactions
with halogenated compounds, accelerating the depletion of the ozone layer [1], while
in the troposphere, NOx reacts with volatile organic compounds to produce ozone [2].
Additionally, NOx contributes to the formation of secondary aerosol precursors through
gas-to-particle conversion, affecting radiative forcing and human health [3,4]. The pri-
mary sources of tropospheric NOx include emissions from soil, combustion of fossil fuels,
biomass burning, and lightning, with anthropogenic fossil fuel combustion being the dom-
inant contributor [5]. Urban areas, due to their high density of vehicles and industrial
activities, are significant anthropogenic sources of NOx. Accurately quantifying urban-scale
NOx emissions is, therefore, crucial for a deeper understanding of atmospheric pollution
mechanisms and the formulation of relevant governance policies.

Current methodologies employ bottom-up emission inventories to represent urban
pollutant emissions. However, due to the diverse compilation approaches utilized, these
inventories exhibit significant discrepancies and uncertainties [6,7]. The absence of a
comprehensive and reliable database poses a substantial challenge in developing high-
precision emission inventories for individual cities.
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Over the past decade, satellite measurements of tropospheric NO2 columns have
fundamentally transformed our understanding of the distribution and magnitude of NOx
sources. Beirle et al. [8] synthesized plumes by accumulating four years of observations
from the Ozone Monitoring Instrument (OMI) across eight directional sectors in conjunction
with static wind sectors, enabling the estimation of NOx effective lifetime and emissions
without reliance on chemical models. This study marked the first application of the Ex-
ponentially Modified Gaussian (EMG) model, introducing an empirical function for the
distribution of plumes around emission sources. This method has since been adopted
by numerous researchers for quantifying emissions of pollutants [9–11] and applied to
estimate emissions of sulfur dioxide (SO2) [12] and ammonia (NH3) [13] based on satellite
observations. However, due to limitations in spatial and temporal resolution, these studies
required the integration of observations over several months or even years to simulate syn-
thetic plumes for emission estimation, assuming stability in emission source strength and
surrounding atmospheric conditions—a premise that often deviates from reality. Therefore,
to more accurately estimate NOx emissions, it is necessary to calculate emissions based on
actual observed plumes.

Launched in October 2017, the TROPOspheric Monitoring Instrument (TROPOMI)
aboard the Sentinel-5 Precursor (S5P) satellite provides higher spatial resolution compared
to its predecessor, the Ozone Monitoring Instrument (OMI), enabling the possibility of
estimating emissions based on actual plume observations. Scholars utilized TROPOMI
data to observe a decrease in NO2 concentrations in Ulaanbaatar, Mongolia, during the
COVID-19 pandemic, with ground-based data validation revealing good consistency [14].
Subsequently, similar reductions in NO2 concentrations during lockdown periods were de-
tected using satellite data in 12 regions across India, Pakistan, China, and South Korea [15],
as well as in Monterrey, Mexico [16]. This not only elucidates the close correlation between
NO2 concentrations and human activity but also reflects the capability of satellite products
in analyzing atmospheric pollution issues. Griffin et al. [17] successfully estimated NOx
emissions from biomass burning using the EMG method based on single-pass observations
by TROPOMI, prompting an exploration of this methodology’s applicability for quantifying
urban-scale NOx emissions.

In this study, we utilized the EMG method to estimate the daily NOx emission intensity
of seven cities in China for the first time, based on real plume observations from single-
pass TROPOMI data. Our estimated results were compared with emission inventories,
demonstrating good consistency with our findings. Additionally, based on the estimated
daily emission intensity, we further investigated the patterns of NOx emissions in urban
areas, discovering significant weekend effects and seasonal variations in most cities studied.

2. Materials and Methods
2.1. Data and Criteria
2.1.1. Satellite Observation Data

In this study, we utilized the Tropospheric Vertical Column Density of Nitrogen
Dioxide (TVC NO2) dataset, derived from observations by the TROPOspheric Monitoring
Instrument (TROPOMI) on the Sentinel-5 Precursor (S5P) satellite, operational since April
2018. Positioned in a sun-synchronous orbit, the satellite crosses the equator around local
solar time of 13:30, providing near-global coverage on a daily basis [18,19]. TROPOMI, a
low-earth-orbit short-wave spectrometer, captures data across four spectral bands, with a
ground resolution of 3.5 km × 7 km: ultraviolet (270–320 nm), visible light (310–500 nm),
near-infrared (675–775 nm), and short-wave infrared (2305–2385 nm). From 6 August 2019,
the nominal integration time of the TROPOMI instrument was reduced from 1080 ms to
840 ms, enhancing the pixel size along the flight path and further improving the resolution
to 3.5 km × 5.5 km. For this research, we employed the Level-2 NO2 tropospheric column
concentration product (v2.4.0) from TROPOMI, covering the period from May 2018 to
August 2023. Quality assurance values (qa_value) provided with the data were used to
filter observations, excluding those with qa_value below 0.75 to ensure the quality of most



Atmosphere 2024, 15, 508 3 of 12

application scenarios and removing data affected by cloud cover (cloud radiance fraction
greater than 50%), partial ice and snow coverage, and erroneous or problematic retrievals.

2.1.2. Meteorological Data

The movement and dispersion of atmospheric constituents can be simulated using
wind data [20,21]. In this study, wind field data were sourced from the European Centre
for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis data, provided on an
hourly basis with a spatial resolution of 0.25◦ × 0.25◦. Utilizing the geographic location of
cities and the local time of satellite overpasses, U and V vector components of wind were
extracted from the ERA5 dataset. Beirle et al. [8] investigated the impact of the altitude of
wind field data on emission estimates, finding that emission estimation exhibits minimal
dependency on the altitude of wind field data, with observed changes in emissions being
less than 5% when substituting wind field data at altitudes of 200 m or 1000 m for those at
500 m. To mitigate the influence of surface winds, vector averages between pressure levels
of 900 hPa and 950 hPa were used to represent the wind fields.

2.1.3. Emission Inventory

For comparison with the calculated TROPOMI NOx emissions, we utilized the Multi-
resolution Emission Inventory for China (MEIC) for the years 2018 to 2020 [22,23]. The
MEIC inventory encompasses a wide range of pollutants, including NOx, providing emis-
sions data with high spatial and temporal resolution that reflects the characteristics of
pollution emissions across different regions and industries within China. Developed and
maintained by a research team at Tsinghua University, the MEIC inventory aims to sup-
port research on atmospheric pollution and climate change, offering a scientific basis for
policy formulation.

The MEIC inventory spans five sectors: power, industry, residential, transportation,
and agriculture. It covers a broad array of emission sources, from power plants to household
cooking. Specifically for NOx, the inventory meticulously records emissions from key
sectors, such as transportation, industrial combustion, and power production, compiling
gridded emissions data from the bottom up using activity data and emission factors. For
this study, we used MEIC emission data with a spatial resolution of 0.25◦ × 0.25◦ for the
total annual emissions, calculating the average values over three years from 2018 to 2020
for comparison.

2.1.4. Source Region Selection

Based on the annual mean column concentrations of NO2 from TROPOMI TVC NO2
data, we identified cities with significant values, selecting locations that could be distinctly
separated from the pollution background. Consequently, certain hotspot regions, such
as the Beijing-Tianjin-Hebei area and the Yangtze River Delta, were excluded from this
study to ensure the applicability of our method. To guarantee accuracy, these targets
were subjected to a visual verification process, eliminating areas close to urban centers
or other regions with high-pollution backgrounds. Subsequently, we selected eight cities
within China for our research, with their specific locations illustrated in Figure 1 and the
coordinates of the city centers provided in Table 1.

Table 1. Latitude and longitude of the study city centers.

Study Cities Latitude
(Degree)

Longitude
(Degree)

Baotou 40.38 109.59
Wuhan 30.57 114.28
Xi’an 34.24 108.91

Chengdu 30.63 104.12
Chongqing 29.58 106.51
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Table 1. Cont.

Study Cities Latitude
(Degree)

Longitude
(Degree)

Lanzhou 36.08 103.75
Nanning 22.81 108.30
Fushun 41.85 123.93
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2.2. Methods
2.2.1. Exponentially Modified Gaussian (EMG) Model

The Exponentially Modified Gaussian (EMG) method was employed to estimate emis-
sion rates from isolated sources and to determine their chemical lifetime [8]. The EMG
assumes that the concentration around an isolated source diffuses and decays exponentially
along the wind direction. This approach conceptualizes the overall behavior as a combina-
tion of Gaussian and exponential functions [12], represented by the provided equation as
TROPOMINO2(x, y, s) = a• f (x, y)•g(x, s) + B:

f (x, y) =
1

σ1
√

2π
exp

(
− y2

2σ2
1

)
, (1)

g(x, s) =
λ1

2
exp

(
λ1
(
λ1σ2 − 2x

)
2

)
er f c

(
λ1σ2 − x√

2σ

)
, (2)

σ1 =

{√
σ2 + 1.5x x ≥ 0 (downwind)
σ x < 0 (upwind)

, (3)

λ1 = λ/s, (4)

Herein, x and y (in km) denote the coordinates of the TROPOMI observation center in
the downwind and crosswind directions, respectively. It is assumed that the concentration
of emissions from the source decays over time (t) as exp(λt), where s represents the wind
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speed at the pixel center (in km h−1), and the wind speed s is reflected only in λ1 = λ/s.
The parameter a represents the quantity of pollutants observed around the source, with
units of mol if the column concentration is in mol•km−2, and B denotes the background
concentration, in units of mol•km−2. The function f (x, y) is a one-dimensional Gaussian
function, used to describe the diffusion of the plume perpendicular to the wind direction
along the plume’s centerline. g(x, s), essentially, is the convolution of a Gaussian function
(determined by σ) and an exponential function (determined by λ1), describing the decay
of the plume concentration along the centerline with downwind distance. Here, the
exponential function describes both advection and chemical decay, while the Gaussian
function smoothens this decay process. According to existing research [12,24], the emission
rate of a point source can be estimated as:

E = aλ = aλ1s, (5)

Current satellite observations, such as those from TROPOMI, are limited to measuring
NO2 only. Consequently, a conversion factor is required to translate NO2 column densities
into NOx. We adopted the method used by Beirle et al. [8] and Liu et al. [10], multiplying
NO2 emissions by a factor of 1.32 to derive the total mass of NOx.

2.2.2. Constrained Fits

All input data must be filtered by the Signal-to-Noise Ratio (SNR) to preliminarily
exclude observations without clearly observed plumes. Observational data are incorporated
into the model only when the SNR > 2, ensuring the quality of the emission estimates [13,25].
The SNR is defined as:

SNR =
Cd − Cu

σd√
Nd

+ σu√
Nu

, (6)

where Cd and Cu represent the average total column densities in the downwind and upwind
directions, respectively, σd and σu are the standard deviations, and Nd and Nu are the
numbers of observations. Model parameters are determined through nonlinear fitting, with
parameter bounds established to ensure non-negativity; hence, the fitting is based on the
Trust Region Reflective algorithm within the Python SciPy module, particularly robust for
large, sparse problems with boundaries. To reduce the number of iterations, initial values
are assigned to the parameters a, σ, λ1, B as 1 × 105 mol, 40 km, 1/4 h−1, 50 mol km−2,
respectively, and the emission rate is finally calculated according to Equation (5). Results
with R2 < 0.7, lifetimes less than 2 h or greater than 10 h, or σ less than 1.5 km or greater
than 30 km are filtered out. These filtering criteria reference previous research [26] and were
appropriately relaxed based on specific circumstances to enhance the method’s applicability
across different regions.

2.3. Uncertainties
2.3.1. Satellite Observation Product

The accuracy of the TROPOMI product directly influences the estimation results. The
uncertainty in this regard is primarily attributed to the retrieval algorithm’s inversion
factors (Aerosol Mass Factor, AMF), estimated to be around 25–30% [8]. This uncertainty is
associated with factors, such as surface albedo, cloud top height, and cloud fraction. We
conducted quality filtering of the product to exclude observations with high cloud cover.
Since this underestimation is based only on a limited number of ground-based comparisons
without independent measurements, its impact within our study area remains unknown.
Therefore, we opted not to apply corrections to the operational product.

2.3.2. NOx-to-NO2 Ratio

The ratio of NO to NO2 within NOx depends on ozone concentration, temperature,
and photon flux. In this study, we utilized a conversion factor of 1.32, a standard value
commonly employed in TROPOMI observations under clear-sky, noon conditions, intro-
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ducing an uncertainty of approximately 10% [8]. Beirle et al. [27], assuming a steady state,
calculated the mean NOx-to-NO2 ratio TVCD, with a global average ratio of 1.35 and a
standard deviation of 0.08.

2.3.3. EMG Method

The EMG method employed in this study necessitates that the estimated source areas
are devoid of interference from other emission sources. In other words, the sources need to
be relatively isolated to facilitate the separation of background values from column densities.
Hence, when considering the study areas, regions with high background pollution levels
were excluded, rendering the EMG method inapplicable for estimating emissions in areas
of high NOx concentration. Care was also taken in selecting the plume range. On one hand,
a sufficiently large area was chosen to ensure the entire plume range was encompassed,
preventing the exclusion of NOx emissions from the plume area and thereby avoiding
underestimation of source emissions; on the other hand, care was taken to avoid selecting
an overly large area that might include pollutants from other emission sources, thereby
affecting the fitting results.

3. Results and Discussion
3.1. Estimation of Emissions

Taking, as an example, the plume observed by the satellite over Wuhan City on 1
April 2023, the analysis steps are illustrated in Figure 2. Initially, the general dispersion
area of the plume around the city was determined based on wind direction. Subsequently,
we calculated the plume’s axis concentration within an 80 km range in the downwind
direction and a 20 km range in the crosswind direction. Finally, the EMG model was
applied for parameter fitting to estimate the emission amounts. The column density in the
upwind direction primarily influences the fit of the background concentration, prompting
us to extend the upwind distance for improved fitting results. In selecting the crosswind
distance, due to our approach of calculating the plume axis, on one hand, a sufficiently
large crosswind range was necessary to ensure robustness against wind direction errors; on
the other hand, it was crucial to avoid too large a range that might incorporate influences
from other emission sources. This estimation method was applied to individually assess
the observational data over five years, from 2018 to 2023, for the eight selected study areas.
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3.2. Comparison to Emission Inventories

The average NOx emission data estimated for eight cities over five years were also
compared with the data reported in the Multi-resolution Emission Inventory for China
(MEIC) database for the years 2018 to 2020. Figure 3 presents a comparison between the
estimated NOx emissions for these cities and the average values reported in the MEIC
database for the same period; the error bars in the figure represent the standard deviation
of multiple days’ estimates. It was observed that the majority of NOx emission quantities
reported in the MEIC database were lower than those estimated in this study using the
EMG method. One possible explanation for this phenomenon is that the EMG method is
more sensitive to emissions close to the measurement time, whereas the MEIC database
provides an average over all times. Furthermore, a significant discrepancy was noted in the
NOx emissions reported for Chengdu and Chongqing in the MEIC inventory compared to
the estimates from this study. We attribute this discrepancy primarily to two reasons: firstly,
the topography of these cities is predominantly basins and mountainous regions, which can
hinder pollutant dispersion compared to other areas, leading to pollutant accumulation;
secondly, the presence of numerous mountains in these areas increases cloud fraction,
resulting in fewer effective observations by satellites and, consequently, greater estimation
uncertainty. Additionally, in Nanning, due to lower emission quantities and less distinct
separation from the background concentrations, fewer plumes were observed in satellite
imagery, also leading to larger estimation discrepancies.
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3.3. Weekend Effect

Human activities peak on weekdays and decrease over weekends, leading to a reduc-
tion in urban NOx emissions during weekends [28–32]. This pattern should be reflected
in the comparison of NOx emissions between weekdays and weekends. The degree of
difference between weekend and weekday emissions depends on the characteristics of
different NOx emission sources and regional human activity patterns. To investigate the
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weekly cycle effect, the estimated results were categorized into weekdays and weekends,
with Figure 4 showing the ratio of NOx emissions between weekdays and weekends. We
observed that NOx emissions were higher on weekdays than weekends in six cities, particu-
larly in Baotou, where weekend NOx emissions decreased by approximately 60%. Previous
research [32,33] indicated an average ratio of weekday-to-weekend NO2 column densities
in all major Chinese cities of 0.97 ± 0.02, not demonstrating a significant weekend effect,
which is related but not identical to NOx emissions. Additionally, K. Lange et al. [34]
observed a weekend-to-weekday ratio of approximately 0.79 in Wuhan, China, which is in
good agreement with the findings of our study. In terms of NOx emissions, recent years
have seen a more pronounced reduction in weekend emissions in some cities. However,
an exception was observed in Chengdu and Lanzhou, where slight increases in weekend
emissions were noted, with increases around 20%.
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3.4. Seasonal Variation

To investigate the seasonal variations in NOx emissions, we divided the estimated
results into four seasons and calculated the average emission rate for each season. Winter
spans December to February (DJF), spring from March to May (MAM), summer from June
to August (JJA), and autumn from September to November (SON). Due to factors such as
ozone limitations and cloud cover, observational conditions vary across seasons, affecting
the number of successful estimates per season. We analyzed cities with more than three
valid estimates per season, resulting in five of the eight cities being included in the analysis.
Figure 5 presents the seasonal average estimates. Among the five cities analyzed in our
study, NOx emissions were found to be higher in winter than in summer, notably in Baotou
and Wuhan, where winter emissions were more than twice those of summer. In comparison
with the inventory, this phenomenon is believed to be associated with the heating sector
during winter, not only in cities with centralized heating in the north but also in areas
without centralized heating. The use of air conditioning or other heating facilities leads to
higher electricity consumption during winter, thereby increasing NOx emissions compared
to summer.

We also calculated the emission ratios for summer and winter and the proportions
reported by the MEIC inventory, depicted in Figure 6. Our results showed more pronounced
seasonal variations compared to the inventory-reported values. Emission inventories are
typically calculated based on statistical data and emission factors; for instance, in the
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transportation sector, inventories estimate emissions by multiplying the number of vehicles
at the county level, serving as the activity level, by emission factors assigned according
to vehicle types. This approach overlooks the impact of seasonal changes on emission
factors, explaining why the inventory reports do not exhibit significant seasonal variations.
K. Lange et al. [34] observed notable seasonal variations in Wuhan, China, one of the
three cities in all study areas with the lowest winter-to-summer ratios. They reported a
summer-to-winter ratio of approximately 0.3 for Wuhan, which aligns with our study’s
findings, where the summer-to-winter ratio for Wuhan is estimated at 0.25.
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4. Future Research
4.1. Estimation in the Polluted Background

A significant limitation of the EMG method is its potential ineffectiveness within
polluted scenarios, where emission sources often represent emission hotspots. Therefore,
exploring improvement measures to estimate emission strengths from sources within high-
pollution backgrounds is necessary. This requires the precise identification and separation
of pollution background concentrations, which can be achieved by collecting data during
periods devoid of major emission source activities (such as nighttime or specific seasons)
or by defining different sectors to analyze wind direction and pollution dispersion. This ap-
proach aids in identifying and isolating emission sources from specific directions, reducing
interference from surrounding pollution backgrounds. Implementing these strategies will
enhance the applicability of the EMG method in polluted environments, enabling accurate
estimation of emission strengths from critical sources within high-pollution backgrounds.

4.2. More Real-Time Monitoring

This study utilizes observations from instruments mounted on Sentinel-5, a sun-
synchronous orbit satellite that provides near-global coverage data once daily. The limita-
tion of satellite measurement timing, using measurements from a single moment within the
day to represent the average daily emission strength, can lead to biases. Therefore, observa-
tional data with higher temporal resolution are required to more accurately characterize
the emission patterns of NOx from sources, offering more detailed emission information.
Subsequent launches of geosynchronous satellites equipped with sensors, such as GEMS,
TEMPO, and Sentinel-4, are capable of providing multiple sets of observational data for tar-
geted regions within a day. This significantly enhances the timeliness of obtaining emission
information from source areas, providing new perspectives for the timely monitoring and
intervention of atmospheric pollution processes.

5. Conclusions

This investigation, for the first time, quantified urban daily NOx emissions by lever-
aging real plume observations captured during singular overpasses by the TROPOMI.
It substantiates the efficacy of the EMG methodology in estimating emissions from gen-
uine plumes and elucidates the methodological applicability of EMG. Moreover, it delves
into the temporal dynamics of urban NOx emissions, articulating both weekend and sea-
sonal variations. The observed phenomena of diminished emissions during weekends
and escalated emissions during the winter season (or heating period) across the majority
of the cities examined furnish novel avenues for the refinement of urban NOx emission
estimation and monitoring, thereby contributing to the strategic mitigation of atmospheric
pollution challenges.
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